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Abstract

Although the exact expressions for the extinction probabilities of the Interacting
Branching Collision Processes (IBCP) were very recently given by Chen et al. [4],
some of these expressions are very complicated; hence, useful information regarding
asymptotic behaviour, for example, is harder to obtain. Also, these exact expressions take
very different forms for different cases and thus seem lacking in homogeneity. In this
paper, we show that the asymptotic behaviour of these extremely complicated and tangled
expressions for extinction probabilities of IBCP follows an elegant and homogenous
power law which takes a very simple form. In fact, we are able to show that if the
extinction is not certain then the extinction probabilities {an} follow an harmonious and
simple asymptotic law of an ∼ kn−αρn

c as n → ∞, where k and α are two constants,
ρc is the unique positive zero of the C(s), and C(s) is the generating function of the
infinitesimal collision rates. Moreover, the interesting and important quantity α takes a
very simple and uniform form which could be interpreted as the ‘spectrum’, ranging from
−∞ to +∞, of the interaction between the two components of branching and collision
of the IBCP.
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1. Introduction

Due to the urgent need in analyzing practical models and developing corresponding challeng-
ing mathematical theory, the focus of research interests on branching models has been shifted
from independent Markov branching processes into interacting branching systems; thus, the
latter has attracted more and more extensive research attention. Many new interacting branching
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models have been posted and analyzed and the corresponding theory is also developing fast.
For the traditional independent Markov branching processes, the good references are, among
many others, [1], [3], [7], and the many references therein, while the references for interacting
branching models can be found in, for example, [2], [5], [6], [8], [9], [10], [11], [12], [13], [14].

Very recently, Chen et al. [4] considered an important and challenging model of an interacting
branching system, the so-called Interacting Branching Collision Process (IBCP), which consists
of two strongly interacting components: the branching component and the collision component.
Basic properties on uniqueness and extinction probabilities have been discussed and many
important results have been obtained. In particular, they proved that there exists only one IBCP
which is just the Feller minimal process for any given infinitesimal generator, the so-called
q-matrix Q. They also obtained a necessary and sufficient condition under which the IBCP
will go to extinction with probability 1 and revealed all kinds of exact expressions of extinction
probabilities when the extinction is not certain.

However, though given, some of these exact expressions are very complicated and it is
difficult, for example, to obtain useful information about the asymptotic behaviour of the
extinction probability from these exact expressions. The intuitive meanings of these complex
extinction probabilities are also unclear. These disadvantages limit the applications of these
obtained results in practical models. Hence, revealing simple asymptotic behaviour for these
complex expressions is of great significance.

The basic aim of this paper is therefore to reveal the asymptotic behaviour for these complex
expressions of extinction probabilities. We shall show that the asymptotic behaviour for these
complicated extinction probabilities takes a very simple form.

This paper has only three sections. In Section 2, we report the main conclusions obtained in
this paper. The proofs of these conclusions are given in Section 3. Compared with the previous
two sections, Section 3 is a little bit lengthy which is, in fact, necessary. Indeed, a few separated
theorems, dealing with different cases, are given in Section 3 in order to show the harmonious
power law stated in Section 2. At the end of this paper, we use a simple example to demonstrate
our elegant results.

2. Main results

Following Chen et al. [4], we define an IBCP as a continuous-time Markov chain on the
state space Z+ whose transition function P (t) = (pij (t); i, j ∈ Z+) satisfies P ′(t) = P (t)Q

where the interacting branching-collision infinitesimal q-matrix (henceforth referred to as an
IBC q-matrix) Q = (qij ; i, j ∈ Z+) is given by

qij =
⎧⎨
⎩

(
i

2

)
cj−i+2 + ibj−i+1 if i ≥ 1, j ≥ i − 2,

0 otherwise,
(2.1)

where

c0 > 0, cj ≥ 0 (j 	= 2),

∞∑
k=3

ck > 0, 0 <
∑
j 	=2

cj = −c2 < ∞,

b0 > 0, bj ≥ 0 (j 	= 1),

∞∑
k=2

bk > 0, 0 <
∑
j 	=1

bj = −b1 < ∞,

(2.2)

together with the conventions b−1 = 0 and
(1

2

) = 0. In order to avoid discussing some
degenerated and thus trivial cases, we also assume, through this paper, that

∑∞
k=0 c2k+1 	= 0.
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Again, following Chen et al. [4], we define the generating functions of the two known
sequences {ck; k ≥ 0} and {bk; ≥ 0}, respectively, as

C(s) =
∞∑

k=0

cks
k and B(s) =

∞∑
k=0

bks
k.

By Chen et al. [4, Theorem 3.2] we know that, for any given IBC q-matrix Q, there exists
only one IBCP. Now, let {X(t); t ≥ 0} denote this unique IBCP with the given IBC q-matrix
Q as defined in (2.1)–(2.2) and let P (t) = (pij (t); i, j ∈ Z+) be the Q-function of this unique
IBCP. Also, let

τ0 = inf{t > 0; X(t) = 0}
and

ai = P(τ0 < ∞ | X(0) = i), i ≥ 1,

be the extinction time and extinction probability, respectively.
The following conclusions were obtained by Chen et al. [4].

Proposition 2.1. (i) The equation C(s) = 0 has either two roots or three roots in the complex
disk {z; |z| ≤ 1} and all these roots are real. More specifically, if C′(1) ≤ 0 then C(s) > 0
for all s ∈ [0, 1) and 1 is the only root of the equation C(s) = 0 in [0, 1], which is simple or
with multiplicity 2 according to C′(1) < 0 or C′(1) = 0, respectively, while if 0 < C′(1) ≤ ∞
then C(s) = 0 has an additional simple root ρc satisfying 0 < ρc < 1 such that C(s) > 0 for
s ∈ (0, ρc) and C(s) < 0 for s ∈ (ρc, 1). In addition, C(s) = 0 has exactly one root, denoted
by ξc, in [−1, 0] such that C(s) > 0 for all s ∈ (ξc, 0] and |ξc| < ρc. Moreover, C(z) = 0 has
no other root in the complex disk {z; |z| ≤ 1}.
(ii) The equation B(s) = 0 has either one root or two roots in the complex disk {z; |z| ≤ 1} and
all these roots are positive. More specifically, if B ′(1) ≤ 0 then B(s) > 0 for all s ∈ [−1, 1)

and 1 is the only root of B(s) = 0 in [0, 1]. If 0 < B ′(1) ≤ +∞ then B(s) = 0 has an
additional root in [0, 1), denoted by ρb, such that B(s) > 0 for all s ∈ [−1, ρb) and B(s) < 0
for s ∈ (ρb, 1). Moreover, B(z) = 0 has no other root in the complex disk {z; |z| ≤ 1}.

Throughout this paper, we shall let ρc and ρb denote the smallest nonnegative root of C(s) =
0 and B(s) = 0, respectively.

Proposition 2.2. Suppose that Q is an IBC q-matrix as defined in (2.1)–(2.2) and let P (t) =
(pij (t); i, j ≥ 0) and �(λ) = (φij (λ); i, j ≥ 0) be the (in fact, unique, see Proposition 2.3,
below) Q-function and its Q-resolvent that satisfy the Kolmogorov forward equations, respec-
tively. Then, for any i ≥ 0, t ≥ 0, λ > 0 and |s| < 1, we have

∂Fi(t, s)

∂t
= C(s)

2

∂2Fi(t, s)

∂s2 + B(s)
∂Fi(t, s)

∂s

and

	i(λ, s) − si = C(s)

2

∂2	i(λ, s)

∂s2 + B(s)
∂	i(λ, s)

∂s
,

where Fi(t, s) = ∑∞
j=0 pij (t)s

j and 	i(λ, s) = ∑∞
j=0 φij (λ)sj .
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Proposition 2.3. (i) For any IBC q-matrix Q, there exists only one IBCP which is the Feller
minimal Q-process. Moreover, this unique IBCP is honest (i.e. Q is regular) if and only if
C′(1) ≤ 0.

(ii) The extinction probability of this unique IBCP, starting from state i ≥ 1, is 1 if and only if
either

(a) C′(1) ≤ 0 and B ′(1) ≤ 0 or

(b) C′(1) ≤ 0, 0 < B ′(1) ≤ ∞, and J = ∫ 1
ξc

(A(y)/C(y)) dy = +∞ (equivalently, J0 =∫ 1
0 (A(y)/C(y)) dy = +∞), where

A(s) = exp

{∫ s

0

2B(x)

C(x)
dx

}
. (2.3)

It should be noticed that, throughout this paper, we shall use (an) to denote the extinction
probability of IBCP when the process starts at state n which has no relationship with A(s)

defined in (2.3). In particular, (an) is not the nth coefficient of the Taylor series expansion of
the function A(s).

Based on the above propositions, Chen et al. [4] further deeply investigated the extinction
probability. In particular, they proved that if C′(1) < 0 and 0 < B ′(1) < ∞ (and thus Q is
regular) then the extinction probabilities ai = 1 is true. They further showed that if C′(1) = 0
and 0 < B ′(1) < ∞ (and thus Q is still regular) then both the cases of ai < 1 (for all i ≥ 1)
and ai ≡ 1 (for all i ≥ 1) may occur and when ai < 1, the exact expressions for ai (i ≥ 1) are
given. If C′(1) > 0 (and thus Q is irregular by Proposition 2.3), then ai < 1 (for all i ≥ 1) is
certain and all kinds of expressions for the extinction probabilities ai (i ≥ 1) are given in [4].

However, although the explicit expressions for extinction probabilities for IBCP are given
in [4], these expressions are sometimes extremely complicated; see [4, Theorem 5.8], for
example. It seems very hard to draw useful information from these very complicated expres-
sions. For example, we could know little about the asymptotic behaviour of these extinction
probabilities to which we are particularly interested in. Another disadvantage of these expres-
sions is that their forms look extremely different for different cases; thus, the deep relationships
among these expressions seem very vague.

The main aim of this paper is therefore to investigate the simple forms of the asymptotic
behaviour of these extinction probabilities in order to overcome the above mentioned short-
comings. Of course, in investigating asymptotic behaviour, we are only interested in the case of
ai < 1 since otherwise the question will be trivial. Hence, in discussing asymptotic behaviour,
we are only interested in, by Proposition 2.3, two cases: either 0 < C′(1) ≤ ∞ or C′(1) = 0
and J0 = ∫ 1

0 (A(y)/C(y)) dy < ∞. For the latter case, we shall further assume that B ′(1) < ∞
since for this latter case we are less interested in the uninformative situation of B ′(1) = ∞.

Surprisingly, we shall show that, as the asymptotic behaviour is concerned, the extinction
probabilities of the IBCP display an extremely simple and harmonic feature. Indeed, the
asymptotic behaviour of the extinction probabilities just follows a simple power law and,
moreover, different situations, to which the exact expressions for extinction probabilities are
very complicated and extremely different as mentioned above, are just referring to a constant
value, see Remark 3.3 together with Remark 3.4, below.

Our main results obtained in this paper are the following two conclusions which deal with
two different cases: the q-matrix Q is regular or irregular.
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Theorem 2.1. Suppose that C′(1) = 0, C′′(1) < ∞, B ′(1) < ∞, and

J0 =
∫ 1

0

A(y)

C(y)
dy < ∞;

thus, ρc = 1 (and hence the q-matrix Q is regular). Then, as n → ∞, we have

an ∼ kn−α, n → ∞, (2.4)

where α = 4B ′(1)/C′′(1) − 1 > 0 and k is a constant which is independent of n.

Theorem 2.2. Suppose that 0 < C′(1) ≤ +∞; thus, 0 < ρc < 1 (and hence the q-matrix Q

is irregular). Further assume that ρb 	= ρc. Then, as n → ∞,

an ∼ kn−αρn
c , n → ∞, (2.5)

where α = 2B(ρc)/C′(ρc) and k is a constant which is independent of n.

We see that the form of (2.5) is extremely simple and harmonic. If one compares (2.5) with
the complicated expressions given in [4, Theorems 5.6–5.10], one would feel that they have
addressed totally different problems. Note that, in Theorem 2.2, we have assumed that ρb 	= ρc.
This is because if ρb = ρc, then an = ρn

c , see [4, Theorem 5.1]; thus, the asymptotic behaviour
for the extinction probabilities {an} is trivial. However, it is easily seen that, even for ρc = ρb,
(2.5) is still true, since for this case we have α = 0 and k = 1. For more detailed explanation,
see Remark 3.3, below.

3. Proofs of the main results

As a preparation, we first provide the following simple lemma which describes some simple
but useful properties of the function A(s) which is defined in (2.3).

Recall that, by Proposition 2.1, we know that the generating function C(s) = ∑∞
j=0 cj s

i

has a negative zero −1 < ξc < 0 and a smallest positive zero 0 < ρc ≤ 1 and, furthermore,
ρc < 1 if and only if 0 < C′(1) ≤ +∞.

Lemma 3.1. The function A(s) defined in (2.3) possesses the following properties.

(i) A(y) ∼ l(y − ξc)
β as y → ξ+

c , where 0 < l < ∞ is a constant and β = 2B(ξc)/C′(ξc).

(ii) Suppose that 0 < C′(1) ≤ ∞; thus, ρc < 1. Then

A(y) ∼ l(ρc − y)α as y → ρ−
c ,

where 0 < l < ∞ is a constant (i.e. independent of y) and α = 2B(ρc)/C′(ρc).

(iii) Suppose that C′(1) = 0 and C′′(1) < 4B ′(1) < ∞. Then

A(y) ∼ l(1 − y)γ as y → 1−,

where 0 < l < ∞ is a constant (i.e. independent of y) and γ = 4B ′(1)/C′′(1) > 1.

Proof. We first prove (ii). By Proposition 2.1, we know that the condition 0 < C′(1) ≤ ∞
implies that ρc < 1 is a single zero of C(s); thus, if we let

g(x) = 2B(x)(ρc − x)

C(x)
, (3.1)
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then g(x), as a complex function of x, has only one negative zero ξc in the open unit disk
{z; |z| < 1}. In particular, g(x) is analytic on the open disk {z; |z| < |ξc|}; thus, it could be
expanded as a power series of x on the interval [0, ρc). Note that in the latter we have viewed
g(x) as a real valued function of x. Suppose that the expansion takes the form of

g(x) =
∞∑

k=0

gkx
k, (3.2)

where gk = g(k)(0)/k!. By (3.1) and (3.2), we have, for 0 < y < ρc,
∫ y

0

2B(x)

C(x)
dx =

∫ y

0

g(x)

ρc − x
dx

=
∞∑

k=0

gk

∫ y

0

xk

ρc − x
dx

=
( ∞∑

k=0

gkρ
k
c

) ∫ y

0

dx

ρc − x
+

∞∑
k=1

gk

k∑
m=1

(−1)m
(

k

m

)
ρk−m

c

∫ y

0
(ρc − x)m−1 dx

= J1 + J2, (3.3)

where the meaning of J1 and J2 should be self-explanatory.
By noting (3.2), we see that J1 in (3.3) is just

J1 =
( ∞∑

k=0

gkρ
k
c

) ∫ y

0

dx

ρc − x
= g(ρc)

∫ y

0

dx

ρc − x
,

where g(ρc) = limx→ρ+
c

2B(x)(ρc − x)/C(x) = −2B(ρc)/C′(ρc), which is finite.
Similarly, after some trivial algebra, J2 in (3.3) can be written as

J2 =
∞∑

k=1

gkρ
k
c

k∑
m=1

(−1)m

(
k
m

)
m

−
∞∑

k=1

gkρ
k
c

k∑
m=1

(
k
m

)
m

(
y

ρc

− 1

)m

. (3.4)

We recognize that the first term on the right-hand side of (3.4) is just a constant that is independent
of y and the second term on the right-hand side of (3.4) is just a rational function of y; thus, it
is a bounded function of y on [0, ρc]. It follows from the mean-value theorem that J2 can be
written as a constant k1, say, as y → ρ−

c . Therefore, we obtain that there exists a constant k

such that

A(y) = exp

{∫ y

0

2B(x)

C(x)
dx

}
∼ k(ρc − y)α as y → ρ−

c ,

where α = 2B(ρc)/C′(ρc). The proof of (ii) is completed.
The proof of (i) is similar to the proof of (ii); we just note that ξc is also a single zero of C(s)

and 0 < B(ξc) < ∞.
We now prove (iii). Since C′(1) = 0 we know from Proposition 2.1 that C(s) has no zero

on [0, 1) and 1 is the zero of C(s) with multiplicity 2. Also, since 0 < B ′(1) < ∞, we know
that 1 is also a single zero of B(s). It follows that if we let

g1(x) = 2B(x)(1 − x)

C(x)
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then, by the same reasoning as we used in the proof of (ii), we get that g1(x) can also be
expanded as a power series of x on [0, 1). Now, using similar arguments as we used in the
proof of (ii) and noting the fact that

lim
s→1+ g1(x) = −4B ′(1)

C′′(1)
,

it is then easily shown that (iii) is true.

Remark 3.1. Lemma 3.1(iii) was essentially proved in [4]; see the proof of [4, Corollary 4.3]
under the further assumption that B ′′(1) < +∞. However, it is easily seen that the proof in [4]
does not depend on this latter assumption; thus, this assumption can be removed.

In the rest of the paper we shall constantly use the following simple and well-known analytic
lemma whose proof can be found in any standard textbook of analysis.

Lemma 3.2. For any complex number a we have

lim
z→∞

�(z + a)

�(z)
z−a = 1

so long as R(a) > 0, where R(a) denotes the real part of the complex number a and �(·) is
the gamma function.

In our later application of Lemma 3.2 we actually will only meet the case that the complex
number a is just a real (and thus must be a positive) number.

We are now ready to prove the main results of this paper which were stated in Section 2.
For the purpose of giving some further useful information regarding the asymptotic behaviour
of the extinction probability than that stated in Theorems 2.1 and 2.2, we shall state and prove
the following main conclusions, separately.

Theorem 3.1. If C′(1) = 0 and B ′(1) < ∞, then the extinction probability {an}, starting
from state n ≥ 1, is less than 1 (for all n ≥ 1) if and only if C′′(1) < 4B ′(1). Moreover, if
C′′(1) < 4B ′′(1) is satisfied, then

an ∼ k1n
−α + k2n

−βξn
c as n → ∞, (3.5)

where k1 and k2 are two constants, α = 4B ′(1)/C′′(1) − 1 > 0, and β = 2B(ξc)/C′(ξc) > 0.
Furthermore, we have

an ∼ kn−α as n → ∞, (3.6)

where k is a constant and α = 4B ′(1)/C′′(1) − 1 > 0.

Proof. The first part of the conclusion has been proved in [4]; thus, we prove (3.5) first. Now,
suppose that C′(1) = 0 and C′′(1) < 4B ′(1) < ∞, then by [4, Theorem 4.2 and Corollary 4.3],
we know that the extinction probability {an}, starting from n ≥ 1, is given by

an = 1

J

∫ 1

ξc

ynA(y)

C(y)
dy, n ≥ 1,

where J = ∫ 1
ξc

(A(y)/C(y)) dy is a finite constant which is independent of n. In order to
obtain (3.5), we consider the two integrals

I
(n)
1 =

∫ 1

0

ynA(y)

C(y)
dy and I

(n)
2 =

∫ 0

ξc

ynA(y)

C(y)
dy.
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Note that under the condition stated in this theorem, we know that, for any n ≥ 1 and
0 < ε < 1, the function ynA(y)/C(y) is bounded on [0, ε]; thus, we only need to consider the
behaviour of I

(n)
1 when y → 1−. Noting that C′(1) = 0 and C′′(1) < ∞, we know that the

function C(y)/(1 − y)2 is bounded on [0, 1]. This fact together with Lemma 3.1(iii), implies
that we may write

I
(n)
1 = c

∫ 1

0

yn(1 − y)γ

(1 − y)2 dy = c

∫ 1

0
yn(1 − y)γ−2 dy,

where 0 < c < ∞ is a constant and γ = 4B ′(1)/C′′(1) > 1 since we have 0 < C′′(1) <

4B ′(1) < ∞. However,

∫ 1

0
yn(1 − y)γ−2 dy = �(n + 1)�(γ − 1)

�(n + γ )
.

Now, noting the fact that γ −1 > 0 and applying Lemma 3.2, we get that there exists a constant k
such that

I
(n)
1 ∼ kn1−γ , n → ∞. (3.7)

We now consider I
(n)
2 . We treat this in a similar way to I

(n)
1 but noting the difference that ξc

is a single zero of C(s), we can get that, by also using Lemma 3.1(i), there exists a constant c̃

such that

I
(n)
2 = c̃

∫ 0

ξc

yn(y − ξc)
β−1 dy,

where β = 2B(ξc)/C′(ξc) > 0. After performing a similar transformation to that above, we
obtain that there exists a constant c such that

I
(n)
2 = cξn

c

�(n + 1)�(β)

�(n + 1 + β)
.

Now, applying Lemma 3.2 once again and noting that β > 0, we get that there exists a constant k̃
such that

I
(n)
2 ∼ k̃n−βξn

c , n → ∞. (3.8)

Combining (3.7) and (3.8) and noting that there exists another constant 1/J in the form of {an},
we see that (3.5) is true by simply letting α = γ − 1 (and hence α > 0). Finally, considering
|ξc| < 1, we immediately get (3.6) by using the already proven (3.5).

Remark 3.2. We see that (3.6) is the same as (2.4), which we claimed in Theorem 2.1. However,
we can see that (3.5) is a finer result than (3.6). Indeed, (3.5) provides some further information
than that given in (3.6).

We now turn to consider the more interesting and challenging irregular case, i.e. 0 < C′(1)

≤ ∞. Although our initial aim is to prove Theorem 2.2, we shall discuss this case more exten-
sively. The reward is that we can get much more information than that stated in Theorem 2.2.
Note that, in discussing this irregular case, neither C′(1) < ∞ nor B ′(1) < ∞ is assumed. In
other words, we shall cover all possible cases, even if both C′(1) and B ′(1) are infinite.

By Proposition 2.3, we know that the condition 0 < C′(1) ≤ ∞ implies that ρc < 1,
where ρc is the smallest positive zero of C(s). We also know that the generating function
B(s) has the smallest positive zero ρb. Hence, three relationships between them may occur,

https://doi.org/10.1239/jap/1395771425 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771425


Interacting branching collision processes 227

i.e. ρb < ρc < 1, ρb = ρc < 1, and ρc < ρb ≤ 1. However, as the asymptotic property of the
extinction probability is concerned, the case of ρb = ρc < 1 is trivial since in this case we have
an = ρn

c (n ≥ 1). We shall therefore only consider the other two cases. We first investigate the
case of ρb < ρc < 1.

Theorem 3.2. If ρb < ρc < 1, then the extinction probability of the IBCP, starting from n ≥ 1,
denoted by {an}, possesses the following asymptotic behaviour:

an ∼ k1n
−αρn

c + k2n
−βξn

c as n → ∞, (3.9)

where α = 2B(ρc)/C′(ρc) > 0, β = 2B(ξc)/C′(ξc) > 0, and k1 and k2 are constants which
are independent of n. Furthermore, we have

an ∼ kn−αρn
c as n → ∞, (3.10)

where k is a constant and α = 2B(ρc)/C′(ρc) > 0.

Proof. By [4, Theorem 5.3], we know that the extinction probability {an}, starting from
n ≥ 1, is given by

an =
∫ ρc

ξc
(ynA(y)/C(y)) dy∫ ρc

ξc
(A(y)/C(y)) dy

. (3.11)

Since the denominator of the right-hand side of (3.11) is just a constant which is independent
of n, we only need to consider the two integrals I

(n)
1 = ∫ ρc

0 (ynA(y)/C(y)) dy and I
(n)
2 =∫ 0

ξc
(ynA(y)/C(y)) dy.
However, the latter is already analyzed in Theorem 3.1, i.e. (3.8) is still true for our current

situation; thus, we shall only consider the former. But this is simpler than the case considered
in Theorem 3.1 and also very similar to the case of I

(n)
1 in Theorem 3.1. Indeed, considering

ρc < 1 is the single zero of C(s), and by applying Theorem 2.1(ii), we know that there exists
a constant k such that

I
(n)
1 =

∫ ρc

0

ynA(y)

C(y)
dy = k

∫ ρc

0
yn(ρc − y)α−1 dy,

where α = 2B(ρc)/C′(ρc) > 0, since both B(ρc) and C′(ρc) are negative due to the assumption
that ρb < ρc < 1.

Now, since α > 0, we have
∫ ρc

0
yn(ρc − y)α−1 dy = ρn+α

c

∫ 1

0
xn(1 − x)α−1 dx = ρn+α

c

�(n + 1)�(α)

�(n + α + 1)
;

thus, by applying Lemma 3.2 once again (since α > 0), we obtain that there exists a constant,
again denoted by k, such that

I
(n)
1 ∼ kn−αρn

c .

This, together with (3.8), shows that (3.9) is true. Finally, (3.10) follows from (3.11) by noting
the fact that |ξc| < ρc. This completes the proof.

Now we turn to consider the more subtle case of ρc < ρb ≤ 1. By Proposition 2.1 we
know that for this case we have C′(ρc) < 0 and B ′(ρc) > 0. Following these facts we
may face the following three subcases: C′(ρc) + 2B(ρc) < 0, C′(ρc) + 2B(ρc) = 0, and
C′(ρc) + 2B(ρc) > 0. We shall discuss these three subcases separately. We first consider the
subcase C′(ρc) + 2B(ρc) = 0.
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Theorem 3.3. If ρc < ρb ≤ 1 and C′(ρc) + 2B(ρc) = 0, then the extinction probability {an},
starting from n ≥ 1, is given by

an = ρn
c + σnρn−1

c , (3.12)

where σ = −B(ρc)/B
′(ρc). Furthermore,

an ∼ kn−αρn
c , n → ∞, (3.13)

where k = σ/ρc is a constant and α = 2B(ρc)/C′(ρc) = −1.

Proof. Equation (3.12) is proved in [4, Theorem 5.5], and then (3.13) follows from (3.12)
directly. Also, it is easily seen that the condition C′(ρc)+2B(ρc) = 0 is equivalent to α = −1.

Secondly, we consider the subcase C′(ρc) + 2B(ρc) < 0.

Theorem 3.4. Suppose that ρc < ρb ≤ 1 and C′(ρc) + 2B(ρc) < 0. Then the extinction
probability {an} of the IBCP, starting from n ≥ 1, possesses the following asymptotic behaviour:

an ∼ k1n
−αρn

c + k2n
−βξn

c , n → ∞, (3.14)

where k1 and k2 are constants and α = 2B(ρc)/C′(ρc) < 0 and β = 2B(ξc)/C′(ξc) > 0.
Furthermore, we have

an ∼ kρn
c n−α, n → ∞, (3.15)

where −1 < α = 2B(ρc)/C′(ρc) < 0 and k is a constant.

Proof. By [4, Theorem 5.6], we know that if ρc < ρb ≤ 1 and C′(ρc) + 2B(ρc) < 0, then
the extinction probability {an} is given by

an =
∫ ρc

ξc

ynB ′(y) − nyn−1B(y)

A1(y)
exp

(∫ y

0

B1(x)

A1(x)
dx

)
dy

×
(∫ ρc

ξc

B ′(y)

A1(y)
exp

(∫ y

0

B1(x)

A1(x)
dx

)
dy

)−1

, (3.16)

where

A1(s) = C(s)B(s)

2
and B1(s) = B(s)(2B(s) + C′(s) − C(s)B ′(s))

2
. (3.17)

It follows from (3.16) that there exists a constant k which is independent of n such that

an = k

∫ ρc

ξc

ynB ′(y) − nyn−1B(y)

A1(y)
exp

(∫ y

0

B1(x)

A1(x)
dx

)
dy. (3.18)

In order to understand the asymptotic property of {an} in (3.18), we first carefully consider
the property of the function exp(

∫ y

0 (B1(x)/A1(x)) dx) which is the key term in the expression
(3.18). Let

a+
n = k

∫ ρc

0

ynB ′(y) − nyn−1B(y)

A1(y)
exp

(∫ y

0

B1(x)

A1(x)
dx

)
dy,

a−
n = k

∫ 0

ξc

ynB ′(y) − nyn−1B(y)

A1(y)
exp

(∫ y

0

B1(x)

A1(x)
dx

)
dy.

(3.19)
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Following [4], we denote A0(s) = C(s)/2 and B0(s) = B(s), then B1(s) and A1(s) given in
(3.17) can be rewritten as

A1(s) = A0(s)B0(s)

and
B1(s) = B0(s)[B0(s) + A′

0(s)] − A0(s)B
′
0(s).

Hence, ∫ y

0

B1(x)

A1(x)
dx =

∫ y

0

B0(x)

A0(x)
dx +

∫ y

0

A′
0(x)

A0(x)
dx −

∫ y

0

B ′
0(x)

B0(x)
dx

=
∫ y

0

B0(x)

A0(x)
dx + ln

A0(y)

B0(y)
+ ln

B0(0)

A0(0)
,

where B0(0) = b0 > 0 and A0(0) = c0/2 > 0.
It follows that

exp

(∫ y

0

B1(x)

A1(x)
dx

)
= k1

A0(y)

B0(y)
exp

(∫ y

0

B0(x)

A0(x)
dx

)
, (3.20)

where k1 is a constant which is independent of y. Substituting (3.20) into (3.19) shows that
there exists a constant, denoted by k again, which is independent of both y and n, such that

a+
n = k

∫ ρc

0

nyn−1B0(y) − ynB ′
0(y)

(B0(y))2 exp

(∫ y

0

B0(x)

A0(x)
dx

)
dy.

Since ρc < ρb ≤ 1 we know that B0(s) ≡ B(s) has no zero on [0, ρc]; thus, 1/B0(s) is
bounded on [0, ρc]. It follows from this crucial fact and the mean-value theorem, together with
the simple facts that both B0(s) and B ′

0(s) are bounded functions of s ∈ [0, ρc], we know that
there exist two constants k1 and k2 which are both independent of y and n such that

a+
n = k1n

∫ ρc

0
yn−1 exp

(∫ y

0

B0(x)

A0(x)
dx

)
dy + k2

∫ ρc

0
yn exp

(∫ y

0

B0(x)

A0(x)
dx

)
dy.

However, the function exp(
∫ y

0 (B0(x)/A0(x)) dx) is just A(y) defined in (2.3); thus, by using
Lemma 3.1(ii) once again we know that there exist two constants, again denoted by k1 and k2,
such that

a+
n = k1n

∫ ρc

0
yn−1(ρc − y)α dy + k2

∫ ρc

0
yn(ρc − y)α dy, (3.21)

where α = 2B(ρc)/C′(ρc) < 0.
Noting that C′(ρc) + 2B(ρc) < 0 and C′(ρc) < 0, we know that 1 + 2B(ρc)/C′(ρc) > 0;

thus,

−1 < α = 2B(ρc)

C′(ρc)
< 0.

Therefore, we can obtain that∫ ρc

0
yn−1(ρc − y)α dy = ρn

c ρα
c

∫ 1

0
xn−1(1 − x)α dx

= ρn+α
c

∫ 1

0
xn−1(1 − x)1+α−1 dx

= ρn+α
c

�(n)�(1 + α)

�(n + 1 + α)
. (3.22)
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Similarly, we have
∫ ρc

0
yn(ρc − y)α dy = ρn+1+α

c

�(n + 1)�(1 + α)

�(n + 2 + α)
. (3.23)

Substituting (3.22) and (3.23) into (3.21), using the fact that 1+α > 0, and applying Lemma 3.2
together with some trivial algebra, we then can write that there exists a constant k such that

a+
n ∼ k1n

−αρn
c , n → ∞.

Similarly, we obtain
a−
n ∼ k2n

−βξn
c , n → ∞,

with β = 2B(ξc)/C′(ξc) > 0. Then (3.14) follows. Again, (3.15) follows from (3.14) directly.

Finally we consider the subcase C′(ρc)+2B(ρc) > 0. Since now C′(ρc)+2B(ρc) > 0, but
C′(ρc) < 0 and B(ρc) > 0, we can certainly find the smallest positive integer m ≥ 2 such that
mC′(ρc) + 2B(ρc) ≤ 0, but for all 1 ≤ n < m we have nC′(ρc) + 2B(ρc) > 0. Equivalently,
if we let α = 2B(ρc)/C′(ρc), then 0 < m − 1 < −α ≤ m. We first consider the easy subcase
of mC′(ρc) + 2B(ρc) = 0.

Theorem 3.5. Suppose that ρc < ρb ≤ 1 and C′(ρc) + 2B(ρc) > 0. If there exists a positive
integer m such that mC′(ρc)+2B(ρc) = 0, then there exist (m+1) constants {k0, k1, . . . , km}
with k0 = 1 such that the extinction probability {an}, starting from n ≥ 1, can be written as

an =
m∑

l=0

kln
lρn−l

c . (3.24)

In particular, there exists a constant k such that

an ∼ kn−αρn
c , n → ∞, (3.25)

where α = 2B(ρc)/C′(ρc) = −m.

Proof. Equation (3.24) follows directly from [4, Equation (5.23)]. Then (3.25) is an easy
consequence of (3.24) by noting that we have denoted m as −α.

Note that Theorem 3.3 can be viewed as a special case of Theorem 3.5 when m = 1.
We now turn to the final subcase, mC′(ρc) + 2B(ρc) < 0, for some m ≥ 2, where m is the

smallest positive integer such that mC′(ρc) + 2B(ρc) < 0 holds. Then, as detailed in [4], in
addition to defining A0(s) = C(s)/2 and B0(s) = B(s), we have to define An(s) and Bn(s)

(n ≥ 1) sequentially, until we get Am(s) and Bm(s), as follows:

An(s) = An−1(s)Bn−1(s), (3.26)

Bn(s) = Bn−1(s)[Bn−1(s) + A′
n−1(s)] − An−1(s)B

′
n−1(s). (3.27)

As also detailed in [4], without loss of generality, we may assume that Am(s) > 0 for all
s ∈ (ξc, ρc).

Theorem 3.6. Suppose that ρc < ρb ≤ 1, C′(ρc) + 2B(ρc) > 0, and that −2B(ρc)/C′(ρc)

is not an integer. Let m be the smallest positive integer such that m = min{k ≥ 1, kC′(ρc) +
2B(ρc) < 0}; thus, −m < α = 2B(ρc)/C′(ρc) < −(m − 1). Further assume that Am(s) > 0
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for all s ∈ (ξc, ρc), where Am(s) is defined sequentially as in (3.26) and (3.27). Then the
extinction probability {an} of the IBCP (n ≥ 1), starting from n ≥ 1, possesses the asymptotic
behaviour that there exist m + 1 constants {k0, k1, . . . , km−1} such that

an ∼
m∑

l=0

kl

n!
(n − l)!ρ

n−l
c n−α, n → ∞, (3.28)

where α = 2B(ρc)/C′(ρc). Furthermore, we have

an ∼ kρn
c n−α, n → ∞, (3.29)

where −m < α = 2B(ρc)/C′(ρc) < −(m − 1).

Proof. By [4, Theorem 5.8], we know that, for a sufficiently largen, the extinction probability
{an} is given by

an = k

m∑
l=0

n!
(n − l)!

∫ ρc

ξc

yn−lDm,l(y)

Am(y)
exp

(∫ y

0

Bm(x)

Am(x)
dx

)
dy, (3.30)

for some constant k that is independent of n, where Am(s) and Bm(s) are defined in (3.26) and
(3.27) and the functions Dm,l(s) are given recursively as

D1,0(s) = −B ′(s), D1,1(s) = B(s), (3.31)

Dn,k(s) = Dn−1,k−1(s)Bn−1(s) − Dn−1,k(s)B
′
n−1(s) + D′

n−1,k(s)Bn−1(s), k ≤ n − 1,

(3.32)

Dn,n(s) =
n−1∏
m=0

Bm(s). (3.33)

By (3.31)–(3.33), it is easily seen that all Dm,l(s) are analytic functions of s, since they are
all power series of s. Hence, they are all bounded on the finite interval [ξc, ρc]. It follows that
the {an} in (3.30) can be written as

an =
m∑

l=0

kl

n!
(n − l)!

∫ ρc

ξc

yn−l

Am(y)
exp

(∫ y

0

Bm(x)

Am(x)
dx

)
dy, (3.34)

where {k0, k1, . . . , km} are m + 1 constants.
Again, let {a+

n } be the part of {an} regarding the integral of ‘
∫ ρc

0 ’ and {a−
n } be the part

regarding the integral of ‘
∫ 0
ξc

’; thus, an = a+
n + a−

n .
Firstly, in a similar way as we obtained (3.20), we can get, by using (3.26) and (3.27), that

Bm(s)

Am(s)
= Bm−1(s)

Am−1(s)
+ A′

m−1(s)

Am−1(s)
− B ′

m−1(s)

Bm−1(s)
; (3.35)

thus,

exp

(∫ y

0

Bm(x)

Am(x)
dx

)
= exp

(∫ y

0

Bm−1(x)

Am−1(x)
dx

)
Am−1(y)

Bm−1(y)

Bm−1(0)

Am−1(0)
. (3.36)
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By repeatedly using (3.35) and (3.36) and noting that Bm−1(0)/Am−1(0) is just a constant, we
obtain

exp

(∫ y

0

Bm(x)

Am(x)
dx

)
= k exp

(∫ y

0

B0(x)

A0(x)
dx

)∏m−1
l=0 Al(y)∏m−1
l=0 Bl(y)

, (3.37)

where k is a constant.
By using (3.26) we may easily see that, for any n ≥ 1, An(s) = A0(s)

∏n−1
k=0 Bk(s).

Substituting this latter expression into (3.37) and then substituting the result into (3.34), we
obtain that there exists m + 1 constants, again denoted by {k0, k1, . . . , km}, such that

a+
n =

m∑
l=0

kl

n!
(n − l)!

∫ ρc

0
yn−l A0(y)

∏m−1
k=0 Ak(y)

(Am(y))2 exp

(∫ y

0

2B(x)

C(x)
dx

)
dy. (3.38)

Now since m is the minimal value of k such that kC′(ρc) + 2B(ρc) < 0, we obtain that ρc is
not a zero of the function A0(y)

∏m−1
k=0 Ak(y)/(Am(y))2. Thus, by applying the mean-value

theorem together with Lemma 3.1(ii), we see that {a+
n } in (3.38) can be written as

a+
n =

m∑
l=0

kl

n!
(n − l)!

∫ ρc

0
yn−l (ρc − y)−α dy,

where α = 2B(ρc)/C′(ρc) < 0.
Similarly, we have

a−
n =

m∑
l=0

k̃l

n!
(n − l)!

∫ 0

ξc

yn−l (y − ξc)
−β dy.

Using the same transformation as we did before together with applying Lemma 3.2 and
using the fact that |ξc| < ρc < 1, we can similarly prove (3.28). Then (3.29) follows directly
from (3.28).

Remark 3.3. If we carefully check the results obtained in Theorems 3.2–3.6, particularly
(3.10), (3.13), (3.15), (3.25), and (3.29), we may see that if the IBC q-matrix Q is irregular,
then the extinction probabilities {an} always satisfy uniformly the asymptotic behaviour

an ∼ kn−αρn
c , n → ∞, (3.39)

where α = 2B(ρc)/C′(ρc) and k is a constant which is independent of n. Hence, Theorem 2.2
is fully proved. We also note that the basic conclusions in Theorems 3.2–3.6 are nothing but
special cases of (3.39) with the value of α being α > 0 (Theorem 3.2), α = −1 (Theorem 3.3),
−1 < α < 0 (Theorem 3.4), α = −m for some positive integer m ≥ 2 (Theorem 3.5), and
−m < α < −(m − 1) for some positive integer m ≥ 2 (Theorem 3.6).

Remark 3.4. By checking Remark 3.3, it seems that the case of α = 0 is missing! Note that,
however, in discussing irregular cases we have omitted the case ρb = ρc < 1 for its triviality.
Now, we can see that, even for ρb = ρc < 1, (3.39) is still true in the sense of k = 1 and α = 0.
Indeed, in this case we have an = ρn

c ; thus, (3.39) takes the form of α = 0. Thus, this case fills
the gap of the ‘spectrum’ from −∞ to +∞ well distributed among Theorems 3.2–3.6.
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Finally, we use a simple example that was discussed in both [4] and [10] to end this paper. In
this simple example the birth structure for both the branching and collision components takes
a single birth form. More specifically, we assume that

b0 = a > 0, b1 = −(a + b), b2 = b > 0, bj ≡ 0 (for all j ≥ 3) (3.40)

and that

c0 = d > 0, c1 = r ≥ 0, c2 = −(d + r + c), c3 = c > 0,

cj ≡ 0 (for all j ≥ 4).
(3.41)

Using the above quantities, we can easily construct an IBC q-matrix Q. It is clear that, for
this IBC q-matrix Q, we have

B(s) = a − (a + b)s + bs2 = a(1 − s)

(
1 − bs

a

)

and

C(s) = d + rs − (d + r + c)s2 + cs3 = c(s − 1)(s − ρc)(s − ξc), (3.42)

where ρc = ((d + r)+√
(d + r)2 + 4dc)/2c and ξc = ((d + r)−√

(d + r)2 + 4dc)/2c < 0.
It is easily seen that C′(1) = c − (2d + r) and B ′(1) = b − a.

By [4, Theorem 6.1], we know that, for this IBC-q-matrix Q, the extinction probabilities
are less then 1 if and only if either c > 2d + r , or c = (2d + r), b > a, and 3d + r < 2(b − a).
Hence, in studying asymptotic behaviour, we only need to consider these latter two cases.
Now, combining our Theorems 2.4 and 2.5 with [4, Theorem 6.1], we obtain the following
satisfactory conclusion.

Corollary 3.1. For the IBC q-matrix determined by (3.40) and (3.41) we have the following
conclusions.

(i) There always exists only one IBCP which is the Feller minimal process and that this
Feller minimal process is honest if and only if c ≤ 2d + r .

(ii) The extinction probabilities an = 1 (for all n ≥ 1) if and only if one of the following
three conditions holds:

(a) c < (2d + r),

(b) c = (2d + r) and b ≤ a,

(c) c = (2d + r), b > a, and 3d + r ≥ 2(b − a).

(iii) If c = (2d + r), b > a, and 3d + r < 2(b − a), then an < 1 (for all n ≥ 1) and in this
case, the asymptotic behaviour of the extinction probability {an} is given by

an ∼ kn−α, n → ∞,

where α = 2(b − a)/(3d + r) − 1 > 0.

(iv) If c > 2d + r , then an < 1 (for all n ≥ 1) and in this case, the asymptotic behaviour of
the extinction probabilities follows the power law of an ∼ kn−αρn

c (n → ∞), where ρc

is given below (3.42), α = 2B(ρc)/C′(ρc) which is easily given, and k is a constant.
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