SEQUENCES OF EULER GRAPHS
Gert Sabidussi

(received October 26, 1965)

A graph is called Euler if it has no isolated vertices and
every vertex has even or infinite degree. The graphs we
consider may have multiple edges but no loops. Loosely
speaking, we will be concerned with the conditional compact-
ness of the set of all countable Euler subgraphs of a given
graph. For a precise enunciation of what we mean by
""conditional compactness' see Theorem 2 below.

Let o= (Xn) (N the natural numbers) be a sequence

ne N
of graphs. By o, we shall denote the smallest graph whose

edge set, E(e, ), is lim inf E(Xn) (in the usual set-theoretic

sense). Similarly, we define o* to be the smallest graph
with E(o*) = lim sup E(X ) . The graphs o, and o% will be
n -

called limit inferior and limit superior of «, respectively, If
o, = a¥ we say that o converges to lim o =¢, = o*. We denote

"y
X .
neN n by Uar

For a vertex x ¢ X we shall denote by E(x;X) the set of
all edges incident with x. The degree of x in X is
d(x;X) = |E(x;X)] .

In the proof of Theorem 1 we shall make use of the
obvious fact that if E is a finite subset of E(a*) then

ECE(X ) forall n>n .
n o

THEOREM 1. Let o= (X)) be a sequence of graphs,

n'ne N
., } afinite or countable set of vertices of o

A={a,a,..
{22,
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such that (i) d(ai;Xn) is even whenever a_ ¢ Xn’ and
Such that i and

(ii) d(a.; Ua) <o, i=1,2,... . Then there exists a subsequence
i

B of a such that d(ai;ﬁ*) is even, i=1,2,..., and

E(a.;ﬁ*) = E(a,;y*) for any subsequence y of B.
i i

Proof. Assume first that A ={a} . aeq implies

aeX forall n>n , sothat d(a;X )< d(a; U )< o for all
n o n o

1 2
that d(a;X_ ) =d(a;X )=... =2d< .
Ty "2

Put Xnk= Yk,k =14,2,.... E(a;a*)CE(a; Ua), hence E(a;a*) is

n>n . Hence there exists a sequence n <n, <n < ... such
o] ==

finite. By the remark preceding Theorem 1 this implies
E(a;ar*)C E(a;Yk), and hence

d(a.;oz*) < d(a;Yk) =2d, k=1,2,... .

If d(aja,) = 2d, then E(a;a*) = E(a;Yk), k=1,2,...; hence if

we put B = (Yk) the proof is complete.- If d(a;a*) < 2d,

ke N
then E(a;a*) is a proper subset of E(a;Yk) for all k. Let

€ E(a;Yk) - E(a;oz*), k=1,2,... . Clearly e ¢ E(a; Ua/)'

e
k k
Since d(a; UQ) < oo it follows that only finitely many of the edges

e, are distinct, i.e., there is an infinite sequence k1 < k2 <...

such that ek‘1 = ek2 =... . Thus

e, © E(a;Yk ) , m=14,2,... .

1 m
(1) . (1) . (1) .
Put o ' = (Yk )meN . Then ek € E(a,ar* ). Since « is a
m 1
subsequence of ¢, E(a;a*) CE(a;a,(:) ), and since
e ¢ E(a;ar*) this inclusion is proper. Thus d(a.;a/*) < d(a;a*(“)

(1)

Je
>

< 2d. I d(aje, ') < 2d the above procedure can be repeated to

yield a subsequence a(z) of oz(i) such that d(a;a}éi))
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< d(a;aéz)) < 2d. In view of the finiteness of 2d it follows that

(s)

there is a subsequence a/(s) of « such that d(aj;o ') = 2d, and

E(a;aﬁs)) = E(a;y*) for every subsequence y of cz(s) .

Now let A = {af a_,...} . By the first part of the proof

there is a subsequence 5(1) of « such that d(ai;ﬁii)) is even

and E(a1;[3£1)) = E(ai;yﬁi)) for every subsequence \/(1) of {3(1).
. . . (i) (i-1) .

By induction there is a subsequence B of B having the

same properties with respect to a,. Then B, the diagonal
i .
sequence of the sequences [3( ), has the required properties.

REMARK 1. For A ={a} we have actually proved a
slightly stronger result, viz,, the following: Given any d such
that d(a;X ) = 2d for infinitely many n, there exists a

n

subsequence P of o with d{a;p_ ) =2d, and E(a;8,) = E(a;v,)

for any subsequence y of B.

Theorem 1 has the following
COROLLARY. Let o be a convergent sequence of
Euler graphs such that d(x; Ua) <o for any xe lim o with

d{x; lim o)< ©. Then lim o is Euler. In particular,

lim o is Euler if U 1is locally finite,
o

Proof. Take a vertex xe lim o with d(x;lim o) < © and
apply Theorem 1 to A = {x} . This yields the existence of a
subsequence B of o such that d(x;8,) is even. But B, = lim a.

REMARK 2. Both Theorem 1 and its corollary are
false if the boundedness condition (ii) is removed. In the graph
of Figure 1 let Xn be the triangle (ai, a.z, x ), n=1,2,...

n

This sequence converges to (e), the graph consisting of e and
3,1, az, but d(ai;(e)) =1, i=1,2.
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2}

Figure 1

This example also shows that (ii) can not even be replaced by
the weaker condition that d(ai;af* ) < © for every aie A

THEOREM 2. Let o be a sequence of countable Euler
such that U 1is locally finite. Then there exists a subsequence
E———

B of @ such that B, is Euler,

Proof. Suppose no such subsequence exists. Put
B(o) = o and for each countable ordinal + define B(T)
inductively as follows. I T 1is not a limit ordinal then
application of Theorem 41 to the sequence 6(7_1) and the set
A= V([S_,,(T-i)) yields the existence of a subsequence B(T) such
that d(a;ﬁ*(T)) is even for every ac B*(T_“. By (r-1) Cﬁ*(f)

()

and this inclusion is proper, otherwise f_ would be Euler.

If r is a limit ordinal, let (a'i), be a sequence of ordinals
1

which is cofinal in T, and define ﬁ(T) to be the diagonal

(O'i) (r)
sequence of the sequences f . Note that B, c

e N

a* for

all r. Hence o*¥ has at least as many edges as there are
countable non-limit ordinals, i.e., o% 1is uncountable, a
contradiction.
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REMARK 3. In the hypothesis of Theorem 2, the word
"countable' may be replaced by "connected!. For if U is
a

locally finite, then so is every Xn, and every connected

locally finite graph is countable ([C], p.28, Theorem 2.4.1).

REMARK 4. By a similar argument one can prove the
following: Let o« be a sequence of countable Euler graphs.
Then there exists a subsequence P of o such that d(x;B,) is
even for any xe ﬁ* with d(x; U )< .

a
REMARK 5. Starting with B(o) = ¢ define the sequences
-

B( ), T< W y 28 in the proof of Theorem 2. Then

i (o) . o
X = U By = is Euler for every countable limit ordinal ~.

c<T
For, given xe XT, let o be the smallest ordinal such that

Xe ﬁ,ig) . Then E(Xiﬁio-)) c E(X;ﬁip)) for all p > o . Hence

+
d(x;XT) = d(x;ﬁio- 1)), and thus is even. Hence XT is Euler,

We conclude by showing that the closely related class of
finitely cyclicly coverable (f.c.c.) graphs does not have the
property stated in Theorem 2. We recall ([2], p.822) thata
graph is f.c.c. if it is the union of a set of mutually edge-
disjoint finite circuits. Every f.c.c. graph is Euler, but not
conversely (not even in the locally finite case).

In the graph of Figure 2 let Xn be the 2n-circuit
(Xi’ RETE Yn, . “'Yi)’ n=1,2,... . Trivially, every Xn
isf.c.c., and U is locally finite., But the sequence
o

converges to the infinite circuit (..., Yy Y1,

xi,xz, ...) which, of course, is not f.c.c.
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i % 7

Figure 2
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