
SEQUENCES OF E U L E R GRAPHS 

G e r t Sab iduss i 

( r e ce ived Oc tober 26, 1965) 

A g r a p h i s ca l led E u l e r if i t h a s no i so l a t ed v e r t i c e s and 
e v e r y v e r t e x has even or infini te d e g r e e . The g r a p h s we 
c o n s i d e r m a y have m u l t i p l e edges but no l o o p s . L o o s e l y 
speak ing , we wi l l be conce rned with the cond i t iona l c o m p a c t ­
n e s s of the se t of a l l countab le E u l e r s u b g r a p h s of a g iven 
g r a p h . F o r a p r e c i s e enunc ia t ion of what we m e a n by 
"cond i t i ona l c o m p a c t n e s s " s ee T h e o r e m 2 be low. 

Le t a = (X ) T̂ (N the n a t u r a l n u m b e r s ) be a s e q u e n c e 
n ne N 

of g r a p h s . By a^ we s h a l l deno te the s m a l l e s t g r a p h whose 

edge se t , E(or^), is l i m inf E(X ) (in the u s u a l s e t - t h e o r e t i c *r n 
s e n s e ) . S i m i l a r l y , we define a* to be the s m a l l e s t g r a p h 
with E(o*) = l i m sup E(X ) . The g r a p h s a^ and a* wi l l be 

n 'r 

cal led l i m i t i n f e r i o r and l i m i t s u p e r i o r of a , r e s p e c t i v e l y . If 
a^ = a* we s a y tha t a c o n v e r g e s to l im a = o^ = a* . We denote 

U X by U . 
ne N n a 

F o r a v e r t e x x € X we s h a l l denote by E(x;X) the s e t of 
a l l edges inc iden t wi th x . The d e g r e e of x in X is 
d(x;X) = JE(x;X)| . 

In the proof of T h e o r e m 1 we s h a l l m a k e u s e of the 
obvious fac t tha t if E i s a f ini te s u b s e t of E(a^) then 

E C E ( X ) for a l l n > n . 
n o 

T H E O R E M 1. Le t a = (X ) _ be a s equence of g r a p h s , 
n ne N J 

s ^ V a 2 J a f ini te o r countab le s e t of v e r t i c e s of 
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such that (i) d(a.:X ) is even whenever a € X , and 
l n l n 

(ii) d(a ; U ) < oo, i = 1, 2, . . . . Then there exists a subsequence 
i a 

6 of a such that d(a.;(3 ) is even, i = 1, 2, . . . , and 
E(a.;(3^) = ECa.jv^) for any subsequence v of (3 » 

ï *** i *** """""" 
Proof. Assume f i rs t that A = {a} . a € o^ implies 

a € X for all n > n , so that d(a;X ) < d(a; U ) < oo for all 
n o n a 

n > n . Hence there exists a sequence n < n < n_ < . . . such 
o ^ o = 1 2 

that d(a;X ) = d(a;X ) = . . . = 2d < oo. 
n l n 2 

P u t X n = Y k ' k = 1 > 2 ' • •• • E ( a ; a . ) C E ( a ; U ), hence E(a;« ) is 

finite. By the r e m a r k preceding Theorem 1 this implies 
E(a;<*JCE(a;Y. ), and hence 

*** k 
d(a;a#) < d(a;Yk) = 2d, k = 1, 2, . . . . 

If d(a;o^) = 2d, then E(a;a^) = E(a;Y ), k = 1, 2, . . . ; hence if 
T ^ k 

we put (3 = (Y, ) _,_ the proof is complete . If d(a;or. ) < 2d, 
k k e N * 

then E(a;or^) is a proper subset of E(a;Y ) for all k . Let 
e, e E(a;Y, ) - E(a;c> ), k = 1, 2, . . . . Clearly e, € E(a; U ). 

k k * k a 
Since d(a; U ) < oo it follows that only finitely many of the edges 

a 
e, are distinct, i . e . , there is an infinite sequence k < k_ < . . . 

k 1 2 
such that e, = e, = . . . . Thus 

k l k 2 

e k € E(a;Yk ), m = 1, 2, . . . . 
1 m 

(1) (1) (1) 
Put a =(Y, ) T̂ . Then e, e E(a;or! )• Since a ' is a 

k m€ N k * 
m 1 

(1) 
subsequence of a, E f a ; ^ ) C E(a;of ), and since 

(1) e i E(a;a,J this inclusion is p rope r . Thus d(a;a ) < d(a;a ) 
1 

(1) 

< 2d. If d(a;o^ ) < 2d the above procedure can be repeated to 

yield a subsequence a of or such that d(a;or ) 
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(2) 
< d(a;o^ ) < 2d. In v i ew of the f i n i t enes s of 2d it fol lows tha t 

(s) (s) 
t h e r e i s a s u b s e q u e n c e or of a such that d(a;a ) = 2d, and 

(s) ( s ) 
E(a;c3r^ ) = E ( a ; y ^ ) for e v e r y s u b s e q u e n c e y of a 

Now l e t A = {a , a , . . « } . By the f i r s t p a r t of the proof 

(1) (1) 
t h e r e i s a s u b s e q u e n c e p of a such tha t d(a ;(3^ ) is even 

(1) (1) (1) (1) 
and E(a ;(3^ ) = E(a ;y^ ) for e v e r y s u b s e q u e n c e y of |3 . 

By induc t ion t h e r e is a s u b s e q u e n c e (3 of (3 having the 
s a m e p r o p e r t i e s with r e s p e c t to a. . Then (3, the d i agona l 

s e q u e n c e of the s e q u e n c e s (3 , has the r e q u i r e d p r o p e r t i e s . 

REMARK 1. F o r A = {a} we have ac tua l ly p r o v e d a 
s l igh t ly s t r o n g e r r e s u l t , v i z , , the fol lowing: Given any d such 
tha t d(a;X ) = 2d for inf ini te ly m a n y n, t h e r e e x i s t s a 

s u b s e q u e n c e (3 of a wi th d ( a ; p ^ ) = 2d, and E(a;8^} = E ( a ; v ^ ) 

for any s u b s e q u e n c e y of (3 . 

T h e o r e m 1 has the following 
COROLLARY. Let a be a c o n v e r g e n t s e q u e n c e of 

E u l e r g r a p h s such that d(x; U ) < oc for any xs l im a wi th 
£3 1 a . 

d(x; l i m a) < » • Then l i m a is E u l e r . In p a r t i c u l a r , 
l i m a is E u l e r if U i s loca l ly f in i t e . 

. — Q 1 

Proof . Take a v e r t e x xe l im a wi th d (x ; l im a) < °o and 
apply T h e o r e m 1 to A = {x} . Th is y i e ld s the e x i s t e n c e of a 
s u b s e q u e n c e 6 of a such tha t d(x;(3 t) is even . But j3^ = l i m a. 

REMARK 2 . Both T h e o r e m 1 and i t s c o r o l l a r y a r e 
f a l s e if the b o u n d e d n e s s condi t ion (ii) i s r e m o v e d . In the g r a p h 
of F i g u r e 1 l e t X be the t r i a n g l e (a , a^, x ), n = 1, 2, . . • . 

n 1 2 n 
T h i s s e q u e n c e c o n v e r g e s to (e), the g r a p h cons i s t i ng of e and 
a , a , but d(a. ; (e)) = 1, i = 1, 2 . 

1 2 i 
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• • 

Figure 1 

This example also shows that (ii) can not even be replaced by 
the weaker condition that d(a.;a* ) < oo for every a. € A. 

l l 

THEOREM 2. Let a be a sequence of countable Euler 
such that U is locally finite. Then there exists a subsequence 

a 

P of!_ a such that (3̂  is Euler . 

Proof. Suppose no such subsequence ex i s t s . Put 

(3 = a and for each countable ordinal T define (3 
inductively as follows. If T is not a l imit ordinal then 

( T - 1 ) 
application of Theorem 1 to the sequence (3 and the set 

( T - 1 ) (T) 
A = V(Pu. ) yields the existence of a subsequence (3 such 

(T) ( T - 1 ) ( T - 1 ) 
that d(a;P^v ') is even for every a € (3̂  a P*:%" " C P ; 

( T ) 

( T ) 
and this inclusion is proper , otherwise (3̂  would be Euler . 

If T is a l imit ordinal, let (o\) . _ be a sequence of ordinals 
1 16 N 

which is cofinal in T , and define p to be the diagonal 
(°"i) ( T ) 

sequence of the sequences (3 . Note that (3̂  C or* for 
all r . Hence a* has at least as many edges as there a re 
countable non-limit ordinals , i . e . , a* is uncountable, a 
contradiction. 
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REMARK 3. In the hypothesis of Theorem 2, the word 
"countable11 may be replaced by "connected". For if U is 

a 
locally finite, then so is every X , and every connected 

n 
locally finite graph is countable ([c], p .28 , Theorem 2 . 4 . 1 ) . 

REMARK 4. By a s imilar argument one can prove the 
following: L.et a be a sequence of countable Euler graphs. 
Then there exists a subsequence (3 of a such that d(x;(3^) is 

even for any x € 6. with d(x; U ) < co . 

REMARK 5. Starting with (3 = a define the sequences 

P , T < a) , as in the proof of Theorem 2. Then 

X = 1 p is Euler for every countable l imit ordinal T . 
or < r 

For , given xc X , let <r be the smal les t ordinal such that 
T 

xe $£' . Then E(x;(3^ ) C E.(x;P^P') for all p ><r . Hence 

d(x;X ) = d(x;P^ ), and thus is even. Hence X is Euler , 
T *r» . T 

We conclude by showing that the closely related class of 
finitely cyclicly coverable ( f . c . c . ) graphs does not have the 
proper ty stated in Theorem 2. We reca l l ([2], p . 822) that a 
graph is f. c. c. if it is the union of a set of mutually edge-
disjoint finite c i r cu i t s . Every f . c . c , graph is Euler, but not 
conversely (not even in the locally finite case) . 

In the graph of Figure 2 let X be the 2n-circui t 
n 

(x, , . . . , x , y , . . . , y ) , n = 1, 2, . . . . Trivially, every X 
1 n n 1 n 

i s f . c . c . , and U is locally finite. But the sequence 
a 

a? = (X ) T̂ converges to the infinite circuit ( . . . , y ^ , y 4 , 
n ne N 2 1 

x » x , . . . ) which, of course, is not f. c. c. 
1 2 
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y. x % 
Figure 2 
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