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EXPLICIT LAWS OF LARGE NUMBERS FOR
RANDOM NEAREST-NEIGHBOUR-TYPE GRAPHS
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Abstract

Under the unifying umbrella of a general result of Penrose andYukich (Annals of Applied
Probability 13 (2003), 277–303) we give laws of large numbers (in the Lp sense) for the
total power-weighted length of several nearest-neighbour-type graphs on random point
sets in R

d , d ∈ N. Some of these results are known; some are new. We give limiting
constants explicitly, where previously they have been evaluated in less generality or not
at all. The graphs we consider include the k-nearest-neighbours graph, the Gabriel graph,
the minimal directed spanning forest, and the on-line nearest-neighbour graph.
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1. Introduction

Graphs constructed on random point sets in R
d , d ∈ N, formed by joining nearby points

according to some deterministic rule, have recently received considerable interest [19], [29],
[31]. Such graphs include the geometric graph, the minimal spanning tree, and (as studied in
this paper) the nearest-neighbour graph and its relatives. Applications include the modelling
of spatial networks, as well as statistical procedures.

The graphs in this paper are based on edges between nearest neighbours, sometimes in some
restricted sense. A unifying characteristic of these graphs is stabilization: roughly speaking,
the configuration of edges around any particular vertex is not affected by changes to the vertex
set outside some sufficiently large (but finite) ball. Thus, these graphs are locally determined
in some sense.

A functional of particular interest is the total edge length of the graph, or, more generally,
the total power-weighted edge length (i.e. the sum of the edge lengths each raised to a given
power α ≥ 0). The large-sample asymptotic theory for the power-weighted length of stabilizing
graphs is now well understood; see, e.g. [15], [19], [20], [24], [25], [29], and [31].

In the present paper we collect several laws of large numbers (LLNs) for the total power-
weighted length for the family of nearest-neighbour-type graphs, defined on independent
random points on R

d . We present these results as corollaries to a general umbrella theorem
of Penrose and Yukich [25]. Some of the results (for the most common graphs) are known to
various extents in the literature; others are new. We take a unified approach which highlights
the connections between these results.

In particular, all our results are explicit: we give explicit expressions for limiting constants.
In some cases these constants have been seen previously in the literature.
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Figure 1: Realizations of the ONG (left) and MDSF under ‘�∗’ (right), each on 50 simulated uniform
random points in the unit square.

Nearest-neighbour graphs and nearest-neighbour distances in R
d are of interest in several

areas of applied science, including the social sciences, geography, and ecology, where proximity
data are often important (see, e.g. [16] and [27]). Ad hoc networks, in which nodes scattered
in space are connected according to some geometric rule, are of interest with respect to
various types of communications networks. Quantities of interest such as the overall network
throughput may be related to the power-weighted length.

In the analysis of multivariate data, in particular via nonparametric statistics, nearest-
neighbour graphs and near-neighbour distances have found many applications, including
goodness-of-fit tests, classification, regression, noise estimation, density estimation, dimension
identification, cluster analysis, and the two-sample and multisample problems; see, e.g. [6], [7],
[8], [10], [12], [13], and [30], and references therein.

In this paper we give a new LLN for the total power-weighted length of the on-line nearest-
neighbour graph (ONG), which is one of the simplest models of network evolution. We give a
detailed description later. In the ONG on a sequence of points arriving in R

d , each point after
the first is joined by an edge to its nearest predecessor. The ONG appeared in [4] as a simple
model for the evolution of the Internet graph. Figure 1 shows a sample realization of an ONG.

Recently, graphs with an ‘on-line’ structure, in which vertices are added one by one and
connected to existing vertices via some rule, have been the subject of considerable study in
relation to the modelling of real-world networks. The ONG is one of the simplest network
evolution models that captures some of the observed characteristics of real-world networks,
such as spatial structure and sequential growth.

We also consider the minimal directed spanning forest (MDSF). The MDSF is constructed
on a partially ordered point set in R

d by connecting each point to its nearest neighbour amongst
those points (if any) that precede it in the partial order. If an MDSF is a tree, it is called a
minimal directed spanning tree (MDST). The MDST was introduced by Bhatt and Roy in [5] as
a model for drainage or communications networks, in d = 2, with the ‘coordinatewise’ partial
order ‘�∗’, such that (x1, y1) �∗ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2. In this version
of the MDSF, each point is joined by an edge to its nearest neighbour in its ‘south-western’
quadrant. In the present paper we give new LLNs for the total power-weighted length for a
family of MDSFs indexed by partial orderings on R

2, which include ‘�∗’ as a special case.
Figure 1 shows an example of an MDSF under ‘�∗’.
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2. Notation and results

Notions of stabilizing functionals of point sets have recently proved to be a useful basis for
establishing limit theorems for functionals of random point sets in R

d . In particular, Penrose
and Yukich [24], [25] proved general central limit theorems and laws of large numbers for
stabilizing functionals.

The LLNs we give in the present paper are all derived ultimately from Theorem 2.1 of [25],
which we restate as Theorem 1 below before we present our results.

In order to describe the result of [25], we need to introduce some notation. Let d ∈ N. Let
‖ · ‖ be the Euclidean norm on R

d , and let | · | denote d-dimensional Lebesgue measure. Write
card(X) for the cardinality of a finite set X ⊂ R

d . For a locally finite point set X ⊂ R
d , a > 0,

and y ∈ R
d , let y+aX denote the set {y+ax : x ∈ X}. Let B(x; r) denote the closed Euclidean

ball with centre x ∈ R
d and radius r > 0. Let 0 denote the origin in R

d .
Let ξ(x; X) be a measurable, [0, ∞)-valued function defined for all pairs (x, X), where

X ⊂ R
d is finite and x ∈ X. Assume that ξ is translation invariant, i.e. that, for all y ∈

R
d , ξ(y + x; y + X) = ξ(x; X). When x /∈ X, we abbreviate the notation ξ(x; X ∪ {x})

to ξ(x; X). For our applications, ξ will be homogeneous of order α ≥ 0, i.e. such that
ξ(rx; rX) = rαξ(x; X) for all r > 0, all finite point sets X, and all x ∈ X.

For any locally finite point set X ⊂ R
d and any � ∈ N, define

ξ+(X; �) := sup
k∈N

ess sup{ξ(0; (X ∩ B(0; �)) ∪ A∗) : A ∈ (Rd \ B(0; �))k},

ξ−(X; �) := inf
k∈N

ess inf{ξ(0; (X ∩ B(0; �)) ∪ A∗) : A ∈ (Rd \ B(0; �))k},

where for A = (x1, . . . , xk) ∈ (Rd)k we let A∗ = {x1, . . . , xk} (provided that all k vectors are
distinct). Define the limit of ξ on X by

ξ∞(X) := lim sup
�→∞

ξ+(X; �).

We say that the functional ξ stabilizes on X if

lim
�→∞ ξ+(X; �) = lim

�→∞ ξ−(X; �) = ξ∞(X).

Stabilization can be interpreted loosely as the property that the value of the functional at a point
is unaffected by changes in the configuration of points at a sufficiently large distance from that
point.

Let f be a probability density function on R
d . For n ∈ N, let Xn := (X1, X2, . . . , Xn)

be the point process consisting of n independent, random d-vectors with common density f .
With probability 1, Xn has distinct interpoint distances; hence, all the nearest-neighbour-type
graphs on Xn that we consider are almost surely unique.

Let H1 be a homogeneous Poisson point process of unit intensity on R
d . The following

general LLN is due to Penrose and Yukich, and is obtained from Theorem 2.1 of [25] together
with Equation (2.9) there (the homogeneous case). Here and subsequently we write supp(f )

for the support of function f and
Lp−→ for convergence in Lp, p ≥ 1.

Theorem 1. Let q ∈ {1, 2}. Suppose that ξ is homogeneous of order α and almost surely
stabilizes on H1, with limit ξ∞(H1). If ξ satisfies the moments condition

sup
n∈N

E[ξ(n1/dX1; n1/dXn)
p] < ∞ (1)
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for some p > q, then, as n → ∞,

n−1
∑

x∈Xn

ξ(n1/dx; n1/dXn)
Lq−→ E[ξ∞(H1)]

∫
supp(f )

f (x)(d−α)/d dx,

and the limit is finite.

From this result we will derive LLNs for the total power-weighted length for a collection
of nearest-neighbour-type graphs. Let j ∈ N. A point x ∈ X has a j th-nearest neighbour
y ∈ X \ {x} if card({z : z ∈ X \ {x}, ‖z − x‖ < ‖y − x‖}) = j − 1. For all x, y ∈ R

d , we
define the weight function

wα(x, y) := ‖x − y‖α,

for some fixed parameter α ≥ 0. By the total power-weighted edge length of a graph with edge
set E (where edges may be directed or undirected), we mean the functional

∑
(u,v)∈E

wα(u, v) =
∑

(u,v)∈E

‖u − v‖α.

We will often assume one of the following conditions on the function f : either

(C1) f is supported by a convex polyhedron in R
d and is bounded away from 0 and infinity

on its support; or,

(C2) for weight exponent α ∈ [0, d), we require that
∫

Rd f (x)(d−α)/d dx < ∞ and∫
Rd ‖x‖rf (x) dx < ∞ for some r > d/(d − α).

In some cases we take f (x) = 1 for x ∈ (0, 1)d and f (x) = 0 otherwise, and denote
by Xn = Un = (U1, U2, . . . ,Un) the binomial point process consisting of n independent,
uniform random vectors on (0, 1)d .

In the remainder of this section we present our LLNs derived from Theorem 1. Theorems 2, 3,
and 6 follow directly from Theorem 1 and results of [25], up to evaluation of constants, while
Theorems 4 and 5 need some more work. These results are natural companions, as are their
proofs, which we present in Section 3 below; in particular, the proof of Theorem 2 is useful for
the other proofs.

2.1. The k-nearest-neighbours and j th-nearest-neighbour graphs

Let j ∈ N. In the j th-nearest-neighbour (directed) graph on X, denoted by j th-NNG′(X),
a directed edge joins each point of X to its j th-nearest neighbour. Let k ∈ N. In the k-nearest-
neighbours (directed) graph on X, denoted by k-NNG′(X), a directed edge joins each point
of X to each of its first k nearest neighbours in X (i.e. each of its j th-nearest neighbours,
for j = 1, 2, . . . , k). Clearly the 1st-NNG′ and the 1-NNG′ coincide, giving the standard
nearest-neighbour (directed) graph. See Figure 2 for realizations of particular examples of the
j th-NNG′ and the k-NNG′. We also consider the k-nearest-neighbours (undirected) graph on
X, denoted by k-NNG(X), in which an undirected edge joins x, y ∈ X if x is one of the first
k nearest neighbours of y or y is one of the first k nearest neighbours of x (or both).

From now on we take the point set X to be random; in particular, for n ∈ N, we take
X = Xn. For d ∈ N and α ≥ 0, let Ld,α

j (Xn) and Ld,α
≤k (Xn) respectively denote the total
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Figure 2: Realizations of 3rd-NNG′ (left) and 5-NNG′ (right), each on 50 simulated uniform random
points in the unit square.

power-weighted edge length of the j th-nearest-neighbour (directed) graph and the k-nearest-
neighbours (directed) graph on Xn ⊂ R

d . Note that

Ld,α
≤k (Xn) =

k∑
j=1

Ld,α
j (Xn). (2)

For d ∈ N, we denote the volume of the unit d-ball (see, e.g. Equation (6.50) of [14]) by

vd := πd/2[�(1 + d/2)]−1. (3)

Theorems 2 and 4 below feature constants C(d, α, k) defined, for d, k ∈ N and α ≥ 0, by

C(d, α, k) := v
−α/d
d

d

d + α

�(k + 1 + α/d)

�(k)
. (4)

Our first result is Theorem 2, which gives LLNs for Ld,α
j (Xn) and Ld,α

≤k (Xn), with explicit
expressions for the limiting constants; it is the natural starting point for our LLNs for nearest-
neighbour-type graphs. Recall that under condition (C1) supp(f ) is a convex polyhedron, and
under condition (C2) supp(f ) is R

d .

Theorem 2. Let d ∈ N. The following results hold, with p = 2, for α ≥ 0 if f satisfies
condition (C1), and, with p = 1, for α ∈ [0, d) if f satisfies condition (C2).

(a) For the j th-NNG′ on R
d , as n → ∞ we have

n(α−d)/dLd,α
j (Xn)

Lp−→ v
−α/d
d

�(j + α/d)

�(j)

∫
supp(f )

f (x)(d−α)/d dx. (5)

(b) For the k-NNG′ on R
d , as n → ∞ we have

n(α−d)/dLd,α
≤k (Xn)

Lp−→ C(d, α, k)

∫
supp(f )

f (x)(d−α)/d dx. (6)

https://doi.org/10.1239/aap/1183667613 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667613


Explicit laws of large numbers SGSA • 331

In particular, as n → ∞,

n(α−d)/dLd,α
≤k (Un)

Lp−→ C(d, α, k). (7)

Remark 1. (a) If we use a norm on R
d different from the Euclidean, Theorem 2 remains valid

with vd redefined as the volume of the unit d-ball in the chosen norm.

(b) Theorem 2 is essentially contained in Theorem 2.4 of [25], but with the constants evaluated
explicitly. There are several related LLN results in the literature. Theorem 8.3 of [31] gives
LLNs (with complete convergence) for Ld,1

≤k (Xn) (see also [17]); the limiting constants are not
given. Avram and Bertsimas (in Theorem 7 of [2]) stated a result on the limiting expectation
(and, hence, the constant in the LLN) for L2,1

j (Un), which they attribute to Miles [18] (see
also [31, p. 101]). The constant in [2] was given as

1

2
π−1/2

j∑
i=1

�(i − 1
2 )

�(i)
,

which simplifies (by induction on j ) to π−1/2�(j + 1
2 )/�(j), the d = 2, α = 1 case of (5) for

Xn = Un.

(c) Related results are the asymptotic expectations of j th-nearest-neighbour distances in finite
point sets given in [9] and [26]. The results of [26] are consistent with the α = 1 case of (7) here.
The result of [9] includes general-α and certain nonuniform densities, although the conditions
on f there are more restrictive than condition (C1); the result is consistent with (6). Also, [9]
contains (in Equation (6.4) there) a weak LLN for the empirical mean k-nearest-neighbour
distance. With Theorem 2.4 of [25], the results of [9] yield LLNs for the total weight of the
j th-NNG′ and the k-NNG′ only for d − 1 < α < d (due to the rates of convergence given
in [9]).

(d) Smith [28] gave, in some sense, expectations of randomly selected edge lengths for nearest-
neighbour-type graphs on the homogeneous Poisson point process of unit intensity in R

d ,
including the j th-NNG′, the nearest-neighbour (undirected) graph, and the Gabriel graph. His
results coincide with ours only for the j th-NNG′, since here each vertex contributes a fixed
number (j ) of directed edges: Equation (5.4.1) of [28] matches our expression for C(d, 1, k).

From the results on nearest-neighbour (directed) graphs, we may obtain results for nearest-
neighbour (undirected) graphs, in which if x is a nearest neighbour of y and vice versa, then
the edge between x and y is counted only once. As an example, we give the following result,
where for d ∈ N and α ≥ 0 we let N d,α(Xn) denote the total power-weighted edge length
of the nearest-neighbour (undirected) graph on Xn ⊂ R

d and we let ωd be the volume of the
union of two unit d-balls with centres a unit distance apart in R

d .

Theorem 3. Suppose that d ∈ N, that α ≥ 0, and that f satisfies condition (C1). As n → ∞,

n(α−d)/dN d,α(Xn)
L2−→ �

(
1 + α

d

)(
v

−α/d
d − 1

2
vdω

−1−α/d
d

) ∫
supp(f )

f (x)(d−α)/d dx. (8)

In particular, for d = 2 and α ≥ 0 we have

n(α−2)/2N 2,α(Un)
L2−→ �

(
1 + α

2

)(
π−α/2 − π

2

(
6

8π + 3
√

3

)1+α/2)
, (9)
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and for d = 2 and α = 1, we have

n−1/2N 2,1(Un)
L2−→ 1

2
− 1

4

(
6π

8π + 3
√

3

)3/2

≈ 0.377508. (10)

Finally, for d = 1 and α = 1 we have N 1,1(Un)
L2−→ 7

18 as n → ∞.

Remark 2. A pair of points, each of which is the other’s nearest neighbour, is known as a
reciprocal pair. Reciprocal pairs are of interest in ecology (see [27, pp. 158–159]. For α = 0,
N d,α(Xn) counts the number of vertices minus one half of the number of reciprocal pairs. In

this case (8) says that n−1N d,0(Xn)
L2−→ 1 − (vd/(2ωd)). This is consistent with results of

Henze [12] for the fraction of points that are the �th-nearest neighbours of their own kth-nearest
neighbours; in particular (see [12] and references therein), as n → ∞ the probability that a
point is in a reciprocal pair tends to vd/ωd .

2.2. The on-line nearest-neighbour graph

We now consider the on-line nearest-neighbour graph (ONG). Let d ∈ N. Suppose that
x1, x2, . . . are points in (0, 1)d , arriving sequentially; for n ∈ N, form a graph on vertex set
{x1, . . . , xn} by connecting each point xi , i = 2, 3, . . . , n, to its nearest neighbour amongst its
predecessors (i.e. x1, . . . , xi−1), using the lexicographic ordering on R

d to break any ties. The
resulting tree is the ONG on (x1, x2, . . . , xn).

Again, we take our sequence of points to be random. We restrict our analysis to the case in
which we have independent, uniformly distributed points U1, U2, . . . on (0, 1)d . For d ∈ N

and α ≥ 0, let Od,α(Un) denote the total power-weighted edge length of the ONG on sequence
Un = (U1, . . . ,Un). The next result gives a new LLN for Od,α(Un) for α < d.

Theorem 4. Suppose that d ∈ N and α ∈ [0, d). With C(d, α, k) as given in (4), as n → ∞
we have

n(α−d)/dOd,α(Un)
L1−→ d

d − α
C(d, α, 1) = d

d − α
v

−α/d
d �

(
1 + α

d

)
.

Related results include those on the convergence in distribution of Od,α(Un), given in [23]
for α > d (α > 1

2 in the case in which d = 1) and in [20] in the form of a central limit theorem
for α ∈ (0, 1

4 ). Also, the ONG in d = 1 is related to the ‘directed linear tree’considered in [22].

2.3. The minimal directed spanning forest

The minimal directed spanning forest (MDSF) is related to the standard nearest-neighbour
(directed) graph, with the additional constraint that edges can only lie in a given direction. In
general, the MDSF can be defined as a global optimization problem for directed graphs on
partially ordered sets endowed with a weight function, and it also admits a local construction;
see [5], [21], and [22]. As above, we consider the Euclidean setting, where our points lie in R

d .
Suppose that X ∈ R

d is a finite set bearing a partial order ‘�’. A minimal element, or sink,
of X is a vertex v0 ∈ X for which there exists no v ∈ X \ {v0} such that v � v0. Let S denote
the set of all sinks of X. (Note that S cannot be empty.)

For v ∈ X, we say that u ∈ X \ {v} is a directed nearest neighbour of v if u � v and
‖v − u‖ ≤ ‖v − u′‖ for all u′ ∈ X \ {v} such that u′ � v. For each v ∈ X \ S, let nv be
a directed nearest neighbour of v (chosen arbitrarily if v has more than one). Then (see [21])
the directed graph on X obtained by taking edge set E := {(v, nv) : v ∈ X \ S} is an MDSF
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of X. Thus, if all edge-weights are distinct, the MDSF is unique and is obtained by connecting
each nonminimal vertex to its directed nearest neighbour. In the case in which there is a single
sink, the MDSF is a tree (ignoring directedness of edges) and it is called the minimal directed
spanning tree (MDST).

In what follows, we consider a general type of partial order on R
2, denoted ‘

θ,φ

� ’, specified
by the angles θ ∈ [0, 2π) and φ ∈ (0, π ]. For x ∈ R

2, let Cθ,φ(x) be the closed half-cone of
angle φ with vertex x and boundaries given by the rays from x at angles θ and θ +φ, measuring
anticlockwise from the upwards vertical. The partial order is such that, for x1, x2 ∈ R

2,

x1
θ,φ

� x2 ⇐⇒ x1 ∈ Cθ,φ(x2). (11)

We shall use ‘�∗’as shorthand for the special case of this partial order with θ = φ = π/2, which
is of particular interest, as in [5]. In this case (u1, u2) �∗ (v1, v2) if and only if u1 ≤ v1 and
u2 ≤ v2. The symbol ‘�’ will denote a general partial order on R

2. Note that for φ = π (11)
does not, in fact, define a partial order on the whole of R

2, since the antisymmetric property
(x � y and y � x imply that x = y) fails; however, with probability 1 it is a true partial order
(in fact a total order) on the random point sets that we consider.

We do not permit here the choice φ = 0, which would almost surely give us a disconnected
point set. Nor do we allow φ ∈ (π, 2π ], since in this case the transitivity property (u � v and
v � w imply that u � w) fails and, so, the directional relation (11) is not a partial order.

Again we take X to be random; set X = Xn, where (as before) Xn is a point process
consisting of n independent, random points on (0, 1)2 with common density f . When the
partial order is ‘�∗’, as in [5], we also consider the point set X0

n := Xn ∪ {0} (where 0 is the
origin in R

2) on which the MDSF is an MDST rooted at 0.
In this random setting, almost surely each nonminimal point of X has a unique directed

nearest neighbour, meaning that X has a unique MDSF. For α > 0, denote by Mα(X) the total
power-weighted edge length, with weight exponent α, of the MDSF on X.

Theorem 5 presents LLNs for Mα(Xn) in the uniform case, in which Xn = Un. How-
ever, the proof carries through for other distributions. In particular, if the points of Xn are
distributed in R

2 with a density f that satisfies condition (C1), then (12) holds with a factor of∫
supp(f )

f (x)(2−α)/2 dx introduced into the right-hand side.

Theorem 5. Let d ∈ N and α ∈ (0, 2). Under partial order ‘
θ,φ

� ’ with θ ∈ [0, 2π) and
φ ∈ (0, π ], as n → ∞ we have

n(α−2)/2Mα(Un)
L1−→

(
2

φ

)α/2

�

(
1 + α

2

)
. (12)

Moreover, when the partial order is ‘�∗’, (12) remains true with Un replaced by U0
n.

2.4. The Gabriel graph

In the Gabriel graph (see [11]) on point set X ⊂ R
d , two points are joined by an edge if

and only if the ball that has the line segment joining those two points as a diameter contains
no other points of X. The Gabriel graph has been applied in many of the same contexts as
nearest-neighbour graphs; see, e.g. [30].

For d ∈ N and α ≥ 0, let Gd,α(X) denote the total power-weighted edge length of the
Gabriel graph on X ⊂ R

d . As before, we consider the random point set Xn with underlying
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density f . An LLN for Gd,α(Xn) was given in [25]; in the present paper we give the limiting
constant explicitly.

Theorem 6. Let d ∈ N and α ≥ 0, and suppose that f satisfies condition (C1). As n → ∞,

n(α−d)/dGd,α(Xn)
L2−→ v

−α/d
d 2d+α−1�

(
1 + α

d

) ∫
supp(f )

f (x)(d−α)/d dx.

3. Proofs

3.1. Proof of Theorems 2 and 3

For j ∈ N, let dj (x; X) be the (Euclidean) distance from x to its j th-nearest neighbour in
X \ {x}, if such a neighbour exists, and let it equal 0 otherwise. We will use the following form
of Euler’s gamma integral (see Equation 6.1.1 of [1]): for a, b, c ≥ 0,

∫ ∞

0
ra exp(−crb) dr = 1

b
c−(a+1)/b�((a + 1)/b). (13)

Proof of Theorem 2. In applying Theorem 1 to the j th-NNG′ and k-NNG′ functionals, we
take ξ(x; Xn) to be dj (x; Xn)

α , where α ≥ 0. Then ξ is translation invariant and homogeneous
of order α. It was shown in Theorem 2.4 of [25] that the j th-NNG′ total weight functional ξ

satisfies the conditions of Theorem 1 in the following two cases: (i) with q = 2, if f satisfies
condition (C1), and α ≥ 0; and (ii) with q = 1, if f satisfies condition (C2), and 0 ≤ α < d.
(In fact, in [25] this was proved for the k-NNG′ functional

∑k
j=1 dj (x; Xn)

α , but this implies
that the conditions also hold for the j th-NNG′ functional dj (x; Xn)

α .)
The functional ξ(x; Xn) = dj (x; Xn)

α stabilizes on H1, with limit ξ∞(H1) = dj

(0; H1)
α . Also, the moments condition in (1) is satisfied for some p > 1 (if f satisfies

condition (C2) and α < d) or p > 2 (if f satisfies condition (C1)), so Theorem 1 with q = 1
or q = 2, respectively, yields

nα/d−1Ld,α
j (Xn) = n−1

∑
x∈Xn

nα/dξ(x; Xn)

= n−1
∑

x∈Xn

ξ(n1/dx; n1/dXn)

Lq−→ E[ξ∞(H1)]
∫

supp(f )

f (x)(d−α)/d dx (14)

(using the fact that ξ is homogeneous of order α). We now need to evaluate the expectation on
the right-hand side of (14). For r > 0,

P[ξ∞(H1) > r] = P[dj (0; H1) > r1/α]

=
j−1∑
i=0

P[card(B(0; r1/α) ∩ H1) = i]

=
j−1∑
i=0

(vdrd/α)i

i! exp(−vdrd/α),
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where vd is as given in (3). Thus,

E[ξ∞(H1)] =
∫ ∞

0
P[ξ∞(H1) > r] dr =

∫ ∞

0

j−1∑
i=0

(vdrd/α)i

i! exp(−vdrd/α) dr.

Interchanging the order of summation and integration, and using (13), we obtain

E[ξ∞(H1)] = v
−α/d
d

α

d

j−1∑
i=0

�(i + α/d)

�(i + 1)
= v

−α/d
d

�(j + α/d)

�(j)
, (15)

where the final equality follows by induction on j . Then, from (3), (14), and (15), we obtain
the j th-NNG′ result in (5). By (2), the k-NNG′ result in (6) follows from (5) with

C(d, α, k) = v
−α/d
d

k∑
j=1

�(j + α/d)

�(j)
= v

−α/d
d

d

d + α

�(k + 1 + α/d)

�(k)
.

Proof of Theorem 3. The nearest-neighbour (directed) graph counts the weights of edges
from points that are nearest neighbours of their own nearest neighbours twice, while the nearest-
neighbour (undirected) graph counts such weights only once.

Let q(x; X) be the functional denoting the distance from x to its nearest neighbour in X\{x}
if x is a nearest neighbour of its own nearest neighbour, and let it equal 0 otherwise. Recall
that d1(x; X) is the distance from x to its nearest neighbour in X \ {x}. For α ≥ 0, define

ξ ′(x; X) := d1(x; X)α − 1
2q(x; X)α.

Then
∑

x∈X ξ ′(x; X) is the total weight of the nearest-neighbour (undirected) graph on X.
Note that ξ ′ is translation invariant and homogeneous of order α. We can check that ξ ′ is
stabilizing on the Poisson process H1, using arguments similar to those for the j th-NNG′ and
k-NNG′ functionals. Also (see [25]) if condition (C1) holds then ξ ′ satisfies the moments
condition (1) for some p > 2 and for all α ≥ 0.

Let e1 be a vector of unit length in R
d , and recall that ωd := |B(0; 1) ∪ B(e1; 1)| denotes

the volume of the union of two unit d-balls with centres a unit distance apart.
Now we apply Theorem 1 with q = 2. We have

nα/d−1N d,α(Xn) = n−1
∑

x∈Xn

ξ ′(n1/dx; n1/dXn)
L2−→ E[ξ ′∞(H1)]

∫
supp(f )

f (x)(d−α)/d dx,

(16)
where E[ξ ′∞(H1)] = E[d1(0; H1)

α]− 1
2 E[q(0; H1)

α]. Now we need to evaluate E[q(0; H1)
α].

With X denoting the nearest point of H1 to 0,

P[q(0; H1) ∈ dr] = P[{‖X‖ ∈ dr} ∩ {H1 ∩ (B(0; r) ∪ B(X; r)) = {X}}]
= dvdrd−1 exp(−vdrd) exp(−(ωd − vd)rd) dr

= dvdrd−1 exp(−ωdrd) dr.

Using (13) we thus obtain

E[q(0; H1)
α] =

∫ ∞

0
dvdrd−1+α exp(−ωdrd) dr = vdω

−1−α/d
d �

(
1 + α

d

)
. (17)
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Then, from (16), using (17) and the j = 1 case of (15), we obtain (8). From some calculus we
find that ω2 = 4π/3+√

3 /2, which with the d = 2 case of (8) yields (9); in verifying (10) note
that �( 3

2 ) = π1/2/2 (see Equation 6.1.9 of [1]). Finally, the statement for N 1,1(Un) follows
from the d = 1 case of (8) since ω1 = 3.

3.2. Proof of Theorem 4

In order to obtain our LLN (Theorem 4), we modify the setup of the ONG slightly. Let Un

be a marked random finite point process in R
d consisting of n independent, uniform random

vectors in (0, 1)d , where each point Ui of Un carries a random mark T (Ui ) which is uniformly
distributed on [0, 1], independent of the other marks and of the point process Un. We join each
point Ui of Un to its nearest neighbour amongst those points of Un with mark less than T (Ui ),
if there are any such points, to obtain a graph that we call the ONG on the marked point set Un.
This definition extends to infinite but locally finite point sets. Clearly the ONG on the marked
point process Un has the same distribution as the ONG (with the first definition) on a sequence
U1, U2, . . . ,Un of independent uniform points on (0, 1)d .

We apply Theorem 1 to obtain an LLN for Od,α(Un), α ∈ [0, d). Once again, the method
enables us to evaluate the limit explicitly. We take f to be the indicator function of (0, 1)d .
Define D(x; X) to be the distance from point x, with mark T (x), to its nearest neighbour in X
amongst those points y ∈ X that have mark T (y) such that T (y) < T (x), if such a neighbour
exists, and let it equal 0 otherwise. We take ξ(x; X) to be D(x; X)α . Again, ξ is translation
invariant and homogeneous of order α.

Lemma 1. The ONG functional ξ almost surely stabilizes on H1.

Proof. Although the notion of stabilization there is somewhat different, the same argument
as given at the start of the proof of Theorem 3.6 of [20] applies.

Lemma 2. Let d ∈ N and α ∈ [0, d), and let p > 1 with αp < d. Then the ONG functional ξ

satisfies the moments condition (1).

Proof. Let Tn denote the rank of the mark of U1 amongst the marks of all the points of Un;
thus, Tn is distributed uniformly over the integers 1, 2, . . . , n. We have, by conditioning on Tn,

E[ξ(n1/dU1; n1/dUn)
p] = n−1

n∑
i=1

E[d1(n
1/dU1; n1/dUi )

pα]

= n−1
n∑

i=1

(
n

i

)pα/d

E[d1(i
1/dU1; i1/dUi )

pα]. (18)

It was shown in [23] that there exists a C ∈ (0, ∞) such that, for all r > 0,

sup
i≥1

P[d1(i
1/dU1; i1/dUi ) > r] ≤ C exp(−r1/d/C).

Thus, the last expectation in (18) is bounded by a constant independent of i, meaning that the
final expression in (18) is bounded by a constant times

n(pα−d)/d
n∑

i=1

i−pα/d,

which is uniformly bounded by a constant for αp < d.
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Proof of Theorem 4. Let d ∈ N. Let f be the indicator function of (0, 1)d and let ξ be the
ONG functional ξ(x; Un) = D(x; Un)

α . By Lemmas 1 and 2, ξ is homogeneous of order α,
stabilizing on H1 with limit ξ∞(H1) = D(0; H1)

α , and satisfies the moments condition (1)
for some p > 1, provided that α < d . Theorem 1 with q = 1 thus implies that

nα/d−1Od,α(Un) = n−1
∑

x∈Un

D(n1/dx; n1/dUn)
α L1−→ E[ξ∞(H1)].

For u ∈ (0, 1), the points of H1 with marks lower than u form a homogeneous Poisson point
process of intensity u, so by conditioning on the mark of the point at 0 we obtain

E[ξ∞(H1)] =
∫ 1

0
E[d1(0; Hu)

α] du =
∫ 1

0
u−α/d E[d1(0; H1)

α] du = d

d − α
C(d, α, 1),

since, as we saw in the proof of Theorem 2, E[d1(0; H1)
α] = C(d, α, 1).

3.3. Proof of Theorem 5

In applying Theorem 1 to the MDSF, we take f to be the indicator function of (0, 1)2. We
take ξ(x; X) to be d(x; X)α , where d(x; X) is the distance from point x to its directed nearest
neighbour in X \ {x}, if such a point exists, and equals 0 otherwise, i.e.

ξ(x; X) = d(x; X)α with d(x; X) := min{‖x − y‖: y ∈ X \ {x}, y
θ,φ

� x} (19)

with the convention that min ∅ = 0.
We consider the random point set Un, the binomial point process consisting of n indepen-

dent, uniformly distributed points on (0, 1)2. However, as remarked before the statement of
Theorem 5, the result in (12) carries through (with virtually the same proof) to more general
point sets Xn.

We need to show that ξ as given in (19) satisfies the conditions of Theorem 1. As before,
H1 denotes a homogeneous Poisson process on R

2.

Lemma 3. The MDSF ξ given in (19) almost surely stabilizes on H1, with limit ξ∞(H1) =
d(0; H1)

α .

Proof. Set R := d(0; H1). Since φ > 0, we have 0 < R < ∞ almost surely. However,
for any � > R we then have ξ(0; (H1 ∩ B(0; �)) ∪ A) = Rα for any finite A ⊂ R

d \ B(0; �).
Thus, ξ stabilizes on H1 with limit ξ∞(H1) = Rα .

We now give a geometrical lemma. Let ∂B denote the boundary of B ⊂ R
d . For B ⊂ R

2

with B bounded, and for x ∈ B, we write dist(x; ∂B) for sup{r : B(x; r) ⊆ B}, and for s > 0
define the region

Aθ,φ(x, s; B) := B(x; s) ∩ B ∩ Cθ,φ(x). (20)

Lemma 4. Let B be a convex, bounded set in R
2, and let x ∈ B. If Aθ,φ(x, s; B)∩∂B(x; s) �=

∅ and s > dist(x; ∂B), then

|Aθ,φ(x, s; B)| ≥ s sin

(
φ

2

)
dist(x; ∂B)

2
.
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Proof. The condition Aθ,φ(x, s; B)∩∂B(x; s) �= ∅ says that there exists a y ∈ B∩Cθ,φ(x)

with ‖y − x‖ = s. The line segment xy is contained in the cone Cθ,φ(x). Take a half-line h

starting from x, at an angle φ/2 to the line segment xy and such that h is also contained in
Cθ,φ(x), and let z be the point on h at a distance dist(x; ∂B) from x. Then the interior of the
triangle xyz is entirely contained in Aθ,φ(x, s; B), and has area s sin(φ/2)dist(x; ∂B)/2.

Lemma 5. Suppose that α > 0. Then the MDSF ξ given in (19) satisfies the moments
condition (1) for any p ≤ 2/α.

Proof. With Rn := (0, n1/2)2, and conditioning on the position of U1, we have

E[ξ(n1/2U1; n1/2Un)
p] = n−1

∫
Rn

E[ξ(x; n1/2Un−1)
p] dx. (21)

For x ∈ Rn, let m(x) := dist(x, ∂Rn). We divide Rn into three regions:

Rn(1) := {x ∈ Rn : m(x) ≤ n−1/2},
Rn(2) := {x ∈ Rn : m(x) > 1},
Rn(3) := {x ∈ Rn : n−1/2 < m(x) ≤ 1}.

For all x ∈ Rn, we have ξ(x; n1/2Un−1) ≤ (2n)α/2 and, hence, since Rn(1) has area at most 4,
we can bound the contribution to (21) from x ∈ Rn(1) by

n−1
∫

Rn(1)

E[ξ(x; n1/2Un−1)
p] dx ≤ 4n−1(2n)pα/2 = 22+pα/2n(pα−2)/2, (22)

which is bounded if pα ≤ 2. Now, for x ∈ Rn, with Aθ,φ as defined in (20), we have

P[d(x; n1/2Un−1) > s] ≤ P[n1/2Un−1 ∩ Aθ,φ(x, s; Rn) = ∅]

=
(

1 − |Aθ,φ(x, s; Rn)|
n

)n−1

≤ exp(1 − |Aθ,φ(x, s; Rn)|), (23)

since |Aθ,φ(x, s; Rn)| ≤ n. For x ∈ Rn and s > m(x), by Lemma 4 we have

|Aθ,φ(x, s; Rn)| ≥ s sin

(
φ

2

)
m(x)

2
if Aθ,φ(x, s; Rn) ∩ ∂B(x; s) �= ∅,

and also

P[d(x; n1/2Un−1) > s] = 0 if Aθ,φ(x, s; Rn) ∩ ∂B(x; s) = ∅.

For s ≤ m(x), we have |Aθ,φ(x, s; Rn)| = s2φ/2 ≥ s2 sin(φ/2). Combining these observa-
tions with (23), for all x ∈ Rn and s > 0 we obtain

P[d(x; n1/2Un−1) > s] ≤ exp

(
1 − s

2
min(s, m(x)) sin

(
φ

2

))
, x ∈ Rn.
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With c = 1
2 sin(φ/2), for x ∈ Rn we therefore have

E[ξ(x; n1/2Un−1)
p] =

∫ ∞

0
P[d(x; n1/2Un−1) > r1/(αp)] dr

≤
∫ m(x)αp

0
exp (1 − cr2/(αp)) dr +

∫ ∞

m(x)αp

exp (1 − cm(x)r1/(αp)) dr

= O(1) + αpm(x)−pα

∫ ∞

m(x)2
e1−cuαpuαp−1 du

= O(1) + O(m(x)−αp). (24)

For x ∈ Rn(2) this bound is O(1), and the area of Rn(2) is less than n, so the contribution
to (21) from Rn(2) satisfies

lim sup
n→∞

n−1
∫

Rn(2)

E[ξ(x; n1/2Un−1)
p] dx < ∞. (25)

Finally, by (24), there exists a constant C ∈ (0, ∞) such that the contribution to (21) from
Rn(3) satisfies

n−1
∫

Rn(3)

E[ξ(x; n1/2Un−1)
p] dx ≤ Cn−1/2

∫ 1

n−1/2
y−αp dy

≤ Cn−1/2 max(log n, n(αp−1)/2),

which is bounded if αp ≤ 2. Combined with the bounds in (22) and (25), this shows that the
expression in (21) is uniformly bounded, provided that αp ≤ 2.

For k ∈ N, a < b, and c < d, let Uk,(a,b]×(c,d] denote the point process consisting of k

independent, random vectors uniformly distributed on the rectangle (a, b] × (c, d]. Before
proceeding further, we recall that if M(X) denotes the number of minimal elements, under the
ordering ‘�∗’, of a point set X ⊂ R

2, then

E[M(Uk,(a,b]×(c,d])] = E[M(Uk)] = 1 + 1

2
+ · · · + 1

k
≤ 1 + log k. (26)

The first equality in (26) comes from some obvious scaling which shows that the distribution of
M(Uk,(a,b]×(c,d]) does not depend on a, b, c, or d. For a proof of the second equality in (26),
see, e.g. [3].

Proof of Theorem 5. Suppose that α ∈ (0, 2) and let f be the indicator function of (0, 1)2.
By Lemmas 3 and 5, the functional ξ , given in (19), satisfies the conditions of Theorem 1 with
p = 2/α and q = 1. Thus, by Theorem 1 we have

nα/2−1Mα(Un) = n−1
∑

x∈Un

ξ(n1/2x; n1/2Un)
L1−→ E[ξ∞(H1)]. (27)

Since the disk sector Cθ,φ(x) ∩ B(x; r) has area (φ/2)r2, by Lemma 3 we have

P[ξ∞(H1) > s] = P[H1 ∩ Cθ,φ(0) ∩ B(0; s1/α) = ∅] = exp

(
−φ

2
s2/α

)
.
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Hence, using (13), the limit in (27) is

E[ξ∞(H1)] =
∫ ∞

0
P[ξ∞(H1) > s] ds = α2(α−2)/2φ−α/2�

(
α

2

)
,

and this gives us (12). Finally, in the case where ‘
θ,φ

� ’ is ‘�∗’, (12) remains true if Un is replaced
by U0

n, since

E[nα/2−1|Mα(U0
n) − Mα(Un)|] ≤ 2α/2nα/2−1 E[M(Un)]. (28)

By (26), E[M(Un)] ≤ 1 + log n and, hence, the right-hand side of (28) tends to 0 as n tends
to ∞, for α < 2.

3.4. Proof of Theorem 6

In applying Theorem 1 to the Gabriel graph, we take ξ(x; Xn) to be one-half of the total
power-α-weighted length of all the edges incident at x in the Gabriel graph on Xn ∪ {x};
the factor of one-half accounts for double counting. As stated in Section 2.3(e) of [25], ξ is
translation invariant, homogeneous of order α, and stabilizing on H1, and if the function f

satisfies condition (C1) then the moments condition (1) is satisfied for some p > 2. Thus, by
Theorem 1 with q = 2,

nα/d−1Gd,α(Xn) = n−1
∑

x∈Xn

ξ(n1/dx; n1/dXn)
L2−→ E[ξ∞(H1)]

∫
supp(f )

f (x)(d−α)/d dx.

(29)
We need to evaluate the expectation on the right-hand side of (29). The net contribution from
a vertex at 0 to the total weight of the Gabriel graph on H1 is

1

2

∞∑
k=1

dk(0; H1)
α 1Ek

, (30)

where the factor of one-half accounts for the fact that edges are not counted twice, dk(0; H1)

is the distance from 0 to its kth-nearest neighbour in H1, Ek denotes the event that 0 and its
kth-nearest neighbour in H1 are joined by an edge in the Gabriel graph, and 1Ek

denotes the
indicator function of this event.

Given that the point x ∈ H1 is the kth-nearest neighbour of 0, an edge between x and 0
exists in the Gabriel graph if and only if the ball upon which 0 and x are diametrically opposed
contains none of the other k − 1 points of H1 that are uniformly distributed in the ball of centre
0 and radius ‖x‖. Thus, for k ∈ N,

P[Ek] =
(

vdrd − vd(r/2)d

vdrd

)k−1

= (1 − 2−d)k−1, (31)

and from (30) and (31) we have

E[ξ∞(H1)] = 1

2

∞∑
k=1

(1 − 2−d)k−1 E[dk(0; H1)
α]

= 1

2

∞∑
k=1

(1 − 2−d)k−1v
−α/d
d

�(k + α/d)

�(k)
,
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by (15). However, owing to the properties of the Gauss hypergeometric series (see Equations
15.1.1 and 15.1.8 of [1]),

∞∑
k=1

(1 − 2−d)k−1 �(k + α/d)

�(k)
= �

(
1 + α

d

)
2d+α.

Substituting the resulting expression for E[ξ∞(H1)] into (29) completes the proof.
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