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ABSTRACT. In the past it has often been difficult to compare results of different types
of snow-structural information. Grain-size and correlation length are such parameters of
granular media, and there exist different definitions and different measurement methods
for both of them. The relation between these parameters is analyzed from theoretical and
from experimental points of view, considering optical and microwave properties. For
spherical ice grains the connecting formulas are simple, but for other shapes the two
parameters are not directly related. Care must be taken in the measurement procedure.
Especially if grain-size is regarded as the maximum extent of connected ice particles, the
results are likely to lead to extreme overestimates. Therefore it is concluded that grain-size
should be complemented by an additional size parameter, namely, the surface-to-volume
ratio of equivalent spheres, i.e. a measure of the correlation length. Methods to determine
this quantity in the laboratory have been known for a long time. Methods to obtain such
measurements in the field are described here.

1. INTRODUCTION

The behavior of dry snow is based on the physical properties
of its constituents, ice and air, and on the geometry of the
individual particles. The underlying microstructure is the
source of the famous beauty of snow grains (LaChapelle,
1969), influencing to a large extent the physical properties,
such as the fall velocity in air, the mechanical stability in the
snowpack, its densification and other forms of deformation,
air and vapor flow, gas adsorption at the ice surface, heat con-
duction, sound propagation and damping, as well as scatter-
ing and propagation of electromagnetic waves, and the grain-
size dependence of the snowpack albedo makes snow texture
a climate-relevant property. For a critical review, see Arons
and Colbeck (1995). Thus there is great interest in measuring
and modeling the key structural parameters. Since snow is a
granular medium close to the melting point of ice, metamor-
phosis is going on continuously. The lack of stability makes it
difficult to develop a simple tool to measure and even to
define the key structural properties. A simple and practical
method is needed. Among the simple descriptions are grain-
stze and correlation length, both of which are based on various
definitions, isotropic orientation of particles being assumed.
Often only one or the other quantity is determined in snow
observations. This makes it difficult to compare different
datasets and different models. Therefore the quantitative
relationship between the different size parameters is of great
interest. The present discussion, combining geometrical
properties of granular media with empirical relations of opti-
cal and microwave properties of snow, is a contribution to the
solution of the problem.

Perhaps the first ideas on the subject were expressed by
Giddings and LaChapelle (1961) who noticed that the mean-
free path of photons in snow increases with the average
grain radius, the average being taken with respect to the
surface area. This was the origin of the concept of optical
grain-size. The idea was further advocated by Wiscombe
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and Warren (1980), Dozier and others (1987) and Grenfell
and Warren (1999).

One difficulty with the concept of grain-size is the fact
that grains are described by both their shape and size distri-
bution, leading to complex descriptions in physical models.
On the other hand, grains are not always a clear component
of snowpacks; often it is difficult to identify boundaries
between them. Only the structure of the ice matrix is
obvious. Physical properties follow from its geometry without
the need to define individual grains. Thin sections of snow
samples are able to provide stereological information (Good,
1987); if necessary, it can be related to the size and shape of
certain types of grains (Underwood, 1970). The relevance of
stereological relationships for microwave remote sensing of
snow was described by Davis and Dozier (1989), and detailed
experimental work was carried out by Wiesmann and others
(1998). Their results led to the Microwave Emission Model of
Layered Snowpacks (MEMLS) of Wiesmann and Mitzler
(1999). The calibration of the model with the experimental
data gives quantitative relations with the stereological
parameters to be used here.

2. GRAIN-SIZE
Maximum extent of prevailing grains

Grain-size was defined by snow hydrologists from the sug-
gestion that the observer obtain “a more or less homoge-
neous mass of snow and record the average size of its
prevailing grains or characteristic grains, the size of the grain
or particle being its greatest extension (diameter) measured
in millimeters” (Colbeck and others, 1990; Armstrong and
others, 1993). We call this size D,y.

Optical grain-size

'To model scattering of sunlight by snow, the snow grains are
represented by a cloud of independent ice spheres. The suit-
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able diameter is the equivalent optical grain-size, D,, i.e. the
diameter of ice spheres with the same optical properties as
the snowpack in question. As mentioned by Wiscombe and
Warren (1980), the idea of optical grain-size dates back to
Giddings and LaChappelle (1961) who speculated that the
appropriate grain radius to describe scattering of light is
proportional to the volume-to-surface ratio of grains. This
was also suggested by Dozier and others (1987), and used by
Nolin and Dozier (2000) to measure grain-size by a remote-
sensing method. Grenfell and Warren (1999) studied the
problem in detail. They stated that spheres of equal volume
have too little scattering, whereas spheres of equal area have
too much volume, giving too much absorption. They found
that the problem can be solved if the spheres have the same
surface area and the same ice volume, and thus the same
mass, as the real ice particles. Non-spherical particles can
be represented by a number of identical ice spheres whose
surface-area-to-volume ratio ¢ (= S/ Vi, where S is the total
ice—air interface and V; is the total ice volume) is the same as
the respective ratio in the real snow. If the number of parti-
cles 1s kept free, this representation is always possible
because each snow sample represents a certain mass M, a
density p and an area S. The definition relates the diameter
D, of the spheres to g by

=2 (1)

" S g

The g parameter is also related to the specific surface s by
§ =g, (2)
where v = p/p; is the volume fraction of ice (ice density p; =
917 kgm *), and s is defined by s = S/V, with V being the
snow volume. Since the grain-surface area is assumed to be

WDZ, sintering 1s not allowed in this model. The result of
Grenfell and Warren (1999) means that

Dy, =D,. (3)

Note that the parameters ¢, s and v can be determined from
snow sections to be produced in cold laboratories from snow
samples (Davis and Dozier, 1989).

3. CORRELATION LENGTH

There are three equivalent ways to define, and thus to com-
pute, the correlation length p. of dry snow, or of any isotropic
two-component granular medium in three dimensions. The
information is obtained from snow sections as well.

Slope of the spatial autocorrelation function

The first definition is based on the derivative of the three-
dimensional, spatial autocorrelation function A(x), with
A(0) = 1, and with z being the scalar displacement (Debye
and others, 1957):

()’

Secondly, according to Debye and others (1957), p. is related
to s and thus to g by
dv(l —v) 41 -v)

Pec = s = q . (5)

(4)

=0

Remark: A slight modification of Equation (5) is observed in
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a one-dimensional, i.e. a strictly plane-parallel, slab where
we have (Mitzler, 2000)
2v(1 — v)

Pe=—""" (5a)

Intercept length

From the mean intercept lengths inice L; and in air L, (stereo-
logical parameters), we get a third relationship to obtain p;:
L,L;
— a1 : . (6)
Ly + L
This formula results from an expression for s given by Smith

and Guttman (1953) used, for example, by Alley (1980) and
Alley and others (1982) for the characterization of firn in

De

Antarctica by thin sections:
§=—" (7)

where N >> 1 is the average number of intersections
between ice and air (and vice versa) on a randomly selected
line of length L > p..

Exponential correlation function

A reasonable and often good fit to A(x) for granular media
1s the exponential function

A(z) = exp(=2/pex) (8)
calling pey the (exponential) correlation length (Debye and
others, 1957). This function has been found useful for snow-
packs on various occasions (e.g. Vallese and Kong, 1981; Reber
and others, 1987; Wiesmann and others, 1998). An advantage
of the pey with respect to p, 1s the smaller error when deter-
mined from A(z) . Whereas pe can be fitted over an extended
range of x values, p. has to be determined, according to
Equation (4), from small changes of A at x — 0. The deter-
mination of p. thus depends on the spatial resolution of the
available data. Indeed, stereological determination tends to
underestimate s and thus to overestimate p. when compared
with gas adsorption experiments (Hoff and others, 1998).

Relationship between the different definitions

Definitions (4—6) are equivalent, and for an exponential cor-
relation function we also find pex = p.. However, experi-
mental tests lead to a slightly different result for pex (see
Equation (10) below).

4. NUMERICAL RELATIONSHIPS FROM FITTING
SIMULATED AND ACTUAL SNOW DATA

Crocus—MEMLS

Brun and others (1992) introduced a formalism to quantify
snow metamorphism, allowing a description of snowpacks
with parameters evolving continuously in time, based on
meteorological forcing. This work led to the physical snow
model, Crocus (Météo France, 1996a,b). The snow grains are
described by sphericity, dendricity and optical grain-size D,.
In Wiesmann and others (2000), Crocus was coupled to the
Microwave Emission Model of Layered Snowpacks
(MEMLS) whose texture parameter is the exponential corre-
lation length pex. The simulated brightness temperatures were
compared with observed ones. By relating the Crocus snow
types, fresh snow (optical grain diameter D, = 0.l mm) and
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snow with faceted crystals (D, = 0.4 mm), to the correspond-
ing values pex = 0.035 and 0.1l mm, respectively, Wiesmann
and others (2000) obtained a relation between D, and pey. In
addition, by comparing the available snow-pit profiles of
known correlation length and computed Crocus data, a better
fit was obtained by separating dendritic and non-dendritic
SNow:

Dex = O4Do7
Pex = 0~3D0;

for dendritic snow , (9a)

for non-dendritic snow.  (9b)

Sntherm-MEMLS

Jordan (1990, 1991) published the physical snowpack model
Sntherm with the optical grain diameter D, as texture
parameter. Assuming a linear relation between pey and D,
and comparing brightness temperatures from Sntherm—
MEMLS profiles with those from snow-pit profiles and
observed brightness temperatures, Wiesmann and others
(2000) obtained best results for

Pex = 0.16D, . (9¢)

Simple model-MEMLS

Mitzler (2000) found that the optical grain radius corres-
ponds to the mean thickness of ice lamellae in a one-dimen-
sional scattering model. This model extends to the microwave
range. When compared with fits to MEMLS in this range, the
optical diameter D, of the grains can be related to pey by:

Pex = 0.16D, ;
Pex = 0.25D0 ;

for fine-grained snow , (9d)
for medium-grained snow . (9e)

It may be surprising that the different relationships found
here by independent comparisons are so similar. Whereas
the result of Equation (9d) coincides with that of Equation
(9¢) from Sntherm, Equation (9¢) is more similar to Equa-
tion (9b) of Crocus.

Measured relationship between p. and pey

Alley (1980) reported values of s (based on thin-section analy-
sis) for firn—ice-core data of the Antarctic station, Dome C.
From these data, p. was determined according to Equations
(4-6) and applied to MEMLS (with improved Born Approxi-
mation and exponential correlation function according to
Mitzler and Wiesmann (1999)) to compute brightness
temperatures. As shown at the Third European Space
Agency—SMOS Workshop (http://www.cesbio.ups-tlse.fr/in-
dexsmos.html) by Mitzler, the observations of Dome C from
satellite data (Electrically Scanning Microwave Radiometer
at 19 GHz) agree with the results of MEMLS if

Pex = 075p(‘ . (10)

In an independent study, Equation (10) was confirmed by
the analysis of alpine snow samples from Weissfluhjoch,
Davos, Switzerland (Wiesmann and others, 1998; Wiesmann
and Mitzler, 1999). Both p. and pex were determined from
the measured autocorrelation function (see Table 1). Except
for depth hoar, p, is always larger than pey. The mean ratio
Pex/Pe 1s 0748, with a standard deviation of 0.150. Equation
(10) can account for deviations of A(x) from the exponential
behavior and for unresolved structures at the given reso-
lution of the thin sections. That the latter effect is not negli-
gible is indicated by the fact that the minimum ratios of
Pex/Pe are found for samples with the finest structure.
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Also shown inTable 1 is the visually observed grain-size
Dy ay; 1t can be seen that this quantity is a very rough esti-
mate, and therefore not suitable for quantitative analysis.
Often D,y is an order of magnitude larger than pc. This is
especially true for fresh snowflakes with complex shape. The
behavior is confirmed by Equation (14), shown below, and
by the formulas of Table 2.

5. NUMERICAL RELATIONSHIPS FROM THEORY

Combining definitions and stereological properties

Eliminating q from Equations (1) and (5), and using Equations
(3) and (10), we get
Dex = 0.75p. = 0.5D,(1 — v). (11)

Freely arranged spheres

Assuming freely arranged spheres (Mitzler, 1997) of con-
stant diameter D, we get for A(z)

0<x<D

A(z)—{l‘%Jf% ? (12)
0 ; otherwise.
According to Equations (4) and (12) we get
Dex = 0.75p. = 0.5D. (13)

Spherical shells and other particle shapes

Other particles of interest are plates, needles, hexagonal
dendrites and cups. Whereas plates and needles can be
approximated by oblate and prolate spheroids, respectively,
dendrites are more complex, but may be obtained from
combinations of needle- and plate-like components. Depth
hoar, on the other hand, often consists of cup-like grains.
Geometrically, such grains are similar to hollow spheres or
parts of them, 1.e. spherical shells. Expressions for correla-
tion lengths of the proposed approximations to these par-
ticle shapes are given in Table 2, based on Mitzler (1997).
For hollow spheres of outer diameter Dy and shell thickness
d, a simple approximation, valid up to 2d = 0.7D», is

Pe =2 2d. (14)

This can be seen from Figure 1, showing correlation func-
tions for various values of b = 2d/Ds. According to Equa-
tion (4), p. 1s determined from the tangent to the curves at
2 = 0. The tangents cross the z axis at p./d, which is near 2
for all curves, except for the sphere (2d/Dy = 1). Thus p.
only depends on d, but not on Dy = Dyax. The same beha-
vior is true for other non-spherical shapes; in general, p. is
related to the minimum particle extent (Mitzler, 1997), and
the formulas of Table 2 can be used for estimating p. and the
other parameters from visual inspection. It is only for
spheres that p. directly depends on Dyy,x.

6. DISCUSSION

The following order applies among the size parameters:
pcx<pc<D<Do:Dq§Dmax~ (15)

In the present view where the ice grains are mimicked by
equivalent spheres, the second and third inequality of Equa-
tion (15) can be exactly related by Equations (11) and (13).
The leftmost inequality is based on the empirical formula
(10) found in two independent ways. The apparent differ-
ence between pex and p. means that the correlation function
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is not exactly exponential. The rightmost relation in Equa-
tion (15) depends on the actual shape of the grains. An
explanation is needed for the relationship between D and
D,; by comparing Equations (11) and (13) it follows that

D =D,(1-v). (16)
According to the definition of D, in section 2, the equivalent
spheres of the optical model are not in direct contact. How-
ever, for the spheres, describing A(z) by Equation (12), a
fraction s. of the sphere surfaces is in contact with other
spheres due to sintering, and thus the surface area is reduced
by the factor (1 —s.). For freely arranged particles (i.e. a gran-

ular medium for which the probability for a given point to
be in a granule is equal to v independent of position), we
have s, = v (Mitzler, 1997). In order to allow the same
amount of scattering as for non-contacting spheres, the spe-
cific surface has to be kept constant; this means that the
diameter decreases from D, to D, in correspondence to
Equation (16). Thus Equations (11) and (13) are equivalent.
When comparing the empirical relationships (9a—9e)
with Equation (11), agreement with ice spheres 1s possible if
different v values are chosen for the different situations; rea-
sonable agreement is found for the CGrocus"MEMLS com-
parison (Equations (9a) and (9b)); then v is in the typical

Table 1. Snow-sample data of Weissfluhjoch, adapted and extended from Wiesmann and others (1998): snow density, snow type,
visually estimated grain-size Dyax, correlation lengths pex and pe. The data are grouped by snow type and ordered by density. The
images in the last column are subsamples of the respective thin sections used to determine pex and pe, and the sample number in

column 11s used for reference to the microwave data

No. Density p Snow type Diax Dex De Image sample No. Density p Snow type Dinax Dex Pe Image sample
( Colbeck and ( Colbeck and
others, 1990) others, 1990)
kgm 8 mm mm mm  2x2mm’ kg m mm mm mm
4 93 New snow <05 00345 00622 [Ty s 9 367 Veryhardsnow 02-05 00565 00919
+ g P [|e
L 1_5. AN
i . : L™
I 107 Newsnowwith  (I4top) 00353 00617 fosdin, ] 5 384  Veryhardslab  01-05 00899 01267
natural surface 0.5-1 -, 'Ill-! "
iy Ha v._ /]
o
e
18 109 New snow 1 00607 00701 [ . =%~ +¥ R
4 ~ o 16 240 Coarse grains 1 0.1609 01702
e '
'.-:'.;‘ " oo
S
il
8 159  Slightly densified  0.1-05 0.0382  0.0668 19 252 Densified 0.7 01372 0.1665
new snow OO
Il
10 162 Nearly new snow ++0.5-1 0.0422  0.0702 20 399 Hard slab 0.5-1 0.1345 0.1710
with surface /1 0.2-0.5 00
hoar
++//
17 177 Nearly new snow  02-0.5  0.0687 0.0897 9 332 Coarse grains 1 0.1558 0.2034
Il o0
15 191 Nearly newsnow 01-02 00533 00757 12 335 Roundededges  05-1 01784 02232
oo OO
7 231 Hard, densified  01-05 00404 00714 2L 270 Depth hoar I=15 02186 0.2041
snow A A
/e
14 244 Hard, densified ~ 0.2-03  0.0711 0.1011 6 279 Depth hoar 2-3 03273 0.3246
snow A A
Il
1 260 Strongly 0.1-04 00852  0.1230 13 345 Depth hoar, -3 02199 02327
densified snow rounded edges
Il guin
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range for snow (0.2-0.4). Higher ice-volume fractions are
needed to fulfill Formulas (9¢—9e). However, it is more prob-
able that these expressions are due to deviations from the
spherical shape. This can be seen from the example of ice
shells (Expression (14)), expressing the shell thickness d by
the fraction b = 2d/ D5 (with b < 1), thus p. = bDs. Com-
paring this expression with Equation (16) for D = Ds, and
Equations (9¢) and (10), we find agreement if

0.21

1—v’
For v = 0.3 we find b = 0.3; this means that the shell thickness
is about 30% of the shell radius. Such a deviation from the
spherical shape is not unreasonable for depth hoar. The devi-

=]

(17)

ation becomes smaller for Expression (9¢) and for higher
snow density. Finally it should be emphasized that the differ-
ences between Expressions (9a—9¢) can also be understood to
reflect imperfections of the different models.

7. CONCLUSIONS

The representation of snow by spherical ice grains whose size
is determined by the surface-to-volume requirement of Gren-
fell and Warren (1999) is most useful not only for scattering at
optical wavelengths, but also in the microwave range because
of its relationship with the correlation length; thus this is the
most important size parameter of granular media, and it is
directly connected to the specific surface s. Processes with
interactions at the grain surface are well described by struc-
tural information based on these parameters. Therefore grain-
size, defined by D, (or equivalently by pey, pe or D), obtains a
physical basis. On the other hand, care has to be taken when
the visually determined grain-size (Dp,yx) 1s used, especially
for the complex-shaped particles of freshly fallen snow or hoar
crystals. Such data may strongly overestimate D, as shown by
Table 1. The problem can be avoided if the particles are
mimicked by an appropriate number of spheres to fit the com-
plex shape with the same ¢ value. This leads to the conclusion
that the observer’s definition of grain-size as the maximum
extent should be revised. The observer should also note the
correlation length, or what is equivalent, the size of the minor
axis of the prevailing grains (Maitzler, 1997; Grenfell and
Warren, 1999), or any other related quantity as described here.
Table 2 may be used as a practical guide for various particle
shapes to relate visible size parameters to p. and further to the
other parameters described here. For many situations this

1.0

0.8 -+

0.6

04 1

0.2

%0 05 1.0 15 20 25 30 35

x/d

Fig. 1. A(x) of spherical shells of diameter D vs displacement
x normalized to shell thickness d for different ratios,
b =2d/ D, from top to bottom:b = 0.01, 0.5, 0.7, 1. The bottom
curve also corresponds to the full sphere of Equation (12).
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measurement can be done in the field using a microscope
and a length scale. For particles with extreme axial ratios, for
example in case of surface hoar, the visual estimate of the min-
or axis may not be possible. In such cases p. might be esti-
mated from the surface-to-volume ratio of selected particles,
by visually estimating their surface area, and by measuring
the diameter of the resulting droplet of the melted particles
to get the ice volume, or else by measuring the weight.

The increasing complexity of the task of measuring such
quantities under field conditions may call for additional
methods. A simple experiment can be done by looking at
snow slabs with a portable microwave radiometer. Appro-
priate calibration data to determine p, exist from Wiesmann
and others (1998). Optimum frequencies with high sensitiv-
ity to p. are 40-50 or 80-100 GHz. Due to the strength of
interaction of microwaves with snow, the lower and upper
frequency range is optimum for sample depths 10-20 and
3—10 cm, respectively. A further method could be based on
acoustic transmission experiments (Buser and Good, 1987),
and if the measurement is to be concentrated to the surface
of the snow cover, a near-infrared scattering experiment is
appropriate (e.g. by measuring the absorption feature of ice
at wavelengths around 1 um (Nolin and Dozier, 2000)).
These experiments are simple enough to work under field
conditions. Wave-propagation and radiation measurements
may allow for automation. Nevertheless we should not stop
perceiving the beauty of snow.
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