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Abstract

Insect symbionts have attracted attention for their potential use as anti-parasitic gene products
in arthropod disease vectors. While tsetse species of the Luangwa valley have been extensively
studied, less is known about the prevalence of symbionts and their interactions with the tryp-
anosome parasite. Polymerase chain reaction was used to investigate the presence of
Wolbachia and Sodalis bacteria, in tsetse flies infected with trypanosomes (Trypanosoma
vivax, Trypanosoma congolense and Trypanosoma brucei). Out of 278 captured tsetse flies
in eastern Zambia, 95.3% (n = 265, 95% CI = 92.8–97.8) carried endosymbionts: Wolbachia
(79.1%, 95% CI 73.9–83.8) and Sodalis (86.3%, 95% CI 81.7–90.1). Overall, trypanosome
prevalence was 25.5% (n = 71, 95% CI = 20.4–30.7), 10.8% (n = 30, 95% CI 7.1–14.4) for
T. brucei, 1.4% (n = 4, 95% CI = 0.4–3.6) for both T. congolense and T. vivax, and 0.7%
(n = 2, 95% CI 0.1–2.6) for T. b. rhodesiense. Out of 240 tsetse flies that were infected with
Sodalis, trypanosome infection was reported in 40 tsetse flies (16.7%, 95% CI = 12.0–21.4)
while 37 (16.8%, 95% CI 11.9–21.8) of the 220 Wolbachia infected tsetse flies were infected
with trypanosomes. There was 1.3 times likelihood of T. brucei infection to be present
when Wolbachia was present and 1.7 likelihood of T. brucei infection when Sodalis was pre-
sent. Overall findings suggest absence of correlation between the presence of tsetse endosym-
bionts and tsetse with trypanosome infection. Lastly, the presence of pathogenic
trypanosomes in tsetse species examined provided insights into the risk communities face,
and the importance of African trypanosomiasis in the area.

Introduction

African trypanosomiasis, caused by protozoa belonging to the genus Trypanosoma, is a vector-
borne disease endemic in sub-Saharan Africa. African trypanosomes are transmitted to the
mammalian hosts by the bite of an infected tsetse fly (Diptera: Glossinidae) causing a fatal dis-
ease commonly known as Nagana in cattle and sleeping sickness in humans (WHO, 2017;
Franco et al., 2020; Franco et al., 2022). Trypanosoma congolense is the major cause of
African animal trypanosomiasis (AAT) in eastern and southern Africa whilst Trypanosoma
vivax (together with Trypanosoma congolense) is a more important cause of AAT in cattle
in West Africa (Cox et al., 2010; Laohasinnarong et al., 2015; Mulenga et al., 2021). The 2
human-infective trypanosome sub-species are Trypanosoma brucei gambiense (found in
west and central Africa), which accounts for over 98% of reported cases of sleeping sickness,
and Trypanosoma brucei rhodesiense (found in eastern and southern parts of Africa, including
Zambia), which only accounts for less than 2% of reported cases (Nakamura et al., 2019;
Franco et al., 2020).

Tsetse flies host the following 3 endogenous symbionts: Wigglesworthia glossinidia, Sodalis
glossinidius and Wolbachia (Wamiri et al., 2013; Makhulu et al., 2021). Wigglesworthia, found
in all tsetse flies, provides nutritional and immunological benefits to its tsetse host. In the
absence of this bacteria, intrauterine larval development is stunted, and progeny aborted
(Weiss and Aksoy, 2011). Wigglesworthia’s contracted genome, encodes an unusually high
number of putative vitamin biosynthesis pathways, which support the theory that
Wigglesworthia supplements its tsetse host with nutritious metabolites that are naturally pre-
sent in low titres in vertebrate blood (Wang et al., 2009; Rio et al., 2012). Sodalis on the other
hand can be found both intra- and extra-cellular in various tissues of tsetse flies, including
midgut, body fat, milk gland, salivary glands and haemocoel (Doudoumis et al., 2017).
Sodalis contains features associated with pathogenic lifestyles, including secretion systems,
which function during the tsetse’s juvenile developmental stages (Dennis et al., 2014).
Sodalis can be cultured in cell free medium, and, unlike Wigglesworthia, it is usually absent
in several natural tsetse populations. Lastly,Wolbachia is a wide-spread bacteria endosymbiont
infecting approximately 70% of surveyed insects. It manipulates the reproductive biology of its
host mechanisms, which include cytoplasmic incompatibility (CI), male killing, feminization
and parthenogenesis (Wamiri et al., 2013).

Symbiotic interactions are widespread in insects (as well as animals and plants) and
may provide an avenue for disease control. The use of biological methods for the control of
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vector-transmitted diseases is becoming popular globally (Ricci
et al., 2012; Utarini et al., 2021). Symbionts influence several
aspects of the tsetse’s physiology, including reproduction, nutri-
tion and vector competence. Several studies have suggested the
involvement of insect microbiota in the ability of insect disease
vectors to transmit pathogens (Geiger et al., 2007; Ricci et al.,
2012; Weiss et al., 2013; Hamidou Soumana et al., 2014;
Makhulu et al., 2021) thus providing hope in the potential use
of symbionts to control African trypanosomiasis (Medlock
et al., 2013). The presence of tsetse microbiota in Zambia’s tsetse
flies has been described in studies conducted by Mbewe et al.
(2015) and Dennis et al. (2014) on wild tsetse flies. While the
earlier study observed significant association between present
endosymbiont and trypanosome infection, the later study found
it difficult to establish if some tsetse microbiota could play a
role in the susceptibility of tsetse flies to trypanosomiasis infec-
tion. Little is known about the presence of symbionts in tsetse
species found along the Luangwa tsetse belt of the eastern prov-
ince of Zambia and the role that tsetse endosymbionts may play
in the transmission and control of trypanosomiasis. Thus, the
potential use of endosymbionts in trypanosomiasis control seems
attractive because trypanocide-based management of Nagana has
proven to be costly and not sustainable. Furthermore, increasing
resistance of trypanosomes to the available trypanocides has also
been seen to threaten the efficacy of current control approaches.
The study was therefore conducted to establish the prevalence of
Sodalis and Wolbachia in tsetse species found in the eastern prov-
ince of Zambia, and to determine the relationship that exists
between these symbionts and trypanosomiasis infected tsetse flies.

Materials and methods

Study area and sample collection

Polymerase chain reaction (PCR) was used in a survey of tsetse
symbionts and trypanosomes in tsetse species of eastern
Zambia. Taking into consideration tsetse characteristics, Epsilon
traps baited with 3-n-prophyphenol and 1-octe-3-nol released at
5 g h−1 from open bottles and 0.5 g h−1 from polythene sachets,
respectively, were used for collecting tsetse flies. In areas where
fly density was low, flies trapped within a moving vehicle in the
trapping site was used as a supplementary method to maximize
catches. Traps were deployed within, and along peripheral
known tsetse affected villages (Katemo, Ncheka, Nsefu,
Chilanga, Chinzombo, Malama and Chikowa) of Mambwe dis-
trict in Zambia’s eastern Province between the years 2019 and
2020, during the dry-hot and wet-hot seasons. Deployment of
traps was determined by the availability of suitable environments
to maximize tsetse catches. Each trapping site was given a unique
identifier and global positioning system (GPS) coordinates
recorded and maintained for cross-referencing purposes.
Milking of traps was done 24 h after deployment.

Sample preparation and storage

Tsetse samples collected were stored as whole flies in well-labelled
bottles containing ethanol. Each bottle contained all tsetse sam-
ples captured from one trapping site. Tsetse flies caught from sup-
plementary techniques (e.g., moving vehicle) were stored together
with samples captured from the nearest possible trapping site.
Prior to storage, identification data were recorded (date of collec-
tion, location, numbers captured, sex and species). During sample
preparation, captured flies were removed from ethanol storage,
blotted with tissue paper towel, and left to air dry overnight at
room temperature. Unique identifiers given during sample collec-
tion were maintained.

Laboratory analysis

Total genomic deoxyribonucleic acid (DNA) was extracted from
individual flies after removing wings and legs. Manufacturer’s
instructions on DNA extraction kits (QIAamp® DNA mini kit)
were followed during the extraction process. Extracted DNA was
stored in 1.5 mL tubes, labelled with unique trapping numbers
related to where they were trapped. The eluted DNA was stored
at 4°C for use within 12 h and at −20°C for use after 12 h.

The presence of symbionts from the extracted DNA was deter-
mined using a symbiont species-specific PCR amplification assay
as described by Pais et al. (2008). Four nanograms of the extracted
DNA template was used for each PCR. For identification of
Sodalis, HemF (ATGGGAAACAAACCATTAGCCA) and HemR
(TCAAGTGACAAACAGATAAATC) primers (Pais et al., 2008)
were used to amplify the 650-bp fragment of the haemolysin
gene (accession no. AP008232). The presence of Wolbachia was
detected by the amplification of a 610-bp fragment of the wsp
gene with primers 81F (TGGTCCAATAAGTGATGAAGAAAC)
and 691R (AAAAATTAAACGCTACTCCA) (Pais et al., 2008).
For DNA quality control, the G. morsitans subsp. morsitans
tubulin gene (accession no. DQ377071) were amplified with
primers GmmTubF (TAGTTCTCTTCAACTTCAGCCTCTT)
and GmmTubR (TCGTTGACCATGTCTGGTGT) (Pais et al.,
2008). Bacteria-specific PCR amplification conditions consisted
of initial denaturation at 94°C for 2 min, followed by 30 cycles
of 94°C for 30 s, 54°C for 40 s and 72°C for 1 min with a final
elongation at 72°C for 7 min. For gmmtub amplification, an
annealing temperature of 60°C was used. The amplification pro-
ducts were analysed by agarose gel electrophoresis using ethidium
bromide and visualized using a transilluminator (Pais et al., 2008).

ITS-PCR was undertaken in 25 μL reaction mixtures contain-
ing primers AITS-F: CGGAAGTTCACCGATATTGC and
AITS-R: AGGAAGCCAAGTCATCCATC (Gaithuma et al.,
2019), One Taq 2 @ master mix (New England BioLabs,
Ipswich, MA, USA), nuclease-free water and 5 μL of extracted
DNA sample. For the detection of T. b. rhodesiense, SRA F
(5′-ATAGTGACAAGATGCGTACTCAACGC-3′) and SRA R
(5′-AATGTGTTCGAGTACTTCGGTCACGCT-3′) (Radwanska
et al., 2002) were used (procured from Inqaba Biotec, Pretoria,
South Africa). Thermocycler amplification conditions were at
94°C for 5 min, followed by 40 cycles of 94°C for 40 s, 58°C for
40 s, 72°C for 90 min and 72°C for 5 min. ITS-PCR targets the
internal transcribed spacer 1 of the ribosomal RNA (100–200
copies per genome), producing different sized products for differ-
ent trypanosome species (Desquesnes et al., 2001; Njiru et al.,
2005; Gaithuma et al., 2019). ITS-PCR products were separated
by electrophoresis (95 V for 60 min) in a 2% (w/v) agarose gel
containing ethidium bromide. The separated products were then
visualized under ultraviolet light in a transilluminator. Known
positive controls of T. congolense, T. vivax, T. b. rhodesiense and
T. brucei and a negative control were included in each reaction.
All samples that were positive for T. brucei were subjected to a
multiple PCR using a serum resistance-associated antigen (SRA)
targeting primer for the detection of T. b. rhodesiense (Welburn
et al., 2001; Radwanska et al., 2002; Gaithuma et al., 2019).

Statistical analysis

The prevalence data of trypanosome and symbiont infection from
captured tsetse flies were summarized as frequencies and percen-
tages and analysed using descriptive statistics in Epi-info 7.2.
Odds ratios were used as measures of association. A chi-square
test was used to determine statistical differences between propor-
tions. For expected values under 5, Fisher’s exact test was used.
Statistical significance was acceptable at P < 0.05. Pearson’s correl-
ation test was used to see if the presence of symbionts correlated
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with the presence of trypanosomes. Scores were used to determine
the degree of correlation present. The scale of correlation coeffi-
cients were classified as follows: negative values (negative associ-
ation), positive values (positive association), no association
(0.00), very low (0.00–0.19), low (0.20–0.39), moderate (0.40–
0.69), high (0.70–0.89) and very high (0.90) (Schober et al., 2018).

Results

The combined prevalence for Sodalis and Wolbachia in captured
tsetse flies was 95.3% (n = 278, 95% CI = 92.8–97.8) while the
overall trypanosome prevalence in captured tsetse flies was
25.5% (n = 278, 95% CI = 20.4–30.7). Trypanosome prevalence
was 10.8% (n = 30, 95% CI = 7.1–14.4) for T. brucei, 1.4% (n =
4, 95% CI = 0.0–2.8) for both T. congolense and T. vivax and
0.7% (n = 2, 95% CI =−0.3–1.7) for T. b. rhodesiense.

Out of 278 tsetse flies that were captured for the study, a total
of 237 (85.3%) flies belonged to the group of Glossina pallidipes
while 41 (14.8%) were G. morstitans morsitans. Total symbiont
infections in G. pallidipes was 94.9% (n = 225, 95% CI = 92.2–
97.7) while in G. m. morsitans was 97.6% (n = 40, 95% CI =
92.8–102.3), trypanosome infections in G. pallidipes was 26.6%
(n = 63, 95% CI = 21.0–32.2) while in G. m. morsitans was
19.5% (n = 8, 95% CI = 7.4–31.6). No significant difference was
observed in both symbiont (P = 0.46) and trypanosome (P =
0.34) infections in the 2 tsetse species sampled. The prevalence
of symbionts and trypanosomes in the 2 tsetse species detected
by PCR is summarized in Table 1.

The likelihood of female flies harbouring Sodalis (OR = 1.9,
95% CI 0.8–4.4) and Wolbachia (OR = 1.3, 95% CI 0.7–2.5) was
higher than in male flies (Table 2).

Of the 240 tsetse flies that were positive for Sodalis, the preva-
lence of T. brucei was 12.9% (95% CI 8.7–17.2) while that of T.
congolense was 1.7% (95% CI 0.1–3.3), T. vivax 1.3% (95% CI
−0.2–2.7) and T. b. rhodesiense 0.8% (95% CI −0.3–2.0).
Similarly, of the 220 tsetse flies that were positive for
Wolbachia, trypanosome prevalence for T. brucei was 12.7%
(95% CI 8.3–17.1) while that of T. congolense was 1.8% (95% CI
0.1–3.6), T. vivax 1.4% (95% CI −0.2–2.9) and T. b. rhodesiense
0.9% (95% CI −0.4–2.2).

Analysis of the association between trypanosomes and endo-
symbiont infection in the caught tsetse flies (Table 3) found a
1.3 (95% CI 0.5–3.2) times likelihood of T. brucei infection

when Wolbachia is present and 1.7 (95% CI 0.5–6.0) likelihood
of T. brucei infection when Sodalis is present. Similarly, results
indicate a 0.8 (95% CI 0.1–7.7) likelihood of T. vivax infection
when Wolbachia is present and a 0.5 (95% CI 0.0–4.6) likelihood
of T. congolense infection when Sodalis is present.

Analysis of the correlation between the presence of tsetse
endosymbionts and trypanosome infection showed no correlation
(Table 4).

Discussion

The tsetse fly has established symbiotic associations with bacteria
which influence its reproduction, nutrition and vector compe-
tence. Symbiotic interactions are widespread in insects (and also
animals and plants) and may provide an avenue for disease con-
trol (Ricci et al., 2012; Wamiri et al., 2013). The current study
provided the prevalence of selected tsetse symbionts and trypano-
somes in Glossina tsetse species from eastern Zambia. Results
showed no statistical difference in the prevalence of both sym-
bionts and trypanosomes in the 2 tsetse species
(G. m. morsitans and G. pallidipes) analysed. No association
was either observed between symbiont and trypanosome infection
in the 2 tsetse species, suggesting that endosymbionts play no role
in tsetse vector competence and reproduction in the area. These
data are in agreement with those obtained by Dennis et al.
(2014) but disagree with those by Farikou et al. (2010) and
Mbewe et al. (2015), who established the existence of a relation-
ship between tsetse bacteria and trypanosomes and the potential
role of endosymbionts in tsetse vector competence and reproduc-
tion. However, later studies were conducted in different geograph-
ical areas with different species of tsetse flies (G. p. palpalis and
G. m. centralis, respectively).

Tsetse symbionts (Wolbachia and Sodalis) were detected in
about 95% of the tsetse samples examined with varying preva-
lence within tsetse species. Both symbionts were found in relative
abundance in the 2 tsetse species examined, with Sodalis preva-
lence slightly higher than Wolbachia. This agrees with findings
from similar studies on tsetse symbionts though with varying
levels of infection rates which may be attributed to differences
in the sensitivity of the screening methods (Doudoumis et al.,
2012; Dennis et al., 2014; Doudoumis et al., 2017). The low num-
bers of Wolbachia have been associated with low sensitivity of the
standard PCR assay (Wamiri et al., 2013), which was also used in

Table 1. Prevalence (%) of symbionts and trypanosomes in tsetse species captured in the Luangwa valley, eastern Zambia

Tsetse species

Symbionts Trypanosomes

Sodalis Wolbachia T. brucei T. b. brucei T. vivax T. congolense T. b. rhodesiense Mixed infections

G. m. morsitans
Prevalence (95% CI)

85.4%
(74.6–96.2)

80.5%
(68.4–92.6)

19.5%
(7.4–31.6)

19.5%
(7.4–31.6)

0 0 0 0

G. pallidipes
Prevalence (95% CI)

86.5%
(82.2–90.9)

78.9%
(73.7–84.1)

12.7%
(8.4–16.9)

8.2%
(4.6–11.5)

1.7%
(0.1–3.3)

1.7%
(0.1–3.3)

0.8%
(−0.3–2.0)

1.7%
(0.1–3.3)

Table 2. Symbiont and trypanosome infection in relation to the sex of caught tsetse flies in the Luangwa valley, eastern Zambia

Symbionts Trypanosomes

Sodalis Wolbachia T. brucei T. vivax T. congolense T. b. rhodesiense

Female 158 146 17 2 1 1

Male 82 74 17 2 3 1

Odds ratio 1.9 1.3 2.3 2.1 6.4 2.1
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our laboratory analysis of tsetse samples. The presence of Sodalis
and Wolbachia infection in the tsetse population sampled
re-affirms the presence of tsetse bacterium in tsetse species
found in Zambia and particularly the Luangwa valley
(Doudoumis et al., 2012; Dennis et al., 2014; Mbewe et al., 2015).

The overall trypanosome prevalence in the captured tsetse flies
(25.5%) was similar to what was found by Nakamura et al. (2021).
The identification of T. congolense, T. brucei and T. vivax from
tsetse samples analysed confirms the presence of AAT in the com-
munity (Mekata et al., 2008; Laohasinnarong et al., 2015;
Mulenga et al., 2021; Nakamura et al., 2021). The presence of
T. b. rhodesiense further indicated the circulation of the
human-infective trypanosomes in the area, responsible for sleep-
ing sickness and the importance of the tsetse species in trypano-
somiasis transmission. Taken together, the presence of pathogenic
trypanosomes in tsetse species examined provide insights to the
risk of contracting sleeping sickness and AAT by the local com-
munities and their livestock (Mekata et al., 2008; Djohan et al.,
2015; Auty et al., 2016).

In agreement with Mekata et al. (2008), high infections of both
symbionts and trypanosomes were reported in the G. pallidipes
species compared to G. m. morsitans. However, unlike observa-
tions from the current study, Doudoumis et al. (2012) found
G. m. morsitans to be more likely to harbour Wolbachia than
G. pallidipes. On the other hand, current study findings were in
concordance with findings obtained elsewhere, where G. pallidipes
was captured with other tsetse species other than G. morsitans
(Wamiri et al., 2013). Further, the high prevalence of female G.
pallidipes found agree with findings by Laohasinnarong et al.
(2015). Overall, both symbiont and trypanosome prevalence
were, however, higher in female tsetse flies than in male tsetse
flies and were associated with the host tsetse species as previously
reported (Wamiri et al., 2013; Dennis et al., 2014). Such findings
prompt for further research in the importance of G. pallidipes
tsetse species with regards to host genetic diversity and vectoral
capacity in areas where other tsetse species are present.

The weak relationship between tsetse symbiont prevalence and
trypanosomeprevalence shown in the current studydoesnot support
the synergistic role between symbiont and trypanosomiasis transmis-
sion in the surveyed area. However, the low number of tsetse flies
infected with trypanosomes could explain the poor correlation
observed, which suggest the need for further work on the importance
of Sodalis in tsetse species in the Luangwa valley tsetse belt.
Understanding insect–parasite–symbiont interactions is necessary
in establishing opportunities for biologically based trypanosomiasis
control strategies (Boulanger et al., 2002). The importance of under-
standing this relationship is emphasized by the urgent need for envir-
onmentally friendly methods for both tsetse and trypanosomiasis
control. The high prevalence of Wolbachia in female flies need to
be investigated furtheras a possible basis for environmentally sustain-
able tsetse population control for Glossina species.

Data. The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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Table 3. Measures of association between trypanosome and symbiont infection in tsetse flies caught in the Luangwa valley, eastern Zambia

Wolbachia infection

Odds
ratio

Confidence
interval at

95%

Sodalis infection

Odds
ratio

Confidence
interval at

95%
Trypanosome
infection Present Absent Present Absent

T. brucei Present 192 52 1.3 0.5–3.2 209 35 1.7 0.5–6.0

Absent 28 6 31 3

T. congolense Present 216 58 – – 237 37 0.5 0.0–4.6

Absent 4 0 3 1

T. vivax Present 217 57 0.8 0.1–7.7 236 38 – –

Absent 3 1 4 0

T. b. rhodesiense Present 218 58 – – 238 38 – –

Absent 2 0 2 0

Table 4. Correlations between trypanosome and symbiont infection in tsetse flies caught in the Luangwa valley, eastern Zambia

T. brucei T. vivax T. congolense T. b. rhodesiense

Pearson’s
correlation

Sig.
(2-tailed)

Pearson’s
correlation

Sig.
(2-tailed)

Pearson’s
correlation

Sig.
(2-tailed)

Pearson’s
correlation

Sig.
(2-tailed)

Sodalis 0.05 0.38 0.05 0.43 −0.04 0.51 0.03 0.57

Wolbachia 0.03 0.62 −0.01 0.84 0.06 0.30 0.04 0.47
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