
How Relevant are Male Factors for

Fertilization and Early Embryo

Development? Looking into the

(Epi)genome, Proteome and Metabolome

MARC YE S T E * , * * , †

*Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of
Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
**Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of
Girona, 17003 Girona, Spain Email: marc.yeste@udg.edu
†Catalan Institution for Research and Advanced Studies (ICREA), 08010
Barcelona, Spain

Infertility affects 10–15% of couples at the age of conception. Mounting evidence
supports that not only are paternal factors crucial during fertilization, but also for
embryogenesis. This review aims to provide some clues about the contribution of
male factors to reproductive success and live birth, as such contributions can be as
important as that of the female. Semen is composed of two fractions: sperm and
seminal plasma. Regarding the former, the integrity of sperm components
(i.e., centrioles, DNA integrity and methylation, histone-to-protamine ration,
specific proteins, etc.) has been proven to be essential for some of the events
occurring upon engulfment of the spermatozoon into the oocyte cytoplasm. The
metabolic status of sperm also seems to shape their potential fertilizing capacity.
Furthermore, seminal plasma appears to modulate the female reproductive tract,
and has been suggested to support embryo implantation. In spite of the
aforementioned, it remains largely unaddressed how paternal factors interact with
maternal ones, and whether the latter may mask the former. While assisted
reproductive techniques (ART) are useful to rescue infertility, a better understanding
about the contribution of semen to fertilization, embryo development and
implantation can increase the efficiency of these techniques, and address further
the causes of total fertilization failure, implantation deficiency and recurrent
miscarriage.
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Introduction

The incidence of infertility, which is defined as the inability of a couple at
reproductive age of conceiving after one year of unprotected intercourse, is around
10–15% worldwide (Simon et al. 2017a). Primary infertility can be distinguished
from secondary infertility depending on whether the couple has never been able to
conceive (primary), or was able to conceive but is no longer capable to do so
(Zegers-Hochschild et al. 2008). The causes of each type of infertility differ. In the
case of male infertility, the contribution of male factors can be as important as that of
the female. Indeed, while single male factors account for 30–35% of cases, as too do
single female factors, there are still about 30–40% of cases that could arise from both
male and female sides, and about of 20% of unexplained/idiopathic infertility that
could also involve the participation of male factors (Figure 1) (Yeste et al. 2016).

In order to understand the contribution of semen, one needs to dissect each of its
fractions and components, as their integrity may have an influence. In most cases,
diagnosis of male infertility is based on the evaluation of spermiogram variables
(ejaculate volume, pH, concentration, motility, morphology) which, despite being
very useful, does not provide a complete picture of what can be wrong with male
gamete components (Colaco and Sakkas 2018; Bashiri et al. 2021; Tarozzi et al.
2021). In effect, great attention to motility and concentration has been paid, as sperm
have been regarded as a means of bringing the haploid genome of the father to the
female’s oocyte. The shortcoming of this approach is that it neglects that other
paternal factors can also play a crucial role during fertilization and, even, at the start
of embryogenesis, as emerging research supports (reviewed in Yeste et al. 2016;
Vallet-Buisan et al. 2023).

25-30% Female factor

25-30% Male factor

10-15% Combined

25-30% Unexplained

Figure 1. Causes of human infertility. About 25–30% of infertility cases are
exclusively due to male factors, and a similar figure of cases is related to female
factors (25–30%). In addition, about 10–15% of infertility cases are due to a
combination of male and female factors, and between 25% and 30% of cases are
unexplained. Percentages are given in ranges, as there are some differences between
clinical studies.
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While great advances in rescuing male infertility through assisted reproductive
techniques have been made over the last 40 years, allowing for the birth of more than
eight million babies until 2018, according to figures released by the European Society
of Human Reproduction and Embryology (Niederberger et al. 2018; ESHRE 2018),
a full comprehension about which paternal factors can underlie fertilization failure,
impaired embryo development and miscarriage has not been achieved. The aim of
this review is to discuss the paternal factors that can potentially contribute to the
events taking place during fertilization and beyond (including their influence on
embryo development and implantation, and on offspring health), and how this may
help improve diagnosis and treatment of male infertility. For this purpose, the
following sections approach sperm and seminal plasma separately.

Composition of Semen: Sperm and Seminal Plasma

The contribution of paternal factors, which, as aforementioned, is at least 30%,
comes from the semen. This differs from the case of the female, where the respective
contribution of 30–35% does not only involve ovarian dysfunction and advancing
maternal age, which have repercussions on oocyte quality and competence, but also
problems derived from uterine, pelvic and Fallopian tube alterations (including
endometriosis), and other factors such as psychosexual ones (Child 2013).

The semen is composed of a cellular fraction (sperm) and a liquid one (seminal
plasma, also known as seminal fluid) (Figure 2). Regarding the former, three parts
can be distinguished in a spermatozoon: head (composed of nucleus and acrosome),
neck (or connecting piece), and tail (where mitochondrial, principal and end pieces
are distinguished). Remarkably, the spermatozoon is a very peculiar, complex and
differentiated cell, as it is the only one that performs its mission (i.e., bring the father
haploid genome to the oocyte) in another body (the female’s). It is formed through

Figure 2. Semen composition. The semen is composed of cellular (sperm) and liquid
(seminal plasma, also known as seminal fluid) fractions. Sperm are produced in the
testis through spermatogenesis and then enter the efferent duct and epididymis,
where they mature. The seminal plasma (SP) comprises secretions from the testis,
epididymis, seminal vesicles, the prostate and bulbourethral glands.
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spermatogenesis, and then completes its maturation during the transit along the
epididymis. This transit is featured by the remodelling of the plasma membrane,
nuclear compaction, and incorporation of proteins, including cytosine-rich secretory
protein 1 (CRISP1) (Cohen et al. 2011; Weigel Muñoz et al. 2018), acrosin binding
protein (ACRBP) (Nagdas et al. 2010; Yin et al. 2018), and disintegrins/
metalloproteinases (ADAM) (Inoue et al. 2005; Nishimura et al. 2007), through
extracellular vesicles (James et al. 2020; Barrachina et al. 2022). In addition, motile
ability is acquired in the epididymis cauda (Tourzani et al. 2021). As discussed later,
epididymosomes also contain non-coding RNAs, and could be involved in passing
the paternal epigenetic inheritance to the offspring (Zhang et al. 2018; Chan
et al. 2020).

In humans, sperm are deposited in the vagina, and then enter the cervical canal,
where they must pass though the cervical mucus. Active and passive (myometrium)
contractions let sperm travel along the uterus. In the uterus, sperm trigger NETosis,
which is a process through which polymorphonuclear granulocytes, a type of white
blood cells, release their DNA into the extracellular environment to generate
neutrophil extracellular traps (NETs), which can capture and kill bacteria and sperm
(Zambrano et al. 2016). NETosis appears to have a selective mission, removing the
excess of sperm, particularly those that have less motility and potentially less fertility,
as studies in animal models indicate (Alghamdi and Foster 2005; Alghamdi et al.
2009; Zambrano et al. 2021). Those sperm that escape from leukocytes reach the
utero-tubal junction (UTJ) (Ishimoto and Gaffney 2016). This junction has a
selection role, as it presents different folds that allow for the retention of poor-quality
sperm. Sperm cells capable of overcoming the UTJ then enter the fallopian tube,
where, based on observations performed in animal models and in vitro studies in
humans (Pacey et al. 1995; Ziskind et al. 2000; Massa et al. 2019), they appear to
attach to the epithelial cells of the isthmus, one of the fallopian tube’s sections, and
form a ‘reservoir’ (Sharif et al. 2022). Only sperm in good shape can bind these
epithelial cells; hence, this reservoir has been posited to exert a selective function
(Rath et al. 2016), and would drive the transient storage of sperm, maintaining their
survival until the oocyte is available (Teijeiro and Marini 2012). Moreover, an in-
vitro study conducted in humans reported that binding of sperm to OE-E6/E7, an
immortalized human cell line of fallopian tube cells, triggers a transcriptomic
response in these epithelial cells. This results in a downregulation of inflammatory
molecules (cytokines and chemokines) that ultimately allow for a greater
immunological tolerance with regard to sperm (Mousavi et al. 2021). When, in
contrast, sperm incubated with the OE-E6/E7 cell line have high levels of DNA
fragmentation (evaluated with the TUNEL assay), they rather activate a toll-like
receptor signalling pathway in these cells, upregulating the expression of
inflammatory cytokines and chemokines (Mohammadi et al. 2022).

Around ovulation, sperm detach from the epithelial cells of the isthmus and
capacitate. Only capacitated sperm are able to trigger the acrosome reaction, which
is required for the male gamete to pass through the cumulus cells and the zona
pellucida (Molina et al. 2018; Gupta 2021). Some defective sperm cells are unable to
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undergo capacitation and acrosome reaction, and/or penetrate the oocyte, whereas
others – even when they fuse with the oocyte – are not able to activate the oocyte and
drive embryo development (Colombero et al. 1999). For example, microinjection of
parts of the sperm (such as the head or the tail) gives rise to an embryo that is not able
to withstand several mitotic divisions (Moomjy et al. 1999).

The following sections scrutinize what we know about sperm components that are
potentially involved in the interaction with the oocyte (i.e., gamete fusion), and what
happens thereafter (oocyte activation and onset of embryogenesis). This includes:
sperm proteome, centrioles, chromatin condensation and DNA integrity, epigenome
and metabolome. The seminal plasma is approached in a separate section.

The Sperm Proteome

The sperm proteome differs between fertile and infertile men (Légaré et al. 2014).
Castillo et al. (2018) conducted a meta-analysis, identifying 103 sperm proteins that
could be involved in fertilization and 93 that could play a role during early embryo
development. This section is split two different subsections, referring to sperm
proteins that could play a role (i) during, and (ii) after fertilization.

Sperm Proteins Involved in Fertilization

The fusion of sperm and oocyte membranes is a complex process that appears to
involve many proteins; some of the protein–protein interactions have been
established in the last decade. From the sperm side, the proteins that interact with
their oolemma counterparts are located in the equatorial region. One of these
proteins is IZUMO1 (Inoue et al. 2005; Hirohashi and Yanagimachi 2018), which
interacts with JUNO, an oocyte membrane protein; this interaction is needed for
gamete fusion and the subsequent engulfment of the spermatozoon into the oocyte
(Bianchi et al. 2014; Jean et al. 2019).

In addition to IZUMO1, other sperm proteins have been suggested to mediate
gamete fusion. For example, tetraspanins CD9, CD81 and CD151 are located in the
equatorial region of sperm, and have been found to be involved in the fusion of
oocyte and sperm membranes (Jankovicova et al. 2020). Another protein found in
the sperm plasmalemma, TMEM95, appears to play a similar role (Lamas-Toranzo
et al. 2020).

Sperm Proteins Involved after Fertilization

Whether the male proteome can contribute to early embryo development has been a
subject of research, despite the technical difficulties to address the matter. From the
93 sperm proteins potentially involved in post-fertilization events, 11 have been
suggested to have a mission during the first embryo divisions (up to eight-cell stage),
29 in the formation of morulae, and 19 in blastocyst development.
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A sperm-borne protein that has been largely confirmed to be relevant for what
occurs after gamete fusion is phospoholipase C Zeta (PLCζ), a sperm-specific
phospholipase C located in the equatorial and post-acrosomal regions (Figure 3) (Yeste
et al. 2023). Mounting evidence supports that this protein is involved in oocyte
activation, which is the process that releases the oocyte from its metaphase-II arrest,
then allows for the onset of embryogenesis, and is featured by Ca2� oscillations in the

Figure 3. Protein phospholipase C zeta (PLCζ). Sperm-specific protein PLCζ is
involved in oocyte activation. Upon gamete fusion, it is released into the ooplasm,
where it triggers the signalling pathway that alleviates the oocyte from the
metaphase-II arrest. Abbreviations: APC, Anaphase-promoting complex/cyclo-
some; CaM/CaMKII, Calmodulin/Calmodulin-dependent protein kinase II; CSF,
Cytostatic factor; CNB1, Cyclin B1; CDK1, Cyclin-dependent kinase 1; DAG,
Diacylglycerol; IP3, Inositol 1,4,5-trisphosphate; IP3R, IP3 receptor; MAPK,
Mitogen-activated protein kinase; PIP2, Phosphatidylinositol 4,5-bisphosphate;
PKC, Protein kinase C. Reproduced from Yeste et al. (2023) with permission.
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oocyte cytoplasm (Saunders et al. 2002; Horner and Wolfner 2008; Yeste et al. 2016,
2023). Sperm devoid of PLCζ are unable to trigger Ca2� oscillations, which leads to
oocyte activation deficiency and lower fertilization rates (Heytens et al. 2009;
Heindryckx et al. 2013; Kashir et al. 2011, 2013; Yelumalai et al. 2015). Mutations in
the coding sequence of this gene result in an impaired activity of this protein and total
fertilization failure (Escoffier et al. 2016). A study conducted by Hachem et al. (2017)
used aPlcz1 knock-out male mouse model and confirmed the crucial role of this protein
for oocyte activation, although the sperm from Plcz1 knock-out males were still able to
initiate embryogenesis after oocyte fertilization. In addition, total fertilization failure
has been found to occur when sperm present the adequate levels of PLCζ. All these data
suggest that sperm proteins other than PLCζ could be involved in oocyte activation.
For this reason, other sperm proteins, such as post-acrosomal sheath WW domain-
binding protein (WBP2NL), have been suggested to play a role during oocyte activation
(Wu et al. 2007; Aarabi et al. 2010, 2014; Kennedy et al. 2014; Kaya et al. 2022). Yet,
the exact function of WBP2NL has not been ascertained, as other studies did not
observe the same results (Nomikos et al. 2014, 2015; Freour et al. 2017).

Other proteins that could play a role after fertilization are desmocollin 3 (DSC3),
which is delivered via sperm to the zygote (Den et al. 2006) and has been proposed to
regulate cell adhesion in blastomeres before embryo genome activation (EGA)
(Castillo et al. 2018); lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase
(B3GNT5), which would be implied in morula formation (Biellmann et al. 2008);
and choline-phosphate cytidyltransferase A (PCYT1A), which could be implicated
in blastocyst development and embryo implantation (Wang et al. 2005).

The Centrioles

Centrioles are crucial organelles in eukaryotic cells, and are involved in the organization
of the cytoskeleton, cell division, and formation of flagellum. Mature sperm have two
centrioles located in the neck: the proximal (PC) and the distal centriole (DC) (Figure 4)
(Khanal et al. 2021; Leung et al. 2021). In most eutherian mammals except rodents,
paternal centrioles are inherited by the fertilized oocyte, which does not have centrioles.
For this reason, paternal centrioles organize the cytoskeleton of the zygote, mediate
pronuclei migration (Scheffler et al. 2021) and drive cell cleavage (Rawe et al. 2002;
Amargant et al. 2021; Avidor-Reiss et al. 2019; 2022). Sperm from infertile men have
been identified to have abnormal centrioles (Turner et al. 2021), and the fact that
paternal centrioles in humans have a crucial function after fertilization has been
suggested to be one of the reasons for the greater proportion of aneuploid embryos in
humans compared with rodents (Cannarella et al. 2020).

The Relevance of Nuclear Integrity: Chromatin and DNA

In contrast to prokaryotic cells, DNA is bound to proteins in the eukaryotic ones
forming a structure called chromatin, which, during interphase, is isolated from the

Male Factors for Fertilization and Early Embryo Development 7

https://doi.org/10.1017/S1062798724000231 Published online by Cambridge University Press

https://doi.org/10.1017/S1062798724000231


rest of the cytoplasm thanks to the nuclear envelope. While chromatin is formed by
DNA and histones (which may bear epigenetic signatures) in somatic cells
(Bartosovic et al. 2021), mature sperm get most of these histones (85–90%) replaced
by protamines (protamine 1 and protamine 2, in the case of humans) (Figure 5)

Figure 4. Sperm centrioles. Centrioles are crucial organelles in eukaryotic cells,
which are involved in the organization of the cytoskeleton, cell division, and
flagellum formation. Mature sperm have two centrioles located in the connecting
piece: the proximal (PC) and the distal centriole (DC) (A). After gamete fusion (B),
the sperm centrosome forms an aster while the oocyte completes meiosis II and the
second polar body is extruded (C). Thereafter, centrioles begin to duplicate to
produce two daughter centrioles (D), which is followed by the separation of the
zygote centrosomes (E). Subsequently, the zygote undergoes mitosis (F), leading to
the formation of two blastomeres. Abbreviations: Ax, Axoneme; Ca, Centriole
adjunct; DC, Distal centriole; PC, Proximal centriole; PCL, Proximal centriole-like
structure; ZdC, Zygotic daughter centriole; PB, Polar body; N, Ploidy. Reproduced
from Vallet-Buisan et al. (2023) with permission.
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(Brykczynska et al. 2010; Jung et al. 2017). This occurs during spermiogenesis, when
the canonical organization of chromatin with nucleosomes changes to a toroidal one
around protamines (Barral et al. 2017). The different toroids, each containing about
200 kb of DNA, are linked with toroid-linker regions, which contain histones and
mediate the attachment to the proteinaceous nuclear matrix (Narwade et al. 2019).
Unlike histones, protamines contain arginine to allow for stronger binding to DNA
in order to form a toroid-like ridged structure. As sperm do not have all the
machinery required for repairing DNA damage, the greater degree of condensation
provided by protamines has been suggested as a strategy to maintain DNA integrity
better (Ni et al. 2016). Remarkably, the 10–15% of histones retained in the sperm
chromatin may bear epigenetic marks, such as H3K23me, and are organized in
nucleosomes (Champroux et al. 2018). The potential contribution of these epigenetic
signatures brought into the zygote by sperm is discussed later (see the section about
the sperm epigenome).

Figure 5. (a) Chromatin remodelling during spermiogenesis. Some histones are
replaced with testis-specific histone variants. Histones then undergo post-
translational modifications. Following this, histones are replaced by transition
nuclear proteins, and these by protamines, which ultimately increases chromatin
packaging. (b) Organization of chromatin in sperm. In sperm, chromatin is organized
into three components: the most abundant, which consists of DNA bound to
protamines; histone-bound DNA; and nuclear matrix attachment regions (MAR).
Protamine-bound DNA is coiled into toroids, and histone-bound DNA is present in
retained solenoids and toroid linkers. Abbreviations: MAR, Matrix attachment
region; PTM, post-translational modification; P1, protamine 1; P2, protamine 2; TNP,
transition nuclear protein. Reproduced from Balder et al. (2024) with permission.
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Chromatin Protamination and Condensation

An insufficient replacement of histones by protamines is associated with chromatin
immaturity, and may lead to an impaired embryo development ( Ribas-Maynou
et al. 2023); the relevance of this sperm protamination may be masked by oocyte
factors. Specifically, when the histone-to-protamine ratio is lower than 6% or greater
than 26%, embryo development is impaired (Fournier et al. 2018). On the other
hand, and as aforementioned, chromatin in human sperm contains two protamines
(P1 and P2), which should be in a 1:1 ratio (Sarasa et al. 2020). Alterations in this
ratio are related to male infertility and poor embryo quality (Rogenhofer et al. 2017;
Amor et al. 2019).

On the other hand, chromatin condensation can be evaluated through the
integrity of disulphide bridges between protamines, and has been found to be a
consequence of deficient protamination. A lower degree of chromatin condensation
is linked to male infertility (Ribas-Maynou et al. 2023).

DNA Integrity

Damage in sperm DNA occurs in one (single) or two (double) DNA strands and
underlies male infertility and impaired embryo, and may negatively affect offspring
health (Fernández-González et al. 2008; Sedó et al. 2017; Borges et al. 2019; Ribas-
Maynou et al. 2021b; 2022a). Sperm DNA damage can arise from different factors
including lifestyle habits, such as nutrition (Jurewicz et al. 2018) and smoking
(Cui et al. 2016; Muñoz et al. 2024); diseases, such as diabetes (Condorelli et al.
2018), obesity (Fullston et al. 2015), cancer (Meseguer et al. 2008), and male genital
tract infections (Han et al. 2021); advancing male age (Evenson et al. 2020; Vaughan
et al. 2020; Guo et al. 2023); altered histone-to-protamine ratio (Yoshida et al. 2018);
insufficient chromatin condensation; abortive apoptotic-like changes (Shukla et al.
2012), and oxidative stress (Dorostghoal et al. 2017). The detrimental impact of
sperm DNA damage on the embryo can be more apparent after embryo genome
activation – which includes the expression of paternal-inherited genes – occurring at
the 4/8-cell stage (Wong et al. 2010).

As aforementioned, sperm do not have all the machinery required for repairing
DNA breaks. While the higher degree of chromatin condensation is intended to
prevent it, DNA fragmentation may still occur (Smith et al. 2013). Although, in this
scenario, the oocyte plays a crucial role in restoring the integrity of paternal DNA
(Shimura et al. 2002; Lord and Aitken 2015), its repair capacity is limited, so that it
may not be able to fix all paternal DNA damage. Thus, and as clinical data support,
alterations in paternal DNA may be passed on to the embryo, which increases the
mutational load, and may lead to embryo development arrest, failure to implant,
miscarriage, and reduced clinical pregnancy and birth rate (Avendaño et al. 2010;
Robinson et al. 2012; Lane et al. 2014; Ohno et al. 2014; Zhao et al. 2014; Simon
et al. 2017b; Haddock et al. 2021; Ribas-Maynou et al. 2021b, 2022a). It is worth
noting that the effects of sperm DNA fragmentation on embryo development and
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other reproductive outcomes have been found to not completely agree across studies,
as a meta-analysis compiling data from 25,000 IVF and ICSI cycles indicated (Ribas-
Maynou et al. 2021b). These disparities could be explained by the different tests – the
most used being sperm chromatin structure assay, sperm chromatin dispersion test,
single-cell gel electrophoresis, also known as Comet, and TUNEL – employed to
evaluate sperm DNA damage (Vallet-Buisan et al. 2023). The ART utilized also
matters, as a negative correlation between sperm DNA fragmentation and
reproductive outcomes (blastocyst development and pregnancy rates) was observed
in the case of IVF but not in that of ICSI (Ruvolo et al. 2013; Cankut et al. 2019;
Ribas-Maynou et al. 2021b). All this evidence supports the need for testing sperm
DNA integrity when total fertilization failure and/or impaired embryo development
occur, in order to discard male factor infertility.

Other Influences from Altered Paternal Genome

Alteration in paternal DNA can also lead to aneuploid embryos, although in most
cases aneuploidy results from problems in the first meiotic division of the oocyte
(Oldereid et al. 2018, Wang et al. 2020). Aneuploidies in sperm result from aberrant
spermatogenesis, which manifests in poor morphology (e.g., macrocephalic sperm,
teratozoospermia, oligoasthenoteratozoospermia) (Mehdi et al. 2012; Braham et al.
2019, Nayel et al. 2021; Saei et al. 2021).

The Sperm Transcriptome

Although mammalian sperm are widely regarded as transcriptionally silent cells and
they have about 600 times less mRNA than somatic cells (Zhao et al. 2006; Ren et al.
2017), their nuclei exhibit residual DNA and RNA polymerase activity (Bianchi
et al. 2018). Whether sperm transcripts could play a function is, however, not clear.
Many have suggested that sperm mRNAs could be delivered to the oocyte, where
they could be involved in the onset of embryogenesis, perhaps before embryo genome
is activated (Ko et al. 2000; Hayashi et al. 2003; Ostermeier et al. 2004; Jodar et al.
2015; Ntostis et al. 2017). Different sperm-borne transcripts, such as PSG1 and
HLA-E, have been hypothesized to be involved in embryo implantation (Avendaño
et al. 2008), perhaps because they play an immunotolerance function, with the sperm
levels of PSG1 and HLA-E mRNA being higher in fertile than in infertile men
(Avendaño et al. 2009). Other transcripts, such as SSFA2 and SESN1, have been
suggested to be involved in the development of pig embryos until the 4-cell stage,
when EGA occurs (Guo et al. 2017). Embryo development is also related to the levels
of protamine-1 (PRM1), protamine-2 (PRM2), POU domain class 5 transcription
factor 1 (POU5F1, also known asOCT4), glutathione peroxidase 4 (GPX4), and heat
shock protein 90 (HSP90AA1) transcripts in sperm (Cho et al. 2003; Meseguer et al.
2006; Hwang et al. 2013; Rogenhofer et al. 2017; Sadakierska-Chudy et al. 2020). As
most of these studies assume that sperm transcripts play a role during embryogenesis
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because they are present in the embryo, further research to ascertain their specific
function is needed. It also remains unaddressed when and how they are degraded, as
in the mouse this happens as early as the zygote stage (Hayashi et al. 2003).

The Sperm Epigenome

Epigenetics involve a series of regulatory mechanisms that modify gene expression
without altering the DNA. In sperm, the epigenome includes DNA methylation,
histone modifications and non-coding RNAs (Figure 6); all these elements can also
contribute to embryo development (Smith et al. 2014).

DNA Methylation

Methylation of DNA is one of the epigenetic modifications that modulates gene
expression. Methylation and demethylation are mediated through DNA-methyl-
transferases (DNMTs) and TET enzymes (Kaneda et al. 2004; Yagi et al. 2020).
Sperm DNA methylation is established during spermatogenesis, and active
demethylation of paternal DNA by dioxygenase ten-eleven translocation 3
(TET3) enzyme occurs in the early embryo before EGA (Lee et al. 2018; Cheng
et al. 2019). Alterations in sperm DNA methylation profile are linked to male
infertility, impaired embryo development and miscarriage (Aston et al. 2015; Cao
et al. 2020; Richard Albert et al. 2020). Paternal DNA regions linked to H3K9me2
are not demethylated, and can be related to imprinted loci, as in the case ofH19 and
RASGRF1 genes (Nakamura et al. 2007). Alterations in the imprinting of these genes
are associated with congenital syndromes, including Angelman, Prader-Willi and
Beckwith-Wiedemann syndromes (Kobayashi et al. 2009; Hattori et al. 2019; Inoue
et al. 2020). In addition, altered methylation patterns in the regions of sperm DNA
that have retained histone CpG islands are linked to impaired embryo development
(Denomme et al. 2017). Specifically, high levels of hypomethylated DNA are related
to reduced fertilizing ability (Pacheco et al. 2011).

Modifications in Histones

Acetylation, methylation, phosphorylation and chronotylation are post-translation
modifications in histones that regulate gene expression. As aforementioned, retained
paternal histones can bear epigenetic signatures and be inherited by the embryo
(Ozturk et al. 2021). These retained histones have been found to be associated with
developmental genes – such as HOX gene clusters – in human sperm (Hammoud
et al. 2009). In addition, these retained histones could be located in the linker regions
(Ribas-Maynou et al. 2021a; 2022b), and their alterations could be related to
impaired embryo development (Hammoud et al. 2011; Vieweg et al. 2015; Glanzner
et al. 2017; Huang et al. 2019). Specific lysine modifications of sperm-borne H3, such
as H3K4me3 (Deng et al. 2020; Lambrot et al. 2021) and H3K27me3 (Sun et al.
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2021), are involved in EGA. Also, before EGA, the male chromatin packaged into
protamines is reorganized, thanks to the involvement of nucleoplasmins; and
maternal histones, such as H3.3, TH2A and TH2B, are deposited onto paternal
chromatin (Ishiuchi et al. 2021). Interestingly, sperm from infertile men have reduced
levels of six histone variants, which has been proposed as one of the reasons for
impaired embryogenesis (Azpiazu et al. 2014).

Non-coding RNAs

Non-coding mRNAs include miRNAs, siRNAs, piRNAs, circular (circ) RNAs and
lnc-RNAs, and are found in human sperm, where they could be involved in
fertilization and embryo development (Salas-Huetos et al. 2020). Most of the
evidence comes from microRNAs, which are small single-strand RNAs that regulate
gene expression, and are associated with male infertility (Lian et al. 2010; Marcet
et al. 2011; Romero et al. 2011; Comazzetto et al. 2014; Gou et al. 2017). miR-34c,
one of the most abundant miRNAs in human sperm (Salas-Huetos et al. 2014), plays
an essential role during the first cleavage in mice (Liu et al. 2012b). Another
important sperm miRNAs is miR-216b, which regulates the expression of a protein
that participates in cell proliferation and differentiation in two-cell embryos, and is
known as KRAS (Alves et al. 2019). Most of these miRNAs could be acquired
during epididymal maturation, via extracellular vesicles, and could be one of the
ways of passing epigenetic marks from the father to the offspring (Zhang et al. 2018;
Chan et al. 2020). Other ncRNAs, such as tRNAs, can also be passed onto the
offspring from the father (Sharma et al. 2018; Chen et al. 2016; Zhang et al. 2018).
Furthermore, the miRNA profile differs between fertile and infertile patients
(Liu et al. 2012a).

On the other hand, lncRNAs and circRNAs in sperm, which are circular single-
strand molecules of RNA, can regulate the function of proteins, mRNAs and
miRNAs, and even have a role in embryo development (Dang et al. 2016; Corral-
Vazquez et al. 2021; Li et al. 2021). For instance, circCNOT6L is brought by sperm
to the oocyte, where it participates in the transition from zygote to 2-cell stage
(Chioccarelli et al. 2021). It is worth mentioning that lncRNA and circRNA cargo in
sperm differs between men with good and poor sperm quality (Chioccarelli et al.
2019; Manfrevola et al. 2020).

The Sperm Metabolome

Metabolomics has been emerging over the last decade and has been proved to have
many applications. Most of the studies focused on semen investigated the
metabolites of seminal plasma. One of these studies revealed that men suffering
from oligoasthenospermia had significantly lower values of free L-carnitine,
polyunsaturated fatty acids, glutamate, aspartate, methionine, tryptophan,
proline, and alanine; and four biogenic amines (spermine, spermidine, serotonin,
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and alpha-aminoadipate). This deficiency in L-carnitine could be related to a
decreased activity of β-oxidation of fatty acids, and oxidative phosphorylation,
whereas reduced levels of amino acids and biogenic amines could be related to
dysregulated signalling pathways (Boguenet et al. 2020).

Other research, which also targeted seminal plasma, compared fertile and infertile
patients and identified up to 40 molecules (metabolomics/lipidomics approach)
differing between fertile and infertile men. Acylcarnitines, phosphatidylserine (PS)
(40:2) and lactate were lower, and PE (18:1; 18:1), phosphatidic acid (PA) (O-19:2;
18:1), lysophosphatidylethanolamine (LPE) (O-16:1) and phosphatidylcholine (PC)
(O-16:2; 18:1)-CH3 were higher in infertile patients (Correnti et al. 2023). In a
systematic review, Llavanera et al. (2022) compiled a list of metabolites whose levels
in seminal plasma were significantly different between fertile and infertile men,
including lactate, alanine, choline, citrate, glycero-phosphocholine, glutamine,
tyrosine, histidine, phenylalanine, and uridine. Another study found that smoking
alters the metabolism of sperm, which could potentially affect fertilizing ability, as it
decreases the uptake of fatty acids by sperm mitochondria, which in turn decreases
energy supply (Engel et al. 2021).

On the other hand, and given the events occurring during gamete fusion and
thereafter, it seems quite unrealistic that sperm metabolites have a direct influence on
fertilization and early embryo development. In spite of this, Guo et al. (2023)
compared sperm from young and aged men, and identified 129 differentially
expressed metabolites; from these, four, such as pipamperone, 2,2-bis(hydroxy-
methyl)-2,2’,2’’-nitrilotriethanol, Arg-Pro and triethyl phosphate, were more
abundant in aged men. These findings are supported by investigations performed
in animal models. In cattle, a previous study found that from 3704 metabolites
identified in sperm, bulls with different fertility differed in the levels of 33
metabolites. These metabolites were related to taurine and hypotaurine, whose levels
were reduced in bulls with low fertility, and also with different routes, such as
glycolysis, β-oxidation of fatty acids, and synthesis of pyrimidines (Talluri
et al. 2022).

Also in cattle, a study using liquid chromatography–mass spectrometry (LC-MS)
identified up to 3704 metabolites in sperm, and identified five metabolites
(hypotaurine, selenocysteine, l-malic acid, d-cysteine, and chondroitin 4-sulfate)
that differed between bulls of high and low fertility (Saraf et al. 2020). In pigs, sperm
with higher quality and fertilizing ability, and giving rise to more embryos at day
6 having greater levels of glycolysis-derived metabolites than those with poor quality,
were found to have greater amounts of metabolites related to oxidative
phosphorylation. This suggests the basal metabolism in mammalian sperm could
be relevant for the ability of sperm to fertilize the oocyte and give rise to a viable
embryo (Mateo-Otero et al. 2023). Finally, another study also conducted in pigs
found that alteration of sperm mitochondrial activity, which impacts oxidative
phosphorylation and metabolism, could increase ROS levels, which could in turn
affect sperm DNA integrity and ultimately embryo development (Mateo-Otero
et al. 2024).
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All this compiled evidence, therefore, indicates that sperm metabolic fate
influences fertilizing ability and could be even relevant while giving rise to a viable
embryo, as the yet few studies in humans and animal models suggest.

Does the Seminal Plasma have Any Role?

Seminal plasma is the liquid part of semen, and is produced by epididymis and male
accessory glands (prostate, seminal vesicles) (Figure 7). While this fluid has largely
been regarded as a mere vehicle for sperm upon ejaculation, growing evidence
supports that it interacts with the female reproductive tract and can be involved in
the modulation of the uterine environment, embryo development, and foetal growth
(Bromfield et al. 2014; Watkins et al. 2018). In mice, seminal plasma modulates the
expression of tumour necrosis factor (TNF), interleukin-1β (IL-1β), interferon-γ
(IFN-γ), microphage inflammatory protein 1-α (MIP-1α) and colony stimulating
factor 3 (CSF3), and the expression of regulatory T-cell genes (Watkins et al. 2018) in
the endometrium, which supports its immunomodulation role. This would increase
the maternal tolerance to paternal and foetal antigens, and facilitate embryo
implantation in mice (Robertson et al. 1996, 2001; Bromfield et al. 2014).

Since humans do not ejaculate in the uterus, as mice do, but in the vagina, the role
that seminal plasma could play in this species is less clear, as it remains unknown

Figure 6. Epigenetic signatures in sperm. The contributors to the sperm epigenome
include modifications to DNA and histones, RNAs and protamines. Abbreviations:
lncRNA, long noncoding RNA; miRNA, microRNA; piRNA, piwi-interacting
RNA; PTMs, post-translational modifications; siRNA, small interfering RNA.
Reproduced from Balder et al. (2024) with permission.
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whether it reaches the uterus. Studies in other animal models that, like cattle, also
ejaculate in the vagina indicate that seminal plasma factors could adhere onto the
sperm surface, thereby influencing the uterine environment (Recuero et al. 2020), as in
this species they also induce the production of cytokines and chemokines in the female
genital tract (Schjenken et al. 2015; Nongbua et al. 2020). These findings would match
those in humans, where seminal plasma has been proposed to prime the maternal
endometrium for implantation (Ibrahim et al. 2019; George et al. 2020; Ajdary et al.
2021), as it increases pregnancy rate after embryo transfer (Wolff et al. 2009; Chicea
et al. 2013; Friedler et al. 2013; Crawford et al. 2015).

Seminal plasma contains extracellular vesicles, mainly epididymosomes and
prostasomes. These vesicles are membrane-bound particles released by cells (Yáñez-
Mó et al. 2015). They have been found to be synthesized by the epididymis and prostate.
In the case of the epididymis, these extracellular vesicles, called epididymosomes, fuse
with epididymal sperm (Păunescu et al. 2014). Thanks to this fusion, epididymal cells
can transfer proteins and miRNA to sperm (Twenter et al. 2020). Proteins identified in

Figure 7. Origin, components, and functions of seminal plasma (SP). Seminal plasma
represents more than 95% of the semen volume, whereas testicular secretions
containing sperm account for 2–5%. The seminal plasma is composed of a complex
set of heterogeneous molecules, such as proteins (enzymes, cytokines, TEX101,
ACRV1, TGFββ, prostate-specific antigen (PSA), prostatic-specific acid phospha-
tase (PSAP), etc.), lipids, sugars (fructose), cell-free nucleic acid (DNA, microRNA,
and LncRNA), ions (Ca2�, Mg2�, Zn2�, Cu2�, etc.), and small-molecule
metabolites. Not only does SPmodulate sperm function, but some of its components,
such as cytokines, also recognize receptors on epithelial cells lining the cervix and
uterus and induce the synthesis of pro-inflammatory cytokines and chemokines that
recruit and activate inflammatory leukocytes. The SP also modulates the release of
cytokines and growth factors, which appear to regulate embryo development in the
oviduct and uterus before implantation. Reproduced fromWang et al. (2020), which
was published under the terms and conditions of a Creative Commons Attribution
license (CC BY 4.0).
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these extracellular vesicles include enzymes, and others having a function for sperm
motility (Barrachina et al. 2022), and even galactin-3, which is a lectin transferred from
the seminal plasma to the sperm surface, that is involved in the binding of capacitated
sperm to the zona pellucida (Mei et al. 2019).

Prostasomes, which are produced by prostate epithelial cells (Brody et al. 1983),
also transfer proteins to sperm (Ronquist et al. 2011), and have been suggested to
modify the composition of sperm plasmalemma (Dubois et al. 2015). Prostasomes
cargo also seems to regulate sperm motility (Andrews et al. 2015; García-Rodríguez
et al. 2018), capacitation (Pons-Rejraji et al. 2011; Aalberts et al. 2013), and even
protect sperm from the female immune system (Milutinović et al. 2019; Paktinat
et al. 2019). In humans, seminal plasma vesicles have been suggested to fuse with
endometrial stromal cells, induce decidualization, and increase the secretion of
prolactin (Rodriguez-Caro et al. 2019). All these data indicate that these seminal
plasma vesicles play a role with regard to both sperm function and the female
reproductive tract, and should be further investigated in the future.

Conclusions

Mounting evidence supports that semen, which is composed of cellular (sperm) and
liquid (seminal plasma) fractions, does not only play a role during oocyte
fertilization, but may even be relevant to embryo development and implantation,
and modulate the female reproductive tract. Sperm components such as centrioles,
chromatin condensation/protamination, DNA integrity, transcriptome, and epi-
genome appear to be important for post-fertilization events, including implantation.
In addition, the sperm metabolome tells about their fertilizing ability, and some
specific metabolomics signatures may indicate that the male gamete is more capable
of giving rise to a viable embryo. All these findings contribute to shedding light onto
the paternal factors underlying infertility and suggest that further research is needed
to address to what extent these factors are crucial for embryo development and
implantation, and whether they may influence offspring health.
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