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MURNAGHAN-NAKAYAMA RULES FOR
CHARACTERS OF IWAHORI-HECKE ALGEBRAS OF
THE COMPLEX REFLECTION GROUPS G(r, p, n)

TOM HALVERSON AND ARUN RAM

ABsTRACT.  lwahori-Hecke algebras for the infinite series of complex reflection
groups G(r, p, n) were constructed recently in thework of Ariki and Koike [AK], Broué
and Malle[BM], and Ariki [Ari]. Inthis paper we give Murnaghan-Nakayamatype for-
mulas for computing the irreducible characters of these algebras. Our method is a gen-
erdization of that in our earlier paper [HR] in which we derived Murnaghan-Nakayama
rulesfor the characters of the Iwahori-Hecke algebras of the classical Weyl groups. In
both papers we have been motivated by C. Greene [Gre], who gave a new derivation
of the Murnaghan-Nakayama formula for irreducible symmetric group characters by
summing diagonal matrix entries in Young's seminormal representations. We use the
anal ogous representations of the lwahori-Hecke algebraof G(r, p, n) given by Ariki and
Koike [AK] and Ariki [Ari].

1. Introduction.

The finite irreducible complex reflection groups come in three infinite families: the
symmetric groups S, on n letters; the wreath product groups Z; @ S, where Z, denotes
the cyclic group of order r; and a series of index-p subgroups G(r, p,n) of Z, 1 S, for
each positive integer p that dividesr. In the classification of finite irreducible reflection
groups, besides these infinite families Sy, Z;, and G(r, p, n), there exist only 34 excep-
tional irreducible reflection groups, see [ST].

A formula for the irreducible characters of the lwahori-Hecke algebras for S, is
known [Ram], [KW], [vd]]. Thisformulais a g-analogue of the classical Murnaghan-
Nakayama formula for computing the irreducible characters of S,,. Similar formulas for
the charactersof the groupsG(r, p, n) areclassically known, see[Mac], [Ste], [AK], [Osi]
and the referencesthere. Formulas of thistype are also known for the lwahori-Hecke al-
gebras of Weyl groups of types B and D [HR], [Pfel], [Pfe2]. Recently, Iwahori-Hecke
algebras have been constructed for the groups 7, : S, and G(r, p, n) [AK], [BM], [Ari]. In
this paper we derive Murnaghan-Nakayamatype formulas for computing theirreducible
characters of the lwahori-Hecke algebras that correspond to Z, ¢ S,, and G(r, p, n).

Hoefsmit [Hfs] has given explicit analogues of Young's seminormal representations
for the lwahori-Hecke algebras of types An—1, Bn, and Dy,. Ariki and Koike, [AK] and
[Ari], have constructed “Hoefsmit-analogues’ of Young's seminormal representations
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for Iwahori-Hecke algebras H, pn of the groups G(r, p, n). Our approach is to derive
the Murnaghan-Nakayama rules by computing the sum of diagonal matrix elements
in an explicit “Hoefsmit” representation of each algebra. We are motivated by Curtis
Greene [Gre], who takes this approach using the Young seminormal form of the irre-
ducible representations of the symmetric group and gives a new derivation of the clas-
sical Murnaghan-Nakayama rule. Greene does this by using the Mobius function of a
poset that is determined by the partition which indexes the irreducible representation.
We generalize Greene's poset theorem so that it works for our cases. In this way we are
able to compute the characters of the Hecke algebrasH, n = Hy 1p.

To compute the characters of the lwahori-Hecke algebra H, pn of G(r,p,n), p > 1,
we use double centralizer methods (Clifford theory methods) to write these characters
in terms of a certain bitrace on the irreducible representations of H, , = H; 1,. We then
compute this bitrace in terms of the irreducible character values of H; .

The character formulas given in this paper contain the Murnaghan-Nakayama rules
for the complex reflection groups G(r, p, n) and the Iwahori-Hecke algebras of classical
type as specia cases.

REMARK. In this paper we only give formulas for computing the characters of cer-
tain “standard elements” of the lwahori-Hecke algebrawhich are given by (2.10) in the
case of the Iwahori-Hecke algebras of 7, ¢ S, and by (3.15) in the case of the Iwahori-
Hecke algebras of G(r, p,n), p > 1. In this paper we have not made any effort to show
that this is sufficient to determine the values of the characters on all elements. We have
amethod for proving this which will be given in another paper. Results of this type for
Iwahori-Hecke algebras of Weyl groups have been givenin [GP].

2. Charactersof lwahori-Hecke Algebrasof (Z/rz) Sp.

For positiveintegersr and n, let S, denote the symmetric group of order n generated
by s, s, ..., S, where s denotes the transpositions = (i — 1,i), andlet Z, = Z/rZ
denote the finite cyclic group of order r. Then the wreath product group 7, S, is a
complex reflection group that can be identified with the group of all n x n permutation
matrices whose non-zero entries are r-th roots of unity.

Let gand ug, Uy, ..., U beindeterminates. Let H; , be the associative algebra with 1
over thefield C(ug, uy, ..., Ur, q) given by generators Ty, To, ..., T, and relations

Q) TiTj =TjTi, for|i —]| > 1,

(2 TiTisaTy = T TiTiwa, for2<i<n-—1,

(B TiToTiT2 = ToTiToTy,

4 (M—w)(Ti—w)---(Tyr—u) =0,

6 T—oT+g™)=0, for2<i<n.

Upon setting q = 1 and u; = ¢, where ¢ is a primitive r-th root of unity, one ob-
tains the group algebra C[Z, 1 Sy]. The algebras H, , were first constructed by Ariki and
Koike[AK], and they were classified as cyclotomic Hecke algebras of type B, by Broué
and Malle [BM]. In the special case wherer = 1andu; = 1, we have T; = 1, and
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Hy n isisomorphic to an Iwahori-Hecke algebra of type An—;1. The case H, , whenr = 2,
up = p, and U, = p~1, isisomorphic to an Iwahori-Hecke algebra of type Bj,.

Shapesand standard tableaux. Asin[Mac], weidentify apartition o with its Ferrers
diagram and say that abox b in « isin position (i,j) in « if bisinrow i and column j of
a. Therows and columns of « are labeled in the same way as for matrices.

An r-partition of sizenisan r-tuple, p = (u®, @, ..., u®) of partitions such that
@)+ [p@|+ -+ [pO] = n 1f v = (D, ..., vD) isanother r-partition, we write
v C pifv® C uOforl <i <r.Inthiscase,wesaythatp /v = (u® /v, /@ .
p® /1Y is an r-skew shape. We refer to r-skew shapes and r-partitions collectively as
shapes.

If X is ashape of sizen, astandard tableau L = (L®,L@, ... L") of shape ) isa
filling of the Ferrers diagram of A with the numbers 1,2, ..., n such that the numbers
areincreasing left to right acrossthe rows and increasing down the columns of each L®.
For any shape ), let L()\) denote the set of standard tableaux of shape A and, for each
standard tableau L, let L(k) denote the box containing kin L.

Representations. Define the content of a box b of a (possibly skew) shape A =
0@, ... D) by

(2.1) ct(b) = wg®™, if bisinposition (i,j) in A®.
For each standard tableau L of size n, definethe scalar (T;).. by

q—q*

L ct!L(ifl)) '
(L))

Note that (T;).. dependsonly on the positions of the boxes containingi andi — 1inL.

Let A = (\@, ..., \") be a (possibly skew) shape of size n, and for each standard
tableau L € L()), let v, denote a vector indexed by L. Let V* be the C(uy, ..., U, g)-
vector space spanned by {v | L € L()\)}, so that the vectors vi form a basis of V*.
Define an action of H, , on V* by defining

(2.2 (T = for2<i<n.

Tivp = Ct(L(l))VL,
2.3) . ,
Tive = (T)uve + (0 + (T vse, 2<i <,

where sL is the same standard tableau as L except that the positionsof i andi — 1 are
switched insL. If sL is not standard, then we define vg. = 0.

The following theorem is due to Young [You] for the symmetric group Sy, to Hoefs-
mit [Hfs] for Hy ,, and to Ariki and Koike [AK] for H,n, 1 > 2.

THEOREM 2.4 ([YoU],[HFS],[AK]). ThemodulesV*, where ) runsover all r-partitions
of size n, form a complete set of nonisomorphic irreducible modulesfor H; ..

Hoefsmit elements. Define elementst; € H; ,, for 1 <i <n, by

(2.5) =TTy ToT1To - - Ti_qTi.
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To our knowledge, these elements were discovered by Hoefsmit in the case of the
Iwahori-Hecke algebras of type B, and were rediscovered by Ariki and Koike for
Iwahori-Hecke algebrasof 7,1 S.. For each standard tableau L of size n, definethe scalar

(t)LL by
(2.6) (t)e = ct(L()), fori<i<n.

The following proposition is due to Hoefsmit for r = 1,2 and to Ariki and Koike for
r>2.

ProPOSITION 2.7 ([HFS], PROP. 3.3.3; [AK], PrOP. 3.16). For 1 <i < n, the action of
tj on a vector v, whereL is a standard tableau, is

tive = (t)ve.

Furthermore, these e ements commute:

PropPOSITION 2.8 ([AK], LEMMA 3.3). The subalgebra U, of H;, generated by
t1,10,...,ty isan abelian subalgebra, i.e., thet; commute.

Sandardelements. For 1 <k < ¢ <nand0<i <r — 1, define
(2.9) RY = (t) Tert Tz Ty

and, foreach1 <k <n, defineRﬁ,Z = (). We say that an S,-sequence of length misa
sequence ! = (Lq,...,Lm) satisfyingl < {1 < {p < --- < £y = n, and we say that a

Z,-sequence of length mis asequence® = (iy, ..., im) satisfying 0 < ij <r — 1for each
j. For an S,-sequence £ = (¢4,..., {y) and a Z,-sequencei = (iy, .. .,im), define
(2.10) T:( - Rgxlf)lR(;f')"ljz o R(fi:zlﬂ,fm € Hrn.

For example, in Hy 10 we have the standard element
Toaaty = RARGRORN, = ToTa(t)?(ts)*TeT7 TatoTro-
Forl1<k</{<nand0<i<r—1, wedefine
(2.11) AL = )L (Tken) (Tw2)e -+ (ToLLs

andfor 1 < k < n,wedefi neAEiZ(L) = (t_k)}_L. Since (T;)LL dependsonly on the positions
of theboxesj andj—1inL,thescalar AS}(L) depends only on the positions of the boxes
containingk,k+1,...,¢inL.

PROPOSITION 2.12. Let { = (L1,..., L) bean Sy-sequenceand v = (iy,...,im) bea
Z.-sequence, and let L be a standard tableau of sizen. Let Tlé VL‘V denote the coefficient
L

of v in TZ/’VL. Then

Tlé VL‘VL = Agrlf)l(L)A((If')"lxlz(L) o A(():F)1+l,(m(|_)'
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In particular, for given sequences?and?, theval ueTZ[ VL, dependsonly on the positions
and the linear order of the boxesin L.

Proor. Thisfollows from the definition of the action of H;, on standard tableaux
and the fact (2.3) that when T; acts on a standard tableau L it affects only the positions
of L containing i and i — 1. The result follows, since t; acts as a scalar (Prop. 2.7), and
T% otherwise is aproduct (from right to left) of a decreasing sequenceof generators T. m

Characters. If L isa standard tableau (of any shape, possibly of skew shape) with n
boxes, define

(2.13) A(L) = A0 (L),
and for any shape A (possibly skew), define

(2.14) AV = S AOW).
LeL )

In making these definitions, the actual valuesin the boxes of L do not matter, only their
positions and their order relative to one another are relevant. Thus, the definitions make
sense when the standard tableaux have values that form asubset of {1,2,... } (with the
usual linear order).

For anr-partition A, let Xﬁ, , denotethe character of theirreducible H, ,-representation
V* determinedin Theorem 2.4. Thefollowi ng theoremis our analogueof the Murnaghan-
Nakayamarule.

THEOREM 2.15. Let ( = (¢1,..., Ly bean Sy-sequence, 7 = (iy,...,im) be a Z;-
sequence, and suppose that X isan r-partition of size n. Then

Xgm(i}) - > AW (DA (@ /Dy Al (0 /) M-1))

J=pO CL®C...Cpm=x

where the sum is over all sequences of shapes ) = u©@ C @ C .- C M = X such
that [0 /u0=9| = |51,

PrROOF. By Proposition 2.12 the character Xﬁ,‘n isgiven by

Xa‘rn(T_’;’) = Z T_; VL‘VL - Z Agvl(/)l(L)A(fllz')"lvVZ(L) Y A((I:F)l"'lxpm(l_)'
LeL (v LeL )

Theresult follows by collecting terms according to the positions occupied by the various
segmentsof thenumbers{1,2,..., 01}, {€1+1,..., 02}, ..., {lm1+1,..., lm}. m

In view of Theorem 2.15 it is desirable to give an explicit formula for the value of
AD()). To do so requires some further notations: The shape X is a border strip if it is
connected and does not contain two boxeswhich are adjacent in the same northwest-to-
southeast diagonal. Thisis equivalent to saying that X is connected and does not contain
any 2 x 2 block of boxes. The shape ) isabroken border strip if it does not contain any
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2x 2block of boxes. Therefore, abroken border strip isaunion of connected components,
each of which isaborder strip.

Drawing Ferrers diagrams asin [Mac], we say that asharp corner in aborder stripis
abox with no box aboveit and no box to its left. A dull corner in aborder strip is a box
that has a box to its left and a box above it but has no box directly northwest of it. The
picture below shows a broken border strip with two connected components where each
of the sharp corners has been marked with an s and each of the dull corners has been

marked with ad.
s| [ ]
s d
s|d
s| | ]
FIGURE 2.16

The following theorem is proved using Corollary 4.14 of Theorem 4.6. We have
placed these results in Section 4, because they stand on their own as results on planar
posets.

THEOREM 2.17. Let )\ be any shape (possibly skew) with n boxes. Let CC be the set of
connected components of A, and let cc = |CC| be the number of connected components
of \.

(@) If X is not a broken border strip, then A®()\) = 0;

(b) If X isa broken border strip, then

A(O)()\) — (q _ q—l)CC—l H qC(bS)—l(_q—l)r(bS)—1’
bscCC
and,for1<k<r-—1,

A90) = (a+ a7y (1] o) ( 1] ™)

deDC
Iog
% 2 (~1)'e(et(DC)) h-r-ee(ct(SC))

x II qdb$41(__q41)db971’
bseCC

where SC and DC denote the set of sharp cornersand dull cornersin A, respectively, and
if bsisa border strip, then r(bs) is the number of rowsin bs, and ¢(bs) is the number of
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columnsin bs. The content ct(b) of a box bisasgivenin (2.1). The function e (ct(DC))
is the elementary symmetric function in the variables {ct(d),d € DC}, and the function
hk,t,oc(ct(SC)) isthe homogeneoussymmetric functionin thevariables{ct(s), s € SC}.

PrOOF. Recall from (2.2) that
q-q*

1 ct(L(kfl)! '

ct(L(k))

(ML =

It follows from the definitions of AX(L) in (2.13) and (2.14) that we may apply Corol-
lary 4.14 with x, = ct(b) for al boxesbin A.
For two boxesa and b in X that are adjacent in adiagonal, we have
1—cti@etb)™* 1-1
@-ag™ qa—qt
Thus, A®()\) = 0if X is not a broken border strip. Furthermore,

@-ab (T:g;%) =q, if aand b are adjacent in arow,
1-ct@etb)* | &%) = —q%, ifaandbareadjacent inacolumn.
Theresult now follows from Corollary 4.14. ]

3. Charactersof lwahori-Hecke Algebrasof G(r, p, n).

In this section we define the complex reflection groups G(r, p, n) and their Iwahori-
HeckealgebrasH; . ThegroupsG(r, p, n) arenormal subgroupsof index p inthe groups
G(r, 1,n), and the groups G(r, 1, n) are isomorphic to the wreath products Z, ! Sp. The
corresponding Hecke algebrasH; , , are subalgebras of H; ,. We compute theirreducible
characters of H, , in terms of the irreducible characters of H; ,,, which are computed in
Section 2.

The complex reflection groups G(r, p,n). Letr,p,d, and n be positive integers such
that pd = r. The complex reflection group G(r, p, n) isthe set of n x n matrices such that

(@) Theentriesare either 0 or r-th roots of unity.

(b) Thereis exactly one honzero entry in each row and each column.

(c) Thed-th power of the product of the nonzero entriesis 1.

The order of G(r, p, n) is given by |G(r, p,n)| = dr"n! and G(r, p, n) is a normal sub-
group of G(r, 1, n) of index p.

Let ¢ = €?™/" be a primitive r-th root of unity. Then G(r, p, n) is generated by the

elements

n n
So=CEn+> Ei, s =(CEn+(Exn+> Ei,
i=2 i=3
§= > Ei+Eip+Ej-y, 2<j<n,
A1
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where E;; denotes the n x n matrix with a 1 in the i-th row and j-th column and with all
other entries 0.

ExampLE 3.1. Thefollowing are important special cases of G(r, p, n).

(1) G(1,1,n) = S, the symmetric group.

(2 G(r,1,n) =7 S.

(3) G(2,1,n) = WB, the Weyl group of type B.

(4) G(2,2,n) = WD, the Wey! group of typeD.

The Hecke algebras. Let ¢ = €?™/P be a primitive p-th root of unity, and let g and
xé/p, . xé/_pl beindeterminates. Then H, , isthe associative algebrawith 1 over thefield
C(x(l)/p, e xifpl q) given by generators Ty, . ..., Ty, and relations

Q) TiT, =TT, for |i —jl>1,

2) TiTiaTi = TinTiTis, for2<i <n-—1,

Q) TaToTiTo = ToTToTy,

(4) (T} —x0)(TY = xa) -+~ (T} —Xg-1) = 0,

6 (Ti—aT+gH)=0for2<i<n

This is the same as the definition of the algebra H; , in Section 2 except that we are
using s’x,i/p, 0<k<d-10<(<p-1inplaceof u,...,u.Let Hpn bethe
subalgebraof H; , generated by the elements

(3.2 ap=T, a=T;'T.T;, and =T, 2<i<n

Avriki ([Ari], Proposition 1.6) showsthat H; ,» is an analogue of the lwahori-Hecke alge-
brafor the groups G(r, p, n). The special case H, 5, isisomorphic to an Iwahori-Hecke
algebraof type Dy,.

Shapes and tableaux. As above, r,p, d, and n are positive integers such that pd = r.
We organize each r-partition A of sizeninto d groupsof p partitions each, so that we can
write

A=K foro<k<d—1land0<(<p-—1,

where each A& isapartition and 7y  [A*?| = n. Itis convenient to view the partitions
A0 A&p=D) as dll lying on acircle so that we have d necklaces of partitions, each
necklacewith p partitions on it. In order to specify this arrangement, we shall say that A
isa(d, p)-partition.

Asin Section 2, we let L ()\) denote the set of standard tableaux of shape ), and, for
each standard tableau L, let L(i) denote the box containingi in L.

Action on standard tableaux. Let A = (\®) be a (d, p)-partition of size n. Since
Hr pn is asubalgebraof Hy p, theirreducible H, ,-representations V* are (not necessarily
irreducible) representations of H, ,n. However, we can easily describethe action of H; p
on V* by restricting the action of H; .

With the given specializations of the u;, the content of abox b of A, see(2.1), is

ct(b) = /x/Pq20-), if bisin position (i,j) in A0,
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Asin Section 2, we define, for each standard tableau L of size n, the scalar

N 9-qt
(TI)LL = } ct(L(i—l))
ct(L(i))

From (2.3) and (3.2), it follows that the action of H; p, on V* isgiven by

, for2<i<n.

V. = ct(L(l))va =xv, iflelkd,

ct(L(1))

(3.3) avi = (T)uVi + ———2 (g + (T2)LL Vel

Vi = (T2)uwe (D) (a7 + (T2 Vs

avi = (T)uve + (g7 + (Ti)e Vst
Recall that tj = T;--- ToT1To--- Ti for 1 <i < n, and defineelements § € H; pp,
1<i<nby
Si=a =1,
S = a1 =ty
S = aa_1- - aazadpazdy - -- 81a =ty 1, for3 <i<n.

It follows from the action of the t; (Prop. 2.7) that the action of § on V* is also diagonal
and is given by

s = et(L(D)
svi = ct(L(D) et(L())w.

Furthermore, sincethe t; commute (Prop. 2.8), it follows that the § commute.

AZ/pZactiononshapes. Let A = (A\*&")bea(d, p)-partition. Wedefinean operation
o that moves the partitions on each circle over one position. Given a box b in position
(i,j) of the partition A& then o(b) is the same box b except moved to bein position (i, j)
of A& where ¢ + 1 is taken modulo p. The map ¢ is an operation of order p and acts
uniformly on the shape A\ = (A\&), on standard tableaux L = (L®&") of shape X, and on
the basis vector v of V*:

o) = WD), o(L) = (L*Y), and o(w) = Vo).

We use the notation ¢ in each case, since the operation is always clear from context. In
the last case, extend linearly to get the vector space homomorphism o: V* — VO, |f
b isabox in ashape )\, then

(3.5) ct(o(b)) = ect(b).

(3.4)

LEMMA 3.6. Themap o: V* — V°W isa H; p,-module isomor phism, i.e., ¢ commutes
with the action of H; .

PROCF.  Since (Tj).L, see (2.2), depends only on the row and column of boxesi and
i — 1 and not on the position of the tableaux, we have (T;)oL 0. = (Ti)LL, foral 1 <i <n
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and all standardtableaux L. Sinceo(s;L) = s0(L), it followsthat gjv,. = o(av.). (Note
that, because ¢ is a p-th root of unity, T; does not commute with ¢ but that ag does.) =

The set of transformations
{c“|0<a<p—-1}

defines an action of the cyclic group Z /pZ on the set of (d, p)-partitions and on the set
of vector spaces V.

Irreducible representations. Fix a (d, p)-partition A of size n, and let K, be the sta-
bilizer of A under the action of Z/pZ. The group K, isacyclic group of order |K,| and
is generated by the transformation o™ where f, is the smallest integer between 1 and p
such that o™ (\) = \. Thus,

(3.7 Ky = {o*™:V* =V |0 < a <Ky | — 1}

Figure (3.9) isan exampleof a(3, 6)-partition A for whichf, = 2andK, = {1,072, 0%} =
Z3. Theelements of Ky, areall H; p ,-module isomorphisms. Theirreducible K, -modules
are all one-dimensional, and the characters of these modules are given explicitly by
n:Ky — C
(3 8) o—fA — EJfA
where0 < j < |K, | — 1. To seethis note that w = " isaprimitive |K,|-th root of unity.
10
00 20

11 25

12

0,2
14

13 24

FIGURE 3.9. A (3, 6)-partition A with f, = 2. 23

It follows (from a standard double centralizer result) thet asan H, pn x K,-bimodule
\ [Ky—1 N
(3.10) VA @0 vt @ 7z,
J:

where VO is an H, ,,-module and Z is the irreducible K,-module with character ;.
Ariki ([Ari], Theorem 2.6) has explicitly constructed the modules V) and proved that
they form a complete set of irreducible H, , --modules. From the point of view of (3.10),
one can prove that the V) are irreducible H, , -modules by setting g = 1 and x = 1
for al 0 < k < d— 1 and appealing to the corresponding result for the group G(r, p, n).
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THEOREM 3.11 ([ARI], THEOREM 2.6). The modules V), where A runs over all r-
partitionsand 0 < j < |K,| — 1, form a complete set of nonisomorphic irreducible
modulesfor Hy pp.

REMARK 3.12. It should be noted that if f, = p and thus |K,| = 1, then the irre-
ducible H, ,-module V* is also an irreducible H; p ,-module.

Characters. Fix a(d, p)-partition X andlet ™) denotethe character of theirreducible
Hr pn-module V*) defined by (3.10). Let x* denotethe H; p, x K, -bitrace on the module
VA e, if h € Hyppand o®h € K, then

(3.13) oty = 3 ot = 3w,
LeL() LeL(v) AL

where ha®h v ‘V denotesthe coefficient of v, in the expansion of ha®v in terms of the
L

basis of V* corresponding to standard tableaux.
By taking traces in the module egquation (3.10), we obtain

[Ky-1 Kyt .
o) = 3 XD =y X
=0 j=0

By the orthogonality of charactersfor K, (or by direct computation) this formula can be
inverted to give

1 K-t it A f
W ZO e 1My (he™), wheref, =p/|K,|.

Sandard elements. For 1 < k < n, defineS}) = S, and define S) = Sa. For all
other k < ¢, define

(3.15) §) = St -a, andS) = Saas- - a.

Following the definitionsin (2.10), let (¢4, ..., {m) bean Sy-sequenceand let (i1, . .. ,im)
be a Z,-sequence. The remainder of this section is devoted to computing the values

ODE:, S, g yand (S S, g ),

(3.14) yM(h) =

10 tn-1+1,lm
ReductiontoR{? R{?, , ---R{™ . Recal thedefinition (2.9) of theelement R,
of Hyn. We now show that it is sufficient to compute characters on special products of
these elements.

LEMMA 3.16. Thegroup generatedby {& | 0 <i < n} in H, isanormal subgroup
of the group generated by {T; | 1 <j < n}inH.

PrROOF. It is sufficient to show that Tjafl'j*1 and Tl-*la;Tj can be written as a product
of the ajs and their inverses. The only two nontrivial calculations are the following.

T T =TT T = LT T = LML, = ay taga
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and

Tty Ty = T 21T = T (T T T ' Ty
=T T T AT, 1T = ayapag .

LEMMA 3.17. For awordg = T;:'--- T in the generators of H, , (i.e., an element
of the group in H, , generated by the T;), let 3(g) denote the number of T;’s minus the
number of Ty Vs in g so that 3(g) is the net number of T;’s in the word. Let h bein the
group generatedby {a; | 0 <i <n}inHp, Then

X)\(ghgflo_o(f/\) — EfozfA!i(g)X)\ (ho’af*),

PROOF.  First notethat, by Lemma3.16,ghg ! € H; pn, SO it makessenseto consider
the bitrace. Then
X (ghg~1o*") = x*(hg~'o*"g).

We must bevery careful here, because, although the action of h commuteswith the action
of o°%, the action of g and g~ do not. In fact, since

(1) TV = ct(oL(l))ng = sct(L(l))v(,L = eo(Tyv), and

(2) Tiv,L = o(Tivy), for2 <i < n, by Lemma3.6,
it followsthat g~to°" = ¢=*h0@goh g~ Thus,

X)\(ghgflaocf,\) — 57af*ﬁ(g)x/\(gho'af/\g71) — Efocf,\ﬁ(g)xk(hoocf,\)_ -
LEMMA 3.18. Let(£y,..., {m) bean Sy-sequence, andlet (i, ..., im) beaZ,-sequence,
satisfying 0 < ij <r — 1for eachj.

A i) im) f
X (Sffls(ffﬂ 2 gfmﬂ tm? )

— EOlfA(Iz+ +Im—l)X)\(Rglg—lz—"'—lm)R(llzll 6 R((I:Lﬁ Ol ),
Mg i) im) f
X (Sffls(ffﬂ ty" gfmﬂ )
f ) A rp(izp—iz—-—im m f
ol A R, o),

ProoF. Wehave
) =t'RY), andS) = € "oty T3+ T

Sincet; commuteswith T; fori > 2 it follows that, for any S,-sequence (1, ..., () and
Zc-sequence (i, - . -, im), We have

S o m i1p—10 1—ip—-—im m
Sllf1§;123-1,(2 gfl,ﬁﬂf = tlp Taty ? Ty TflR(flﬁl 75 R((In21+l lm
0 S S = P T T R, R

(1 f]_"‘l,(z Cm—1+1,0m Cm-1+1,0m"
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Both of these can be conjugated by a power of t; to give

RUi1P—i2—=im) Jliz) .. Rim)

1,01 /1+lf2 Cm-1+1,lm"
Now use Lemma3.17. n

Inview of Lemma3.18 and (3.14) we shall try to computethe values of y* (ha®™), for

elementsh € H;, p of theform R('l) R(,/'le 0 R(,/'W 10 ,wherei+- - - +ip, = 0(mod p),

and where { = (L1,..., 0y isan Sp-sequenceand? = (iy,...,im) iSaZ,-sequence. In
fact we shall provethefollowing theorem. We state the theorem now in order to establish
the notations.

THEOREM 3.19. Let ) bea (d, p)-partition, wherepd = r. Let o besuchthat 0 < o <
|Ky] — LwhereK, isasdefined in (3.7). Define

f, =p/|K,\| andy = %.
Let
h= Rglf)lR(fllzll 6’ R((I,Hﬂ lm
where ({1, -, {m) isan Sp-sequenceand (iy, - - - ,im) isa Z,-sequencesuchthat iy +- - - +

im = 0 (mod p). The element h is an element of H; ;n € Hy . If all ¢; in the sequence
(£1,...,Lm) aredivisible by v then define

n=n/y, r=r/y, p=p/,
(611---y€m):(61/71---|€m/7)
A =26 foro<r<p-1 and h=R - RY

FW1+1 (m

Then:
(@) If ¢; isnot divisible by ¥ for some 1 < i < mthen x*(ho®™) = 0
(b) Ifall ¢; aredivisible by ¥ and if iy, # O for somek, then x*(ho®®) = 0
(c) Ifall ¢; aredivisibleby vy andif ix = O for all k, then

ofy, Wﬁ X (T q*l
X)\(hO' ):[,\/]n mXHrnh ];[/1_5 i _5i> !

where Hr 7 iswith parameter g, in place of g and with parameterse™x;, 0 <k <d-—1,
0 <71 < p-—1}inplaceof uy,...,ur. The element h is viewed as an element of the
algebraHrrand[v] = (@' —q7)/(a—q ).

REMARK 3.20. The proof of thistheorem will occupy the remainder of this section.
Note that the casewhen o = 0, and thusy = 1, is particularly easy, since we have

xX*(ha®) = xiy, (),

and these values are known by Theorem 2.17.
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r-laced tableaux. Letthenotationsbeasin Theorem 3.19, and let x = of, . Note that
the orbit of abox in A under the action of ¢" is of size".
Let wy be the permutation given in cycle notation by

(3.21) wi=(12...7-1L)0+17+2,...,27) .

Define
L) ={LeLlL]|o™"L=wlL}.

The elements of L (\)* will be called x-laced tableaux of shape \. It follows from (3.5)
that if Lisar-laced tableauand 1 < j < nthen
(3.22) ct(LG)) = e ™ Det(L(mm)),

where misthe positive integer suchthat 0 <y —j <~v — 1.
Asan example, the necklacein Figure 3.23is part of astandard tableau that is 3-laced.
(Thisisthe analogue of the alternating tableaux defined in [HR].)

4116

8 |27 >y

312 13| 24]
21

15 23|

z Bo

6 |18 5|17
7 |26 9125

5 7

Figure 3.23. A necklace in a 3-laced standard tableau.

LEMMA 3.24. Let the notations be asin Theorem 3.19. If th‘v # 0, then
o RL
(a) Lisk-laced and
(b) every ¢; inthesequence({y,..., {y) isdivisibleby 7.

PrOOF. (a) Because of the specia form of h the basis elements that appear in hv.
areof theform vy, wherew = g, - - - 5, isaproduct of § suchthatj; <j, <--- <jxis
asubset of thesequence {2,3,...,01,01+2,01+3,...,02,02+2,...}.

This means that, in cycle notation, w is a product of cycles of the form (i,i + 1,i +
2,...,j—1,j). Thus, th‘V ~ #0onlyif o7"L = wL for some permutation of this form.

K

But any permutation 7 such that 7L = oL must haveall cyclesof length v, it follows
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that w = wy asgivenin (3.21). Thus, if hv._‘v . # 0,thenwsL = oL andso L is
k-laced. o

(b) By the proof of (&), w; = §,---§, wherej; < jo < --- < ji is asubset of
the sequenceof factors {2,3,..., 01,01 +2,01+3,..., {2, (2 +2,...}. Thisfact and the
explicit form of wy in (3.21) impliesthat each ¢; must be divisible by 7. L]

“Dividing by 7" . Keeping the notations asin Theorem 3.19, let us now assume that
the sequence({y, - - -, {m) issuch that ¢; isdivisible by v for all i.

Let
(3.25) w= [] s

2]

1461
wherethe product istaken with the s inincreasing order and over al i > j suchthati—1
isnot divisible by . Note that with this definition w; isthe same asgivenin (3.21) and
that wiL = o "L if th’v # 0. In fact, it follows from the explicit form of h and the

"

definition of the action in (3.3) that
(3.26) |, =TI R,
7 1<j<n
where Fj(L) is defined as follows:
@ Fj(L) = (T)wLw,L, if j — Lisnot divisible by v,
(b) Fj(L) = (Tj)wuLwuL, if j — Lisdivisibleby Y butj —1 # ¢ forany 1 <k <m,
(©) FL) = (tj){,kvjﬂL’WML, ifj—1= ¢ forsomel <k<m.
We shall compute the values of the Fj(L) explicitly in Lemma 3.30, but first we must
introduce abit more notation. o
Recall thedefinitionsof n, 1, p, ({1,..., {m), A,andhinTheorem3.19.If L isax-laced
tableau defineintegers pa, ..., pi and a(d, p) standard tableau L asfollows:
If L(my) isin position (i, ) of the partition A(?P*™m), then
L(m) isin position (i, ]) of the partition A
In the above py, and Ty are chosensuchthat 0 < 7y < p — 1.
The map _
L+—(p1,....,pmL)
is abijection between x-laced tableaux L and sequences(p1, . . ., pn, L) where 0 < py <
¥ —1foreachl < m < n/v, and L isa(d, p)-standard tableau. The following is the
necklace of Figure 3.23 after dividing by v = 3.

(2,2,1,2,2,0,0,0, )

@ |

[&)]

Figure 3.27. The 3-laced necklace of Figure 3.23 after division by 3.
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Foreach1 <j < n, define

Y mod 7, ifj—1= £, for someKk;
~ | pj—1 — pj mod ", otherwise;

(an invertible linear transformation of (Z /YZ)"). Then the map
L r__)(lolv"'vloﬁvt) — (dla---adﬁyE)y

is a bijection between «-laced tableaux L and sequences(d, . . ., d, E) where0 < dy, <
v —1foreachl < m< n,andL isa(d, p)-standard tableau.

Thereason for introducing these hijections will become more clear in the proof of the
following lemma. First let us define

(3.28) ct(L(m)) = e/ Pg?0-D,

if misin position (i, j) of the partition ™ of L and then note that
(3.29) ct(L(m)) = e™Pet(L(m)) = wmet(L(m)),
wherew = &P isaprimitive y-th root of unity.

LEMMA 3.30. Let the notations be as givenin Theorem 3.19 and assumethat s = of;,
that L is a x-laced standard tableau, and that the sequence (¢4, ..., {n) is such that /;
is divisible by ¥ for all i. Let w = P = /", and let Fj(L) denote the factor defined
in (3.26). Let 1 <j < nand supposethat kissuchthat (k — 1)y <j < k.

(@) Ifj — lisnotdivisible by, then

L) = (g = T+
i IMWLwal = 77 o+ r | 1 — K—+Dn "

(b) Ifj — lisdivisiblebyybutj—1# ¢ foranyl <i <m,

_ A1
Fi(L) = (Tt = ———— 3 .
_r ct(L((k—l)))
ct([(k))

© fj—1=¢ti_1= Zi_l“/ for some0 <i < m, then
Fi(L) = () = wHict (LG + D)™
Proor. (@) If j — lisnot divisible by v thenwj+1L(j — 1) = L(j — 1) and wj+1L(j) =
L(kY). Thus

ct(Wsl( — 1)) = ct(L( — 1)) = e (l0=6-1) ct(L(ky)), and
ct(wj+1L()) = ct(L(k)).

https://doi.org/10.4153/CJM-1998-009-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-009-x

CHARACTERS OF IWAHORI-HECKE ALGEBRAS 183

It follows that
_ q—q*'
FiL) = (MwLw... =49 L+ Iy
1 wate-n)
c(wal())
—1
_ -1 aqa—q
=q -+ 1 — e—r(ky=j+1)
q qt

B R (S R R Comre e

() If (k—1)y = j—Landj—1 # £ thenwusL(—1) = L((k—1)7) andwjuaL () = LKD),

and
Ct(vvj+1|_(j - 1)) = Ct(l—((k— 1)7)) and Ct(Wj+1L(j)) = Ct(L(kfy)).

Thus 1
qa—q

Fi(L) = (T.)WJ+1 = 979

i W ea Ll ) ct(L((k—l)”/))

- q—q* B q—qt
1 — whk1—h ° E((kil)) 1— W% M
Ct(t(k)) ct([(k))

(©Ifj — 1= 6y = i1y thenWusL() = L(¢ig +7) = L((¢i—1 + 1)7) and
ct(Wial () = ct(L((Z_1 + m)).
Thus,
FiL) = () = Ct(L((Coa 1)7))ik
= wﬂz’i—l*lct<f(zi_1 + 1))ik = wdz’i—l*lct<f(zi_1 + 1))ik. "

Note that the product of the factors of type (@) in the previous lemma satisfy

n
B (G qt
(3.31) C—W%Il) ':J(L)—ilj1 e 1_5i> *
and thus we have that
(3.32) v, = Il R =C [] R,
L 1<i<n 1<k<n

wherewe define IEK(E) = F-1)y+1(L). With this notation, the only factor in (3.32) which
depends on the number d; is Fi(L).
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Proof of Theorem 3.19.
PrROOF. Letxk = ofy. Then
(o) = 3 ho'w| = 3 M| = > hw|
LeL() LoLel) L Leloy oL
y—1
= > > IIFOL
LeL()) di,...d7=0 |
y—1 n _
= > > CIIk

LeL Q) 01,...05=0 k=1
n ,y-1_ _
=c ¥ JI(X RO),
LeL () k=1 "c=0

since the only factor in ]‘[E:l IEK(E) which depends on the number d; is F (E).

(@) It followsfrom Lemma 3.24 that if thereis some ¢; that is not divisible by v then

x*(ha®) = 0.

(b) Supposethat all ¢; are divisible by v and that iy # O for some1l < k < m. Let

j = k-1 +1.Then

=1 _ 7-1 i
Z F?k,l“'l = Z (tJ )\ll\(li+1L,V\lj+1L

d?k,l +1=0 d?k,lﬂzo

& " i
= > Wiernet(L(fe1+ 1) =0,

dlk71+1:0

and it follows that, if iy # O for somek, then

x(ho™) = > hv{,NLV =0.
LelLx -
(c) Supposethat al ¢; aredivisible by v and that al iy = 0. Then
y—1 _ =1 , y—1
> Foa= 2 (ti)xﬂL,w-ﬂL = > 1=v
1 1
d7k71+1:o l_1+1=0 d7k71+1:0
and
y—1 y—1 q _ q—l
2 Mwatwul = 25 ———————
=0 d=0 4 c’[(L(kfl)
1— W —
ct(L(k))
_ _(@—a'y
ct([(k—l))‘
ct(lf(k))w
_ l q’Y _ q*'\y’
(7] 1 o E(_rrkl)ﬂv!"
ct(L(m))
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wherej — 1= (k—1)yand["] = (@' —q7)/(@—q ).
It follows that if iy, = O for all k then

Mo m Y|_9-9"
x'(ha®) = > hvgs . = Cy 27 — — -
Y L LeCey xen ] )

B ct(f(k))q‘

With the definitions of Hrg as in the statement of the theorem, (2.11) and Proposi-
tion (2.12) imply that

q —q S
> I = X, ()
Loy 5 | e(tee)
\ (L)
Thus, _
Plho) = C i, (@),
[fy]nfm [
where Hrr is as in the statement of the theorem. n

4. ThePoset Theorem.

Curtis Greene [Gre] uses the theory of partially ordered sets (posets) and Mobius
functions to prove a rational function identity ([Gre], Theorem 3.3) which can be used
to derive the Murnaghan-Nakayama rule for symmetric group characters. In [HR], we
modify Greene's theorem so that it can be applied to computing Murnaghan-Nakayama
rules for the irreducible characters of the Iwahori-Hecke algebras of type A,_1, By, and
Dn. In this section, we extend the poset theorem of [HR] so that it can be applied to
computing Murnaghan-Nakayamarules (Theorem 2.17) for theirreducible characters of
the cyclotomic Iwahori-Hecke algebras of type B.

A poset is planar in the (strong) senseif its Hasse diagram may be order-embedded
in R x R without edge crossings even when extra bottom and top elements are added
(see[Gre] for details). A linear extension of a poset P is a poset L with the same under-
lying set as P and such that the relationsin L form an extension of therelationsin P to a
total order. We will denote by L (P) the set of all linear extensions L of P.

The Mabius function of a poset P is the function p: P x P — Z defined inductively
for elementsa, b € P by

1 ifa=bh,
(4.1 w@,b) = p.(a,b) = { —Ya<x<b (&%) ifa<hb,
0 ifa« b.

(See[Sta] for more details on Mdbius functions.)
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Throughout this section P will denote a planar poset with unique minimal element u
andP=P— {u} will be the poset obtained by removing the minimal element u from P.
We let SC be the set of minimal elements of P and we call these elements sharp corners.
Two sharp corners s; and s, of SC are “adjacent” if they are not separated by another
sharp corner as the boundary of P istraversed. If s; and s, are adjacent elements of SC
and the least common multiple s; V s, exists, thenwe call s; Vs, adull corner of P. We
let DC denote the set of all dull corners of P. Finally, we let cc denote the number of
connected components of P, and note that cc = |SC| — |DC].

Let {Xs,a € P}, beaset of commutative variablesindexed by the elements of P. For
each0 < k <r — 1 and each pair a < b in P, define aweight, wt®(a, b), by

VR
Wt(k)(a, b) = %
(4.2) a-q

wt®(u,a) = xz* foralacP.

foral a,be P, and

Then for any planar poset P with unique minimal element u, define

(4.3) AWP) = [T wt®(a, by e@),
aél;ebP
where p5(a, b) is the Mobius function for the poset P.
In [HR], Theorem 5.3, it is proved that

(4.9) > A0 = a9P)(g—gH*t,
LeL(®
and
(4.5 > A0 =290~ 1 %) ( 11 %),
LeL(P) seSC deDC

Theexpansionin (4.5) is equal to zero if there is more than one connected componentin
P.
Thefollowing is our extension of the poset theorem to include values of k > 1.

THEOREM 4;6' LetPbea planar poset (as defined above) with unique minimal element
u.Let P =P\ {u}. Then

S 29D = (g— g H*a0P),
LeL(®

and,for1<k<r-—1,

> 690 = a9P)-a+ a7 (1] %) (11 %)

LeL(P)

[>le

|
X Z(:) (—D)'e(Xoc)k-t—cc(Xsc)
t=
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where cc is the number of connected components of P, &(Xpc) is the elementary sym-
metric function in the variables {x4,d € DC}, and hy_i_(Xsc) is the homogeneous
symmetric function in the variables {xs, s € SC}.

PROOF. For each s € SC define Ps to be the same poset as P except with the addi-
tional relationss < ¢, for s # § € SC, and all other relations implied by transitivity.
Each poset Ps is planar, and each linear extension of Ps must place the sharp corner s (a
minimal element of P) immediately after u in the ordering, so we have

> Aa¥D =3 ¥ a¥l) =Yy w®ugt > A%,

LeL(P) SESC L el (Py) sesC LseL (Py)

In P we have wt®(a, b) = wt@(a, b), so by [HR], Theorem 5.3, the second sum can be
computed as
> AV = Y 29y =29 =2y,
LseL(Ps) LseL(Ps)
since Ps is connected. Moreover, wt©(u,s)~ = 1 for eachs € SC, sothecasek = Oiis
proved.
From now on assumethat 1 < k < r — 1. Then we have

)Y AN = > wt®(u, 5)72A0 (Py)

LeL(P) s€SC
A®(P)
NCIE Ry 92 s
B 209 awe)
4.7) wt® (@, b)#es(@b)

=A0P wt®U, 97 T e
( )sg;c s a_lk;[,, Wt(k)(a, p)#e(@.b)
a#b
— A(k)(P) Z Wt(k)(U,S)_l H Wt(k)(a, b)ups(a,b)—up(a,b).
s€SC a,n;e;

where pup,(a, b) and pp(a, b) are the Mobius functions for their respective posets.

We use the work of Greene[Gre] to compute the differences up (a, b) — up(a, b) for
a < b e P. Let P* and P denote the dual of P and Ps, respectively (thatisu <p- v <
v <p U). Then, up(u,Vv) = up(v,u) (see[Sta], p. 120), so we want to compute

pe:(b,@) — pp-(b,@) fora<beP.
Using the Mdbius notation of [Gre] (p. 8, formulas (7) and (8)), let

ba= 3 pe(ta), and 59 = 37 up(tal,

t<ma tZma
so that
a= > &, ad a= > 9.

t<ma t<p:a
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Inthisway, 6 = 6, for al a € P* \ SC, and
¥ =6— > &+ 3 d

seSC\{s} deDC

It follows that
ey (S, 9) — pp-(s,8) = —1, forals € SC\ {s},
pe:(d,s) — pp-(d,s) = +1, foraldeDC,
pe:(a,b) — pp(a,b) =0, forall othera,b € P,
and

I Wt(k)(a, b)ups(ayb)—/lp(a,b) = I Wt(k)(s, S’)_l 1 Wt(k)(s, d).
aél;ebP §eSC\({s} deDC
Substituting back into (4.7) gives
S AW¥D) =a0P) S wiu, 9t [T wi®(s s)t [T wt¥(s, d).
LeL(® seSC s'eSC\{s} deDC
Using the fact that |SC| — |DC| = cc (the number of connected componentsof p), we
cancel factors of g — g1 and factor out xs and x5 as follows

> A% =a9@) ¥ (T Jl:ﬂ:i)(II l:l@ﬂi)

LeL® $6SC  \wesC\{s) L XX/ \gzpc a— a7t

— A(k)(P)< I Xs)( I xgl)(q — gyt

scSC deDC

IT (a — %)

Z k—1 deDC

seSC H (Xs’ - XS).
§'eSC\{s}

For notational convenience, let
F=29@) (T %) ( IT ") @—a =™
seSC deDC
Order thesharpcornerss, , . . ., Ss¢y fromleft to right asthe boundary of Pistraversed,
and let |s| = i (its position in the ordering). Then

[T (xa —x)
A(k)(l:) —F k—1 deDC
ﬂe%(ls) SEZSCXl5 H (Xs’ - Xs)
§eSC\{s}

= F 3 X (—1)lsci-Hd
seSC

I[Txa—x) I 0p—x)

deDC p<geSC\{s}

[T =x) [T — %) T X — %)
s<s s>s p<geSC\{s}
d&m—@ gm%—w
_ k—17_ 1y|SC|—|s| 9€ p<geSC\{s
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where V(xsc) is the Vandermonde determinant in the variables {xs, s € SC}. Moreover,

IoC|

[T (xa — %) = > &(xoc)(—1)PexPel,
deDC t=0

where e(xpc) isthe elementary symmetric functionin thevariables {x4,d € DC}. Again
for notational convenience, let

G= I (p—x)
p<qeSC\{s}

We then have

> x§*1<—1)‘5‘3'*‘5"%‘et(x.xx—1)‘D°"*XLD°'*‘G
Z A(k)(l:) _ FseSC t=0
feL(®) V(xsc)
5¢] Z X\SDC|7t+kfl(_1)\DC|+|SC|7|S\G
= FY (- D'a(oc) ==
t=0

V(xsc)

o¢] Z X|SDC|7'[+k71(_1)|S\716

= F=DS Py (-1 alod) ==
t=

V(xsc)

Notice that x ¢t _

(4.8) SO XSS T (% — %)

seSC p<qeSC\{s}

k—t—(|SC|—|DC])+[SC|-1 _
S =

k—t—cc+|SC|—1
X cc+SC|

Xs and that the numerator

is the alternating symmetrization of the monomial

k—t—cc+/SC|—1,//SC|—2,//SC|-3 SC|—|sc

Xsltowl \ X\SZI X|53| \SC‘II |

When we divide the numerator (4.8) by the Vandermonde V(xsc), we get the Schur
function Sy—t—cc0,0,.,0/(Xsc) or, equivalently, the homogeneous symmetric function
hi—t—cc(Xsc), and so

R [le]
> AV = FD)® Y (—1)'@(oe) e t—co(Xsc),
LeL(® t=0
and the proof is completed. ]

Soecial cases. The homogeneous symmetric function satisfies hn(xsc) = 0 unless
m> 0, soif k> 1, then h_;_(Xsc) = 0, unlesscc < k. In particular, when k = 1, the
poset P must be connected (cc = 1), and

[DC|
(4.9 z(:)(_l)tet(XDC)hkftfcc(XSC) = ep(Xpc)ho(Xsc) = 1
=
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and

(4.10) > a0 = a®@)( 11 %) ( 11 %*),
Lel(P) seSC deDC

which agrees with (4.5).

Shapes and standard tableaux. Theorem 4.6 reduces the problem of computing
Ciel@® AM(L) to computing A®(P). In the case where P is the poset of a (skew) shape,
the product A®(P) is readily computed and has been done so for q = 1 by Greene [Gre]
and for generic g in [HR]. The result uses the natural extension of the theory of shapes
and tableaux to the theory of partially ordered sets. (For afull treatment of this subject,
see [Sta], whose notation we use here).

If A is a shape (possibly skew), then we construct a corresponding poset P, whose
Hasse diagram is given by placing a node in each box of A and then drawing edges
connecting nodesin adjacent boxes. The order relation in this poset is so that the smallest
nodes are in the upper left corners. For example,

lHﬁ » Hf

Figure4.11

Note that posets corresponding to shapesare always planar and that the sharp and dull
corners that we defined for partitions and shapes (see Figure 2.19) are exactly the sharp
and dull corners of the corresponding poset.

THEOREM 4.12. ([Gre], Theorem 3.3; [HR], Theorem 5.8) Let P, be the poset of any
shape (or skew shape) A, let {x, } bea set of commutativevariablesindexedby {b € P, },
and let g be an indeter minate. Define

_ —1
(4.13) wt(a, b) = % for all a,b € P,
and
AP = T wi(a, by @D,
ot
Then L ) )
_ 1—XoXa qa—q )( qa—q )
AP = (TD[ q-q ) (1;[ 1— %Xt g 1— %Xt
where
D istheset of pairs(a, b) of boxesin A\ adjacent (northwest to southeast) in a diag-

onal,
R isthe set of pairs (a, b) of boxesin A adjacent (west to east) in a row, and
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C istheset of pairs (a, b) of boxesin A adjacent (north to south) in a column.

Let A beashape (or askew shape) and let L ()\) bethe set of standard tableaux of shape
A. Linear extensions of the poset P, are in one-to-one correspondence with standard
tableaux having skew shape A asfollows: Given astandard tableau T of shape A let T(Kk)
denote the box containing k in T. Then the standard tableau T corresponds to the linear
extension L of the poset P, which has underlying set P, and order relations given by
T(k) <_ T() if k < I. We can identify the standard tableau T with the chain L.

Let P, be the poset P, U {u} where the adjoined element u satisfiesu < a for all
a € P,. Thelinear extensionsof the poset P, are in one-to-one correspondencewith the
linear extensions of the poset P,. Thus, we can identify a standard tableau T of shape A
with alinear extension L of the poset P

Let u be the Mobius function of the linear extension L of I5k that correspondsto the
standard tableau T of shape A. Then, since L isachain, ; satisfies

(b= [~1 ifa<bandaisadjacenttobin L, and
HAS 0, ifa<bandaisnotadjacenttobinlL.
It follows that
K ® (i ) 1(ab) kiy @—ah
A9 = A90) =TT W@ by = () [T
a<bel i=2 + = XT(-1)%7(i)

COROLLARY 4.14.  Let X beany shape (or skew shape) with n boxes. Let {x, } be a set of
commutative variablesindexed by the boxesb € A, and let g be an indeterminate. Then

S AOT) = (q_q_l)cc_l(ﬂ 1_Xbxal)(1—[ qg—q*' )(H qa—q* )

TeL(y) b d—g ! JUR 1—xxgt) e 1— XXt

and, for 1 <k<r—1,

> a9 = (ara = T ) ( 11 x5%)

Tel()) <DC
[DC|
X > (—1)'&(Xoc) Mk—t—cc(Xsc)
t=0
1—xx;1t ( q—q+* ( q—q*!
o 3 a-at)
\g q-q! ) \I;I 1=t \g 1= !
where

cc isthe number of connected components of A,
SC isthe set of sharp cornersof A,
DC istheset of dull cornersof A,
R isthe set of pairs (a, b) of boxesin A adjacent (west to east) in a row,
C istheset of pairs (a, b) of boxesin A adjacent (north to south) in a column, and
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D istheset of pairs(a, b) of boxesin A adjacent (northwest to southeast) in a diag-
onal.

PrROOF. Let P, bethe poset of theshape A, andlet P, bethe poset P, U{u}, wherethe
adjoined element u satisfiesu < a for all a € P,. Then P, is aplanar poset with unique
minimal element, soweapply Theorem4.6to compute "o o A®(T) = ¥y 5 AW ().
This reduces the problem to computing AX(P,). Inside of Py, the weights (4.2) are all
independent of k and of the form (4.13), so we use Theorem 4.12 to compute AX (P, ). m
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