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Abstract

Background. There is a clear demand for innovative therapeutics for bipolar disorder (BD).
Methods. We integrated the largest BD genome-wide association study (GWAS) dataset
(NCase = 41 917, NControl = 371 549) with protein quantitative trait loci from brain, cerebro-
spinal fluid, and plasma. Using a range of integrative analyses, including Mendelian random-
ization (MR), Steiger filter analysis, Bayesian colocalization, and phenome-wide MR analysis,
we prioritized novel drug targets for BD. Additionally, we incorporated data from the UK
Biobank (NCase = 1064, NControl = 365 476) and the FinnGen study (NCase = 7006, NControl =
329 192) for robust biological validation.
Results. Through MR analysis, we found that in the brain, downregulation of DNM3,MCTP1,
ABCB8 and elevation of DFNA5 and PDF were risk factors for BD. In cerebrospinal fluid,
increased BD risk was associated with increased levels of FRZB, AGRP, and IL36A and
decreased CTSF and LRP8. Plasma analysis revealed that decreased LMAN2L, CX3CL1, PI3,
NCAM1, and TIMP4 correlated with increased BD risk, but ITIH1 did not. All these proteins
passed Steiger filtering, and Bayesian colocalization confirmed that 12 proteins were coloca-
lized with BD. Phenome-wide MR analysis revealed no significant side effects for potential
drug targets, except for LRP8. External validation further underscored the concordance
between the primary and validation cohorts, confirming MCTP1, DNM3, PDF, CTSF,
AGRP, FRZB, LMAN2L, NCAM1, and TIMP4 are intriguing targets for BD.
Conclusions. Our study identified druggable proteins for BD, including MCTP1, DNM3, and
PDF in the brain; CTSF, AGRP, and FRZB in cerebrospinal fluid; and LMAN2L, NCAM1, and
TIMP4 in plasma, delineating promising avenues to development of novel therapies.

Introduction

Bipolar disorder (BD) has a heritability of up to 70% and is associated with psychosocial
impairment (Costanza et al., 2022), with a relapse rate of up to 90% and a suicide rate that
is 20 times greater than that of the general population. Although current pharmacological
interventions, such as mood stabilizers (e.g. lithium) and antipsychotics, provide symptomatic
relief, they have limited efficacy, especially in modulating the hypothalamic‒pituitary‒adrenal
(HPA) axis (Berardelli et al., 2020), and more pronounced side effects, according to the most
recent summary of FDA approved BD medications (Goes, 2023) and the DRUGBANK data-
base (https://go.drugbank.com/) (online Supplementary Table S1). Therefore, there is an
urgent need for innovative treatments that can strike a balance between efficacy and tolerabil-
ity. To address these issues, extensive research has explored the genetic and molecular basis of
BD through genome-wide association studies (GWASs) and transcriptome-wide association
studies. Several genetic loci associated with BD have been identified, such as NCAM1 (Patel
et al., 2010), ITIH1 (Psychiatric GWAS Consortium Bipolar Disorder Working Group,
2011), and TIMP4 (Lu, Forgetta, Greenwood, Zhou, & Richards, 2023). However, the use of
only genomic data and a single tissue source limits the interpretability of these findings.
Furthermore, due to the complexity of the disease, a variety of these loci are located in non-
coding genomic regions, which makes it difficult to pinpoint the exact biological mechanisms
involved and the potential drug targets.
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Mendelian randomization (MR), which incorporates genetic
instrumental variables, has proven beneficial in determining the
causal links between genetic loci and diseases. Compared with
other quantitative trait loci (QTLs), protein QTLs (pQTLs) are
potential therapeutic targets for BD because they are the end pro-
ducts of gene expression and important participants in biological
processes. Recent advances have been made in identifying new
drug targets for multiple diseases, including multiple sclerosis
(Lin, Zhou, & Xu, 2023), ischemic stroke (Chong et al., 2019),
and Alzheimer’s disease (Wingo et al., 2021), by combining
GWAS and pQTL data. However, the application of this strategy
in BD has not yet been fully explored.

Traditional pQTL studies have typically been limited to single
tissue sources. In our research, we examined samples from the
brain, cerebrospinal fluid (CSF), and plasma of patients with
BD. The dorsolateral prefrontal cortex (DLPFC) is a crucial region
associated with cognitive and executive impairments in patients
with BD (Alonso-Lana et al., 2019). Investigating DLPFC
pQTLs is crucial for exploring abnormal brain changes in BD
patients and identifying potential drug targets. CSF contains piv-
otal proteins for information transmission between brain regions,
directly reflecting changes in circulating substances within the
central nervous system (Tumani, Huss, & Bachhuber, 2017).
Recent proteomic analyses of CSF have highlighted proteins
related to BD, including SPOCK1, CLEC1B, DRAXIN, and
TNFSF21 (Göteson et al., 2021). Additionally, peripheral fluid,
such as plasma, is an important biological indicator with diagnos-
tic and prognostic value in BD, as it can be collected easily with
minimal risk (Kim et al., 2021). Therefore, we aimed to integrate
the strengths of different studies focusing on the DLPFC, CSF,
and plasma to identify tissue-specific druggable proteins asso-
ciated with BD.

A five-step strategy was adopted to explore the relationship
between protein profiles and BD. First, we performed two-sample
MR by individually integrating pQTL datasets from the three tis-
sues (brain (Wingo et al., 2021), plasma (Zheng et al., 2020), and
CSF (Yang et al., 2021)) with the largest BD GWAS data from
Mullins et al. (Mullins et al. 2021) to identify potential candidate
proteins associated with BD. Second, sensitivity analysis was con-
ducted to determine the causal direction between the candidate
proteins and BD. Third, we applied Bayesian colocalization ana-
lysis to examine whether the two related signals (protein profile
and BD phenotype) were influenced by a common causal single
nucleotide polymorphism (SNP). Then, we conducted phenome-
wide MR analysis to screen for possible side effects of the thera-
peutic targets for BD. To confirm our findings, we performed MR
analysis with GWAS data from the UK Biobank and FinnGen
cohorts for external validation. Figure 1 illustrates a graphical
representation of the research design.

Methods

GWAS summary statistics

Summary statistics of BD were derived from the GWAS study
conducted by Mullins et al. (Mullins et al. 2021) for our prelim-
inary analysis. The GWAS meta-analysis included 57 BD cohorts
comprising a total of 413 466 individuals (NCase = 41 917, NControl

= 371 549). In addition, to confirm our findings, we used two
other datasets obtained from the UK Biobank (NCase = 1064,
NControl = 365 476) generated by Zhou et al. (Zhou et al. 2018)

and the FinnGen study (NCase = 7006, NControl = 329 192) gener-
ated by Kurki et al. (Kurki et al. 2023) for external validation.

Human brain, CSF and plasma pQTL data

The pQTL datasets for the brain, CSF and plasma were derived
from studies conducted by Wingo et al. (Wingo et al. 2021),
Yang et al. (Yang et al. 2021), and Zheng et al. (Zheng et al.
2020), respectively. Specifically, 616 cis-acting brain pQTLs linked
to 608 proteins were chosen for our integrative analysis if they
met the following criteria: (1) had a statistically significant genome-
wide association ( p < 5 × 10−8); (2) had linkage disequilibrium
clumping (r2 < 0.001); (3) were cis-acting pQTLs; and (4) contained
robust SNPs with F-statistics >10. Similarly, the CSF pQTL data
contained 233 cis-acting SNPs linked with 214 proteins, and the
plasma pQTL data generated 616 cis-acting SNPs linked to 612
proteins. More detailed information on the pQTL and GWAS data-
sets is summarized in online Supplementary Table S2.

MR analysis

In this study, the SNPs linked to pQTLs in the brain, CSF, and
plasma acted as exposure variables, and the BD GWAS data as
the outcome variable. We performed MR analysis using the R pack-
age ‘TwoSampleMR’ (https://github.com/MRCIEU/TwoSampleMR)
(Hemani et al., 2018). The Wald ratio approach was employed when
a protein had only one pQTL; otherwise, the inverse variance
weighted (IVW) analysis method was used. Bonferroni correction
was used to adjust the p value (0.05/608 for brain, 0.05/214 for
CSF, and 0.05/612 for plasma).

Sensitivity analysis

Due to the limited number of instrumental variables (IVs),
post-MR analysis methods such as Cochran’s Q test, MR-Egger
intercept test, MRPRESSO test, and I2GX test were unable to per-
form (Gleason, Yang, & Chen, 2021; Hemani et al., 2018).
Therefore, we utilized Steiger filtering to explore the causal direc-
tion between proteins and BD. A p value less than 0.05 indicated
statistical significance.

Bayesian colocalization analysis

We performed Bayesian colocalization analysis using the R package
‘COLOC’ to determine whether the risk of BD and the changes in
protein levels were attributed to the same single-nucleotide varia-
tions. Bayesian colocalization analysis calculated posterior probabil-
ities for the following five crucial hypotheses: H0, neither associated
with GWAS nor pQTL; H1, association with GWAS, not with
pQTL; H2, association with pQTL, not with GWAS; H3, associ-
ation with GWAS and pQTL, two independent SNPs; and H4,
association with GWAS and pQTL, one shared SNP. A threshold
of 0.80 for the probability of hypothesis H4 indicated strong evi-
dence for colocalization (Zheng et al., 2020).

Phenome-wide MR analysis

To elucidate the potential side effects (beneficial or adverse) of
prior drug targets identified by aforementioned analyses, we per-
formed an agnostic phenome-wide MR analysis of 783 disease
traits. The SNPs linked to proteins were set as exposures (online
Supplementary Table S3), and summary statistics of diseases from
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the UK Biobank cohort were set as outcomes. The Scalable and
Accurate Implementation of Generalised Mixed Model (SAIGE
V.0.29) method was applied to address the unbalanced case‒con-
trol ratio (Zhou et al., 2018). To improve the interpretability of the
results, we systematically selected 783 representative phenotypes
for phenome-wide MR analysis, with more than 500 disease
cases. Phenome-wide MR analysis was conducted using the
same parameters as those used in the MR analysis. Bonferroni
correction was applied (0.05/(4 × 783) = 1.60 × 10−5).

External validation

MR analysis was repeated only on the preliminarily identified pro-
teins with the same-variant and significant-variant strategies and

GWAS data from the UK Biobank and FinnGen datasets, respect-
ively. The concordance of the odds ratios (ORs) between the pri-
mary and validation cohorts was considered successful, and
therefore, a p value less than 0.05 was considered strong evidence
of replication.

Results

Screening the three proteomes for BD causal proteins

At different Bonferroni significance levels ( p < 8.22 × 10−5, 0.05/
608 for brain; p < 2.34 × 10−4, 0.05/214 for CSF; p < 8.17 × 10−5,
0.05/612 for plasma), MR analysis revealed that the altered
protein abundances of 16 genes were associated with BD

Figure 1. A schematic overview of the study design.
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(Fig. 2a–2c), including DNM3, MCTP1, ABCB8, DFNA5, and
PDF in the brain; IL36A, FRZB, AGRP, CTSF, and LRP8 in
CSF; and LMAN2L, CX3CL1, PI3, NCAM1, TIMP4, and ITIH1
in plasma. In summary, decreased DNM3, MCTP1, ABCB8,
CTSF, LRP8, LMAN2L, CX3CL1, PI3, NCAM1, and TIMP4 were
risk factors for BD, whereas elevated DFNA5, PDF, IL36A,
FRZB, AGRP, and ITIH1 increased the risk of BD (Fig. 2 and
Table 1). We also observed that in plasma, CTSF (OR 0.84, 95%
CI 0.77–0.92; p = 9.14 × 10−5) and AGRP (OR 1.11, 95% CI
1.05–1.17; p = 1.06 × 10−4) reached marginal significance for
causal effects, and their effect directions were consistent with
those in CSF (not shown in the figures and tables).

Sensitivity analysis for causal proteins

Although the paucity of IVs constrained the possible sensitivity
analyses, we verified the directionality of the causal effects via
Steiger filtering. All the proteins detected by MR satisfied the
Steiger filtering criterion (Table 1), implying that the genetic var-
iants had stronger associations with the exposure than with the
outcome and were suitable for instrumental variables to avoid
reverse causality.

Bayesian colocalization analysis of BD causal proteins

To confirm whether the associations between BD and pQTLs dis-
covered by MR analysis were driven by a shared causal SNP, we
performed Bayesian colocalization analysis, and the results are
shown in Table 1. In the brain, DFNA5, MCTP1, DNM3, and
PDF had the same genetic variants associated with both BD
and protein abundance. In CSF, CTSF, AGRP, FRZB, and LRP8
passed the Bayesian colocalization analysis, while LMAN2L,
NCAM1, CX3CL1, and TIMP4 were successfully validated in
plasma.

Phenome-wide MR analysis of BD prior druggable genes

We conducted phenome-wide MR analysis of 783 non-BD dis-
eases or traits in the UK Biobank to comprehensively characterize
the side effect profiles of drug targets. Using the Wald ratio
method, we detected no significant association for any potential

drug target except for LRP8 ( p < 1.60 × 10−5, 0.05/(4 × 783))
(Fig. 3). Decreased LRP8 expression was a risk factor for schizo-
phrenia and other psychotic disorders (OR 0.013, 95% CI 0.002–
0.091; p = 9.28 × 10−6).

External validation of BD causal proteins

We conducted a replication two-sample MR analysis utilizing the
same-variant and significant-variant strategies for the UK
Biobank and FinnGen cohorts, which included sufficient data to
perform two-sample MR analysis for the 16 proteins we identi-
fied. For all 16 candidate proteins, the directional effects of 13
(81.25%) proteins were concordant between the primary and val-
idation cohorts. Furthermore, the results for 5 proteins were repli-
cated at p < 0.05 (Fig. 4a and 4b), among which CTSF was
confirmed in both datasets. The results for other proteins were
replicated in one dataset, such as AGRP, PI3, and ITIH1 in UK
Biobank and LRP8 in FinnGen. From the perspective of tissues,
LRP8, AGRP, CTSF in CSF; PI3, and ITIH1 in plasma showed
strong evidence of replication (Table 2 and Fig. 4).

Discussion

In the present study, we employed a five-step strategy that lever-
aged the strengths of various analyses to integrate proteomic data
with BD GWAS and identified a total of 9 proteins that confer BD
risk, including upregulated PDF, downregulated MCTP1 and
DNM3 in the brain; upregulated AGRP and FRZB, downregulated
CTSF in CSF; and downregulated LMAN2L, NCAM1, TIMP4 in
plasma. Risk proteins in plasma and CSF may be able to aid in
the diagnosis of BD and the development of drugs targeting per-
ipheral body fluid due to the availability of samples during the
clinical process, while brain-specific risk proteins may be used
to determine the molecular mechanisms of BD because of their
presence in in situ lesions. Phenome-wide MR analysis was
used to examine the safety and tolerability of the identified pro-
tein targets. Moreover, to explore their potential as clinical drug
targets, we collected data on current medications targeting these
causal proteins from the DRUGBANK database (https://go.
drugbank.com/) (online Supplementary Table S4).

Figure 2. Volcano plot of the MR analysis results for proteins of three tissues. The horizontal dashed line indicates the diverse Bonferroni significance threshold
( p < 8.22 × 10−5 in the brain, p < 2.34 × 10−4 in CSF, and p < 8.17 × 10−5 in plasma). The vertical dashed lines distinguish the effect direction. The proteins that passed
the Bonferroni significance threshold are labeled with their names.
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Table 1. MR, Steiger filtering analysis and Bayesian colocalization analysis results for proteins significantly associated with BD

Tissue Exposure Chr Uniprot ID Method Beta Se p value OR OR(95% CI) Colocalization PPH4 Steiger filtering analysis ( p)

brain DFNA5 7 O60443 Wald ratio 1.10 0.20 2.58 × 10−8 3.00 2.04–4.42 0.995a 1.81 × 10−12

brain MCTP1 5 Q6DN14 Wald ratio −1.41 0.30 3.17 × 10−6 0.24 0.14–0.44 0.950a 9.86 × 10−9

brain DNM3 1 Q9UQ16 Wald ratio −2.16 0.49 1.00 × 10−5 0.12 0.04–0.30 0.928a 9.57 × 10−8

brain PDF 16 Q9HBH1 Wald ratio 0.74 0.18 2.80 × 10−5 2.09 1.48–2.95 0.815a 9.87 × 10−9

brain ABCB8 7 Q9NUT2 Wald ratio −0.65 0.16 4.68 × 10−5 0.52 0.38–0.71 0.767 6.28 × 10−10

CSF CTSF 11 Q9UBX1 Wald ratio −2.16 0.38 9.95 × 10−9 0.12 0.06–0.24 0.962a 3.04 × 10−7

CSF AGRP 16 O00253 Wald ratio 1.23 0.27 5.75 × 10−6 3.41 2.01–5.79 0.830a 3.20 × 10−9

CSF FRZB 2 Q92765 Wald ratio 1.03 0.23 1.01 × 10−5 2.80 1.77–4.43 0.966a 3.50 × 10−13

CSF LRP8 1 Q14114 Wald ratio −0.80 0.18 1.64 × 10−5 0.45 0.31–0.65 0.905a 2.68 × 10−17

CSF IL36A 2 Q9UHA7 Wald ratio 0.53 0.12 1.92 × 10−5 1.70 1.33–2.17 0.000362 5.92 × 10−79

plasma LMAN2L 2 Q9H0V9 Wald ratio −0.24 0.04 2.22 × 10−9 0.79 0.73–0.85 0.924a 1.25 × 10−21

plasma ITIH1 3 P19827 Wald ratio 0.09 0.01 4.23 × 10−9 1.09 1.06–1.12 0.012 7.15 × 10−170

plasma PI3 20 P19957 Wald ratio −0.14 0.03 5.57 × 10−6 0.87 0.82–0.92 0.004 2.95 × 10−33

plasma NCAM1 11 P13591 Wald ratio −0.14 0.03 8.14 × 10−6 0.87 0.82–0.92 0.872a 1.18 × 10−51

plasma CX3CL1 16 P78423 Wald ratio −0.22 0.05 2.82 × 10−5 0.80 0.72–0.89 0.969a 3.71 × 10−11

plasma TIMP4 3 Q99727 Wald ratio −0.10 0.03 7.00 × 10−5 0.90 0.86–0.95 0.840a 3.31 × 10−51

All SNPs used were cis-acting. Abbreviation: MR, Mendelian randomization; CSF, cerebrospinal fluid; BD, bipolar disorder; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
aThe results of PPH4 are over 0.80, which indicates that a genetic variant is shared by both traits of the protein level and BD.
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In brain tissue, we identified upregulated PDF and downregu-
lated MCTP1 and DNM3 as risk factors for BD, among which
PDF and DNM3 were reported for the first time in this disease.
PDF is a peptide release factor that regulates mitochondrial protein
synthesis by removing the N-terminal formyl group (Bögeholz,
Mercier, Wintermeyer, & Rodnina, 2021). Impaired mitochondrial
pathways are an important hallmark of BD patients (Cuperfain,
Zhang, Kennedy, & Goncalves, 2018). However, the association
between mental disorders and PDF has not been investigated,
and further studies are warranted to elucidate its mechanism.
DNM3 encodes a dynamin protein involved in synaptic vesicle
endocytosis (Raimondi et al., 2011). A recent exon-focused
GWAS reported the association of DNM3 with obsessive-

compulsive disorder and schizophrenia (Costas et al., 2016),
suggesting that this gene may cause cross-disorder risk. The BD
risk gene MCTP1 (Scott et al., 2009) is a transmembrane protein
that regulates calcium ion binding activity. Basic research has
shown that dysregulation of MCTP1 might cause altered synaptic
vesicle recycling and oxidative stress resulting from glutamate tox-
icity (Qiu, Yu, & Liang, 2015). This evidence supports its connec-
tion with BD risk. Interestingly, both MCTP1 and DNM3 are
involved in the regulation of synaptic vesicles, and the dysregulation
of synaptic proteins in the DLPFC has been extensively discussed in
BD patients (Aryal et al., 2023). Therefore, mitochondrial pathways
and synaptic vesicle-related pathways are important directions for
future research on the molecular mechanisms of BD pathogenesis.

Figure 3. Manhattan plot for phenome-wide MR results of three tissues. To enhance visualization, the y-axis shows −log10( p). A dot represents a disease trait, and
different colors represent the MR results of different proteins. Only Bonferroni-significant disease associations are illustrated ( p < 0.05/(4 × 783) = 1.60 × 10−5).
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For cerebrospinal fluid, we found that upregulated AGRP and
FRZB, downregulated CTSF increased BD risk. AGRP, a biased
agonist of melanocortin receptors coexpressed with neuropeptide
Y and gamma-aminobutyric acid (GABA) in the hypothalamus,
mediates neuroendocrine responses to immune (Boutagouga
Boudjadja et al., 2022) and inflammatory regulation (Klima et al.,
2023; Xiao, Xia-Zhang, Vulliemoz, Ferin, & Wardlaw, 2003) by
AGRP neurons. A previous case‒control study reported that
AGRP levels were higher in euthymic bipolar disorder patients
than in healthy controls (Özkorumak Karagüzel et al., 2018),
which is consistent with our findings. Currently, there are no
drugs targeting AGRP (online Supplementary Table S4). Hence,
drug development targeting AGRP may be promising, and future
studies are needed to clarify the specific pathogenic mechanism
and the potential of using AGRP as a clinical drug target. FRZB
is a known secreted Wnt antagonist (Leyns, Bouwmeester, Kim,
Piccolo, & De Robertis, 1997), and the Wnt signaling pathway is
closely involved in the microenvironment of the central nervous

system by regulating blood‒brain barrier homeostasis (Liebner,
Dijkhuizen, Reiss, Plate, & Agalliu, 2018). CTSF is a cysteine prote-
ase that is involved in the lysosomal protein degradation system
(Turk, Turk, & Turk, 2000). A lack of CTSF causes lysosomal
substrate degradation disorders, leading to neurological lysosomal
storage diseases (Berkovic et al., 2019; Tang et al., 2006). A previous
GWAS reported that CTSF was located in the linkage disequilib-
rium region of the BD risk locus rs10896135, with an OR of 0.89
(Psychiatric GWAS Consortium Bipolar Disorder Working
Group, 2011), which is consistent with our findings that downregu-
lated CTSF may confer BD risk. Notably, strong evidence of CTSF
replication was obtained in two different independent validation
cohorts, suggesting that CTSF is a high-confidence risk gene for
BD. We found that proteins dysregulated in CSF mainly affect
the homeostasis of the nervous system and neuroendocrine system,
which not only suggests the importance of body fluid to internal
homeostasis but also reveals the value of these proteins as biomar-
kers of disease.

Figure 4. Forest plot of the results of external validation.
The figure shows the effect size and 95% confidence interval
of the MR analysis for proteins on BD risk. To facilitate the
visualization of the OR forest plot results, we log10-
transformed the OR values.
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In plasma, downregulation of BD risk genes LMAN2L (Chen
et al., 2013; Lim et al., 2014; Psychiatric GWAS Consortium
Bipolar Disorder Working Group, 2011), NCAM1 (Arai et al.,
2004; Atz, Rollins, & Vawter, 2007; Ayalew et al., 2012), and
TIMP4 (Lu et al., 2023) results in increased disease risk.
NCAM1, also known as CD56, is a neural cell adhesion molecule
involved in synaptic plasticity, neurodevelopment, and neurogen-
esis (Kiss & Muller, 2001). It regulates inflammatory cascades
mediated by mitogen-activated protein kinase (MAPK)
(Krushel, Tai, Cunningham, Edelman, & Crossin, 1998) and
nuclear factor-κB (NF− κB) (Krushel, Cunningham, Edelman,
& Crossin, 1999) that are activated by neuroinflammatory envir-
onments. A clinical study revealed that the level of NCAM1 in
whole blood is related to the severity of BD (Jesudas,
Nandeesha, Menon, & Allimuthu, 2020). NCAM1 is also consid-
ered a common causative gene of schizophrenia and BD (Ayalew
et al., 2012), and a recent genome-wide pleiotropic analysis iden-
tified NCAM1 as a shared potential pleiotropic locus in gastro-
intestinal diseases and psychiatric diseases, including BD (Gong
et al., 2023). These findings highlight the outstanding potential
of NCAM1 as a disease marker. TIMP4 is an important inhibitor
of matrix metalloproteinases, and the latter is closely related to
blood‒brain barrier damage caused by neuroinflammation (Han
& Jiang, 2021). A previous MR study proposed that an increase
in the genetically predicted circulating TIMP4 level was associated
with a reduced risk of BD (minimum OR 0.88, 95% CI 0.82–0.94)
(Lu et al., 2023) LMAN2L encodes a lectin mannose-binding pro-
tein that mediates the trafficking and secretion of glycoproteins in
the endoplasmic reticulum. LMAN2L may promote the trafficking

of neuroreceptors under endoplasmic reticulum stress conditions
(Fu, Zhang, & Mu, 2019; Qin et al., 2012). Similar to those in CSF,
dysregulated proteins in plasma are mostly related to homeostasis
imbalances caused by inflammatory stimuli and endoplasmic
reticulum stress. These studies corroborated our conclusion that
circulating protein levels have the potential to be an auxiliary
diagnostic instrument for disease.

We acknowledge some limitations of our study. First, the pro-
teins we identified in different tissues were distinct, which may be
attributed to the following reasons: (1) pQTLs are specific to dif-
ferent tissues. (2) Due to the restriction of sample sources in the
original studies, the MR analysis included limited number of
pQTLs. However, we still found that CTSF and AGRP, which
were identified in CSF, showed a marginal causal effect in plasma,
and their effect directions in both tissues were concordant.
Second, our analysis was mainly based on data from European
populations, due to the lack of ethnic diversity in the proteomic
samples and may not be applicable to other ethnic groups. In add-
ition, post-MR analysis methods such as Cochran’s Q test and
MR-Egger intercept test were not performed due to the limitation
of IVs. Additional relevant analyses are still needed to validate the
associations between risk genes and BD, and other post-GWAS
analyses, such as proteome-wide association studies (Brandes,
Linial, & Linial, 2020), are also good methodologies. Finally, the
causal mechanisms of most of these candidate proteins in the
pathogenesis of BD are still unclear, and biological validation is
required to confirm our findings.

This study has several strengths. Firstly, we focused on pQTLs
from 3 different tissue sources, the advantages of which could

Table 2. Summary results of five-step stragety of BD associated genes

Tissue Gene
Mendelian

randomization
Sensitivity
analysis

Bayesian colocalization
analysisa

Phenome-wide MR
analysis

External
validationc

brain DFNA5 Yes Yes Yes Yes No

brain MCTP1 Yes Yes Yes Yes Yes

brain DNM3 Yes Yes Yes Yes Yes

brain PDF Yes Yes Yes Yes Yes

brain ABCB8 Yes Yes No –e Yes

CSF CTSF Yes Yes Yes Yes Yesd

CSF AGRP Yes Yes Yes Yes Yesd

CSF FRZB Yes Yes Yes Yes Yes

CSF LRP8 Yes Yes Yes Nob Yesd

CSF IL36A Yes Yes No –e Yes

plasma LMAN2L Yes Yes Yes Yes Yes

plasma ITIH1 Yes Yes No –e No

plasma PI3 Yes Yes No –e Yes

plasma NCAM1 Yes Yes Yes Yes Yes

plasma CX3CL1 Yes Yes Yes Yes No

plasma TIMP4 Yes Yes Yes Yes Yes

Abbreviation: MR, Mendelian randomization; BD, bipolar disorder.
aValues above 0.80 were considered as strong evidence of colocalization.
bPotential drugs targeting LRP8 showed a potential curable effect on schizophrenia and other psychotic disorders.
cThe consistent directionality of OR values between primary and validation cohorts were considered as successful replication.
dThese proteins passed Bayesian colocalization analysis and were not only consistent in the directionality of OR values between primary and both validation cohorts, but also had p values
less than 0.05 in at least one dataset, which were considered as strong evidence of replication.
eThe phenome-wide MR analysis was limited to proteins exhibiting strong colocalization.
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complement each other and have varied clinical significance
(Luykx et al., 2015; Yang et al., 2021). Risk genes found in the
brain may be related to disease pathogenesis, while risk genes in
CSF and plasma may serve as diagnostic and prognostic markers.
Secondly, the phenome-wide MR analysis results showed that
most of the risk genes we identified were promising for drug
development and did not affect other vital systems or organs,
increasing the application value of our findings. Interestingly, sev-
eral studies have identified LRP8 as a common risk gene for
schizophrenia and BD (Li et al., 2016; Xiao et al., 2020). The effect
direction of the risk gene LRP8 on schizophrenia found in our
phenome-wide MR analyses was consistent with that for BD, sug-
gesting that drugs developed against this target may have potential
curative effects in both diseases. Finally, the introduction of exter-
nal validation cohorts confirmed the consistency of the effect
directions of most risk genes, which increased the reliability of
our conclusions. Intervention targeting these genes to increase
(or decrease) their protein abundance is expected to become an
important method for the treatment of BD in the future.

Conclusions

In conclusion, we identified nine candidate druggable proteins for
BD, including MCTP1, DNM3, and PDF in the brain; CTSF,
AGRP, and FRZB in CSF; and LMAN2L, NCAM1, and TIMP4
in plasma. Our study provides novel insights into the molecular
mechanisms of BD and highlights promising candidate proteins
for therapeutic interventions.
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