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Abstract

For positive integers a, b and n define the combinational expression

a a+bn
A"(a’b)=a+bn< n )

We give geometric and probabilistic interpretations of these expressions (and their multidimen-
sional extensions) and find new, simple proofs of the convolution identities known to hold for such
expressions.

1. Introduction

For non-negative integers a, b with a + bn > 0 let us define the combinator-
ial expression
__a a+bn
M) Anab)= —2— (475",
In two papers written some twenty years ago Gould (1956, 1957) discussed the

above (and related) expressions. He obtained, amongst other results, the
following convolution identity: for positive integral ¢

@) 2 An(a,b)An-m(c,b)= A.(a +¢,b).

Gould’s two papers contain different approaches to this identity whilst in his
recent article Gould (1974) gives yet another. We also note that Riordan (1958)
presents an inductive proof of (2), as do Gould and Kaucky (1966) where further
comments and extensions can be found. The proof of Blackwell and Dubins
(1966) is perhaps closest in spirit to the one given below. Mohanty (1966a)
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extended the argument of Gould’s first paper, stating and proving multinomial
analogues of (2) and the related identities. He also gave a probabilistic
interpretation of these facts. To formulate these results we use bold letters to
denote k-tuples of non-negative integers, b =(b;,b;,---,b) and n =
(ni, -+ -, m). Further we use the usual dot-product notation b-n =
bin.+ ban,+ -+ + b and write 1=(1,1,-- -, 1). With these preliminaries we
can extend the notation above when a + b - n > 0 writing

where (:’) =N(N-1)---(N~1-n+1)/II{ n;! denotes the usual multinomial

coefficient. In this notation one of Mohanty’s results (1966a, equation (9) p. 502),
the generalisation of (2) above, can be written

) > An(a,b) A, .(c,b)= A.(a +c,b).
m=0
Here is the summation from m; =0 to m;=n,,:--,m, =0 to m, = n as the

notation suggests, and n —m = (n; —my, na— My, - -, M — my).

It is the purpose of this note to provide new proofs of these identities, the
first, it is believed, that involve the geometrical interpretation of the expression
(1'). After doing this we reconsider the probabilistic aspects of (2), being
somewhat more concrete than Mohanty in obtaining a random walk whose first
passage probabilities to a certain hyperplane provide yet another interpretation
and proof of (2').

2. Geometric interpretation of A, (a, b)

It is hoped that the notation will enable us to deal with the general case
(arbitrary k) almost as as easily as one would the case k = 1, but this will involve
some slightly unusual temporary usages. We will be working in the positive
orthant of the integer lattice in k + 1 dimensions, the coordinate variables being
denoted by X,, X, -, X. and an arbitrary element will be denoted by (x,, x)
where x = (x,, x2, - - -, xi ). The first coordinate will be treated differently, and all
all bold letters will be k-tuples of non-negative integers.

Given any k-tuple b and non-negative integer a we can define a hyperplane
by the equation

P) Xo=a+((b-1)X

Clearly the point (a + (b —1)- n, n) lies on (P) for any k-tuple n, and we
may now state the desired interpretation as follows:
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ProposiTioN 1 (Mohanty). The number of minimal lattice paths from (0, 0)
to (a+(b—1)-n,n) which do not touch the plane (P) until the last point, is
A.(a,b).

For the case k =1 this result is in implicit in Mohanty and Narayana (1961)
(following by duality from their Corollary on p. 256), and appears in the present
generality in Mohanty (1972). The following proof is essentially Mohanty’s but
we include it for completeness.

Proor. The minimal lattice paths from (0,0) to (a + (b — 1) n, n) can be
put into one-one correspondence with N-tuples L = (A, Az, -, An), Where
N=a+b n;foreach il =i=N, A is one of the symbols S,, S,,"--, S«; for
each j, 1 =j = k there are precisely n; symbols S,, and there are a +(b— 1) n
symbols S,.

Given such an N-tuple L we can build up a minimal lattice path, starting at
either end, by interpreting a symbol S; to mean ‘move one unit along the Xj-axis
towards the other end’. Conversely any minimal lattice path defines a unicue
such N-tuple in the obvious way.

It is also clear that there are precisely (i:’) such N-tuples and so this is the

total number of minimal lattice paths connecting (0,0) with (a + (b ~1)- n, n).
But we want the number of these which do not touch the plane (P) other than at
the last point. To express this requirement as a property of the N-tuple L we
need a little more notation. For each h, 1=h =N and j, 0= = k define

0h.={1 if A =3S;

" |0 otherwise.

Clearly Zf_ ;04 = 1. Also put & = Zi_, o, this being the number of times the

symbol S; appears in the first i positions of L, and finally write &= (&1,&2,*+, &x ).
We will build up the lattice path by working backwards from the endpoint

using L. After i steps have been incorporated, the X; coordinate has reduced by

£;(0=j=k)and so we are at the point (a + (b —1)- n — &o, n — &). This point

lies in the half-space defined by (P) which contains the origin foralli, 1 =i = N,

if, and only if,

a+(b-1)-n—¢t<a+b-1-(n—-§&) (1=i=N),
equivalently, upon expanding and using the fact that &+ 1- & = i, if and only if
© b-&<i (1=i=N).

Now b - & = Zf_, b&; issimply a partial sum along L of numerical terms if we
replace S; by the integer b, 1 =j =k, and S, by 0. With this interpretation we
can immediately recognise the condition (C) and use a well-known result to
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deduce that of the N cyclic permutations of the N-tuple L (with the numerical
components just indicated), precisely a = N — b - n have the property (C); that
is, satisfy the condition that for all i (1 =i = N) the partial sums of the first i
terms are less than i.

We refer to Takacs (1967) p. 4 for this result; for a geometric proof more in
the spirit of the present paper, see Mohanty (1966b).

This completes the proof that the number of minimal lattice paths from

(0,0) to (a+(b—1)-n,n) not touching (P) before their endpoint is 4 <N)
N \n
where N=a +b-n.

3. Derivation of identities

Let us consider the hyperplane (P) defined above, and the parallel
hyperplane (¢ being another non-negative integer)

P) Xo=a+c+(b-1)-X

Clearly any minimal lattice path from (0,0)to (a + ¢ + (b — 1) - n, n) on (P’) must
hit (P) for the first time at X = m for some m, 0= m = n. Indeed there are
precisely An(a, b) such paths. Each can be completed in A._.(c, b) ways, as can
be seen by viewing (P’) relative to the coordinate system (Xj, X') where
Xo=Xo—a and X'= X — m. This, plus an obvious counting argument, com-
pletes the proof of (2').

Another identity which can be derived in a similar way is:

3) S An(@,6) Avn(d - m, b +d) = Au(a,b +d).

To get this one we consider the hyperplane (P) and the ‘steeper’ plane (P")
having the same X,-intercept viz:

P Xo=a+((b+d-1)-X

Any minimal lattice path from (0,0) to (a + (b +d —1)- n, n) on (P") must
hit the hyperplane (P) for the first time at X = m for some m, 0 = m = n. Again
there are A, (a, b) such, and each can be completed in A._.(d - m, b + d) ways,
as we can see by viewing (P") relative to the coordinate system (Xg, X”) where

0=Xo—a—(b—-1)-m, X"= X — m. Thus (3) follows in the same way as (2').

The general identity in Mohanty (1966a) is seen to be a combination of (2')

and (3). Another identity derived in Gould’s papers involves the expressions
a_ (a+bn)
at+tbn n!

Gould (1957 equation 6) shows that (2) holds with this definition of A, (a, b)

and one might wonder whether a geometric interpretation exists for the entities

4) A.(a,b)=
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(4) similar to that derived for (2). I have been unable to find such an
interpretation although a probabilistic one exists, and Raney (1964) gives the
combinatorial interpretations of closely related expressions which lead to the
proof of (2) in this case. The definition (4) also suggests a generalisation not
discussed by Mohanty, namely

a f(a+b-n)"
a+b-n n!

@) Au(a,b)=

wheren!=n!n,!---n'tand1-n =n;+ n;+ - -+ + n.. The coeflicients A.(a, b)
defined by (1) approximate those defined in (4') when a and b are large so it is
reasonable to suppose that the convolution identity (2') also holds in this case.
This is indeed true, the result being deducible (with a little effort) from Raney
(1964).

4. Associated probability distributions

Let (p,,p) be a (k +1)-tuple with p,>0, p,>0,---,p >0 and po+ p, +
-+ +p.=1. Then if b - p =1, Mohanty (1966a) proved that

&) EOA. (a,b)pa*®* " "p* =1

where p” = pip32---pix. We will offer an alternative derivation of (5) based
upon a random walk interpretation. To do this we consider the random walk on
the lattice points in the positive orthant in (k + 1)-space which begins at (0, 0)
and at each step moves along the X, axis one unit in the positive direction with
probability p, (0=j = k), steps being mutually independent and identically
constructed.

PRrRoOPOSITION 2. The probability that the above random walk ever hits the
hyperplane (P) is w*, where m is the smallest positive root of

k
(6) > pxti—x+po=0.
1
ProofF. Let us define the function, in fact a probability generating func-
tion:
k
(7) fx)=po+ 2 pix”

We will see that the probability that the walk ever hits (P) is ° where 7 is a
probability that the walk ever hits (P) when a =1, and that # is the smallest
positive root of the equation f(x)= x. The first assertion is an immediate
consequence of the assumed independence of the steps in the walk, as the
passage from (0,0) to.(P) can be viewed as a succession of independent and
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probabilistically identical passages from (0,0) to X, =1+ (b —1)- X, from this
plane to X, =2+ (b —1)-X, and so on up to (P).

Let m,(m) denote the probability that the walk hits the hyperplane (P) in
less than m steps. Clearly 7,(m) 1 7 as m — . If m > 1 we may condition upon
the outcome of the first (random) step and find that

k
8) mi(m)=po+ Z pims, (m —1).
Now m,(m —1)= m, (m)=[m(m)]" and so we find that mw,(m) satisfies the
inequality
© 0= m(m) = f(m(m)).

Letting m — o we see from (8) and the remarks opening this proof that 7= = f()
and it follows from (9) that =« is the smallest such positive root.

CoroLLARY. w7 =1 if and only if b-p =1.

Proor. This is easily derived using methods well known in the theory of
branching processes. See for example Harris (1963).

Let us define T to be random time, possibly infinite, which the walk takes to
hit the hyperplane (P). Then we have the distribution of T involving our
coefficients.

Proposition 2. (i) P(T=a+b-n)= A.(a,b)ps** " "p"
(ii) P(T < )= 7 where m is defined above.

Proor. Result (i) follows from Proposition 1 and the definition of the
walk, whereas (ii) follows from the previous proposition.

CorOLLARY 2. Identity (5) holds if b-p = 1.

If we denote by T, the above random variable, then it is probabilistically
obvious that the first passage time T,.. should be distributed as the sum of a r.v.
T. and another, independent, r.v. T.. This convolution property is equivalent to
(2’) as is easily checked. Thus an alternative, probabilistic, proof of (2') could be
constructed. The details are left to the reader.

Finally we note that E{T,}=a/(1—b-p) can be proved in a manner
analogous to that used to obtain the equation for #. That is, by first deriving the
equation E {T.} = aE {T\}, and then conditioning upon the outcome of the first
step obtaining

E{T\}=po+ z:‘:p,(l + E{T.}).

The variance formula for T, can be derived in a similar way.
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