
The Journal of Agricultural
Science

cambridge.org/ags

Crops and Soils Research
Paper

*Mention of trade names or commercial
products in this article is solely for the
purpose of providing scientific information
and does not imply recommendation or
endorsement by the Research Centre for
Cultivar Testing.

Cite this article: Przystalski M, Lenartowicz T
(2023). Organic system vs. conventional – a
Bayesian analysis of Polish potato post-
registration trials. The Journal of Agricultural
Science 161, 97–108. https://doi.org/10.1017/
S0021859623000084

Received: 6 September 2022
Revised: 25 November 2022
Accepted: 27 December 2022
First published online: 25 January 2023

Key words:
Comparison of two agronomic systems;
hierarchical model; stability

Author for correspondence:
M. Przystalski, E-mail: marprzyst@gmail.com

© The Author(s), 2023. Published by
Cambridge University Press

Organic system vs. conventional – a Bayesian
analysis of Polish potato post-registration
trials*

M. Przystalski and T. Lenartowicz

Research Centre for Cultivar Testing, 63-022 Słupia Wielka 34, Poland

Abstract

Interest in organic agriculture worldwide is growing and is mainly supported by a strong con-
sumer interest. In the literature, a lot of attention has been paid to comparing organic and
conventional systems, on studying the yield gap between the two systems and, how to reduce
it. In the present work, based on the results from Polish organic and conventional series of
field trials carried out in 2019–2021, organic and conventional systems were compared in
terms of potato tuber yield. Moreover, we propose a Bayesian approach to the variety × envir-
onment × system data set and describe Bayesian counterparts of two stability measures. Using
this methodology, we identify the most stable and highest tuber yielding varieties in the Polish
potato organic and conventional series of field trials. It is shown that the tuber yield in the
organic system was approx. 44% lower than the tuber yield in the conventional system.
Moreover, varieties Tajfun and Otolia were the most stable and highest yielding varieties in
the organic system, whereas in the conventional system, the variety Jurek was the most stable
and highest yielding variety among the tested varieties. In the present work, the use of the
Bayesian approach allowed us to calculate the probability that the mean of a given variety
in given system exceeds the mean of control varieties in that system.

Introduction

Interest in organic agriculture worldwide is growing, mainly supported by a strong consumer
interest. This can measured by the value of retail sales of organic products, which grew to an
impressive 44.2 billion euros in the European Union (EU) (Willer et al., 2022). The market
trend is still growing and grows faster than the organic farmland area. In 2020, in most of
the EU-member states the organic farmland area has increased (Willer et al., 2022). The big-
gest shares of the organic farmland area in the total utilized area are in Austria (26.5%),
Estonia (22.4%), Sweden (20.4%) and Italy (16%) (Willer et al., 2022). In Poland, the share
is equal to 3.5%, which is 507 637 ha.

For this reason, a lot of attention has been paid to comparison of the organic and conven-
tional systems. At the early stages, these comparisons were mainly made for cereals (Murphy
et al., 2007; Przystalski et al., 2008; Hoagland, 2009; Reid et al., 2011; Kirk et al., 2012).
Recently, the studies are focused on studying the yield gap between the two systems (de
Ponti et al., 2012; Ponisio et al., 2015; Lesur-Dumoulin et al., 2017) and how to reduce it
(de Ponti et al., 2012; Shah et al., 2017; Schrama et al., 2018). To compare the two agronomic
systems Przystalski et al. (2008) used linear mixed models: they treated the effects of system, of
environments and their interaction as fixed, while the genotype × system interaction effect was
treated as random. Moreover, they only assumed that the genotypic values in the two systems
can have different variances, and that they can be correlated. In the present work, we modified
the model used in Przystalski et al. (2008), assuming that the effects of environments × system
interaction are random. Furthermore, in our model, we assumed that the environmental values
and the variety × environment interaction values in the two systems can have different var-
iances and can be correlated.

In parallel to that study, in many EU countries, variety offices (the authorities in charge of
variety testing) started an organic value-for-cultivation-and-use (VCU) variety testing for
national listing of cereals (Pedersen, 2012). In Austria a VCU testing system of varieties for
the organic system has existed since 2002. For example, in that country, it is possible to
have varieties of winter wheat VCU-tested under organic conditions. In these trials the new
varieties are compared to those varieties which are used in organic farming. Moreover, winter
wheat varieties can be registered without conventional results. In Denmark, since 2006 it is
possible to have a variety VCU tested with supplementary organic trials. In Poland, new var-
ieties of important species are assessed prior to the registration in value-for-cultivation-and
use (VCU) trials, and then in post-registration trials. Based on the results of post-registration
trials a recommendation to the farmers is given. Since 2014, COBORU runs organic post-
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registration trials with potatoes, cereals and peas, first only in
Węgrzce experimental station and from 2019 in nine additional
locations. As in conventional post-registration trials for potatoes,
the main characteristic in organic trials is tuber yield. Only stable
and high-yielding varieties are recommended for cultivation.

It is believed that cultivation of crops in Poland under organic
conditions, including potatoes, will grow in the coming years. For
this reason, it is important to introduce stable and high yielding
varieties to the cultivation. Usually, stability of agronomic traits
is assessed in multi-environment trials. A common approach is
to analyse these trials a using a two-stage approach (see, e.g.,
Flis et al., 2014; Caliński et al., 2017; Damesa et al., 2017),
where each combination of year and site is treated as an environ-
ment. In the literature, several stability measures have been
described, for example, Shukla’s stability variance (Shukla,
1972), regression on the environmental mean approach to assess-
ments of stability (Finlay and Wilkinson, 1963; Eberhart and
Russell, 1966; Digby, 1979), superiority stability coefficient (Lin
and Binns, 1988) or additive main effects and multiplicative
model (Gauch, 1992). Whereas the stability analysis is routinely
performed for traits assessed in the conventional system, little
attention has been paid in the literature to stability of traits in
the organic system. Recently, Kucek et al. (2019) performed stabil-
ity analysis for yield, protein, falling number and test weight of
organically managed spring and winter wheat using the frame-
work outlined by Annicchiarico (2002). In a different study,
Rakszegi et al. (2016) used a genotype main effect and
genotype-by-environment interaction (GGE) model (Yan and
Kang, 2003) to assess the stability of organic and low-input
wheat varieties. However, there is little work on how to assess sta-
bility of varieties in organic and conventional systems simultan-
eously. In the present study, we propose a solution to this
problem.

In plant breeding programmes at the early stages (see e.g.
Löschenberger et al., 2008), the lines are often selected for both
organic and conventional low input systems. In the present
study, the three-way variety × environment × system data was ana-
lysed using a Bayesian approach, which may be useful for plant
breeders and agronomists. One of the most useful characteristics
of Bayesian statistics is making use of previous information, e.g.
from previous agricultural trials. A subjective approach involves
defining priors for unknown parameters according to personal
experience and impression, recognizing that expert opinion is bet-
ter than no knowledge. For example, one can use the knowledge
from previous studies. For variance components such procedures
have been described in Silva et al. (2013) or in Azevedo et al.
(2022). Further, Bayesian analysis offers a possibility of calculating
posterior distributions of new quantities which are functions of
model parameters. Moreover, the Bayesian approach can alleviate
problems associated with estimating complex models such as zero
estimates of variance components (Theobald et al., 2002). The use
of the Bayesian approach in the context of agricultural field
experiments is rare (Theobald et al., 2002, 2006; Theobald and
Talbot, 2002, 2004; Edwards and Jannink, 2006; Crossa et al.,
2011; Josse et al., 2014; Orellana et al., 2014; Edwards and
Orellana, 2015; de Oliveira et al., 2016; Bernardo et al., 2018;
Nascimento et al., 2020; Przystalski and Lenartowicz, 2020) and
is mainly focused on AMMI models (Crossa et al., 2011; Josse
et al., 2014; Bernardo et al., 2018) and GGE biplots (de Oliveira
et al., 2016). The Bayesian counterpart of the Finlay–Wilkinson
model has been described by Lian and de los Campos (2016).
Recently, de Oliveira et al. (2018) and Nascimento et al. (2020)

described the Bayesian counterpart of the Eberhart and Russell
model and its modifications. Przystalski and Lenartowicz (2020)
obtained Bayesian counterparts of two stability measures
described in Piepho (1999) by assuming different covariance
matrices for the random vector of environment × variety inter-
action and modifying the list of random effects in the model.
All these methods can be used to assess the stability of varieties
in each individual agronomic system (either organic or
conventional).

The aim of the current study was to compare organic and con-
ventional systems in terms of potato tuber yield based on the
results from Polish organic and conventional series of field trials
carried out in 2019–2021. In addition, by using the predicted
means for environment × system interaction from our model,
we investigated the difference in yields between the two systems
in the Polish potato post-registration trial system. Further, based
on the posterior estimates of genotypic values from the
Bayesian linear mixed model, the stability of varieties in both
agronomic systems was assessed using the harmonic mean of rela-
tive performance of genotypic values (HMRPVG) method (see
e.g. Resende, 2007; Colombari Filho et al., 2013; Dias et al.,
2018; Bocianowski and Liersch, 2021) and the superiority stability
coefficient (Lin and Binns, 1988). To the best our knowledge, this
is the first study in which the stability of varieties was assessed
simultaneously in both agronomic systems. Additionally, we cal-
culated for each variety in a given system a probability that the
variety mean in that system exceeds the mean of control varieties
in that system. In general, in the frequentist approach, the prob-
abilities that the yields of varieties fall below a certain critical
level were first considered by Mead et al. (1986), and later modi-
fied by Eskridge (1990), Eskridge and Mumm (1992), and Piepho
(1996, 1998, 2000). Eskridge and Mumm (1992) calculated the
reliability of a test variety by taking into account normally distrib-
uted differences between the effects of the test variety and the
check variety to leverage the probabilities from the cumulative
function of a normal distribution, or by considering a non-
parametric model. In the present study, following Dias et al.
(2022), we calculated the probabilities by using MCMC samples
from the Bayesian analysis. Using that methodology, we identify
the most stable and highest yielding potato varieties for a Polish
organic and conventional series of field trials conducted in the
years 2019–2021. As in Edwards and Jannink (2006), Przystalski
et al. (2008), Lenartowicz et al. (2020) and Przystalski and
Lenartowicz (2020), the Bayesian linear mixed model was fitted
under the assumption of heterogeneity of error variance.

Materials and methods

Data

The data set consists of potato field trials performed in the years
2019–2021 in two cropping systems: organic and conventional. In
both agronomic systems, the trials were laid out in a randomized
complete block design with three replicates. In each plot there
were 60 potato seeds planted. The organic and conventional trials
were conducted at experimental stations (sites) belonging to the
Research Centre for Cultivar Testing (COBORU) (Table 1),
which were located in different parts of Poland (Fig. 1).

However, only the Węgrzce station has a certificated organic
field, where COBORU performs small ecological post-registration
trials with potato, cereals and peas. For the remainder of the sites,
the fields were organically managed.
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During the three years of study, in both agronomic cropping
systems, there were in total 11 mid-early varieties tested. This
maturity group is the largest group among the tested varieties
in the Polish post-registration trials, and varieties belonging to
this maturity group are most often planted by farmers in
Poland. Since we were interested in assessing yielding stability,
we used results for varieties which were tested for three years.
The list of varieties used in the present study with their country
of origin and registration year is given in Table 2.

In Polish potato post-registration trials, one of the analysed
characteristics is tuber yield, which is observed on plots. The
observed tuber yield is expressed in decitonnes per hectare (dt/ha).

Statistical estimation

To compare the potato tuber yield in organic and conventional
systems a Bayesian hierarchical model was used. For clarity,
throughout the paper by ‘environment’ we mean a combination
of year and location, and by ‘trial’ we mean a combination of
environment and system. For identification, environments
(Table 3) and trials were numbered. In the data set, the organic
trials were numbered from 1 to 12, whereas the conventional trials
were numbered from 13 to 24.

Let yjklr be the potato tuber yield for the jth variety ( j = 1,…, J)
in the kth environment (k = 1, …, K) in the lth system (l = 1, 2 for
organic and conventional systems, respectively) in the rth repli-
cate (r = 1, …, R). Then the model can be written as:

y jklr = ukl + v jl + wjkl + zklr + e jklr , (1)

where ukl, vjl, wjkl, zklr and ejklr denote the random effects of envir-
onment × system interaction, of variety × system interaction, of
variety × environment × system interaction, of replicates nested
within system and environment, and of errors, respectively. In
using model (1) it may appear that we are fitting the model with-
out the general means for both agronomic systems, but they are
included in the hierarchical definition of the parameters and
their joint distribution.

The model has three hierarchies or stages. In the first, it is
assumed that observations are exchangeable samples from a nor-
mal distribution

y jklr|ukl , v jl , wjkl , zklr , s2
e(lk) � N(ukl + v jl + wjkl + zklr , s

2
e(lk))

(2)

where s2
e(lk) is the error variance of the trial in the lth system and

kth environment, while ‘∼’ means ‘distributed as’ or ‘distributed
independently as’, according to the context.

In the second stage, the prior distributions are assigned to ukl,
vjl, wjkl and zklr. Let uk = [uk1, uk2]

′
(k = 1, …, K) be the vector of

environment × system interaction effects. We assume that uk fol-
low a two-dimensional normal distribution with mean vector a
and covariance matrix Su as

uk|a, Su � N2(a, Su) (3)

where a = [a1, a2]
′
is a vector of general means for both agronomic

systems.

Fig. 1. Map of Poland showing the locations of the experimental sites.

Table 2. List of varieties with their country of origin and registration year

No. Variety Country Registration year

1 Jelly Germany 2004

2 Jurek Poland 2012

3 Laskara Poland 2013

4 Mazur Poland 2014

5 Otolia Germany 2014

6 Satina Germany 2000

7 Tajfun Poland 2004

Table 1. Sites used in the 3-year organic and conventional variety trials
conducted from 2019 to 2021

Site

Geographic co-ordinates

Latitude Longitude m a.s.l.

Krzyżewo 53°01′ N 22°46′ E 135

Lućmierz 52°12′ N 19°08′ E 132

Tarnów 50°35′ N 16°47′ E 300

Węgrzce 50°07′ N 19°59′ E 285

Table 3. Identification numbers for environments included in the analysis

Location 2019 2020 2021

Krzyżewo 1 5 9

Lućmierz 2 6 10

Tarnów 3 7 11

Węgrzce 4 8 12
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For the vector of variety × system interaction effects vj = [vj1, vj2]
′

we assigned a two-dimensional normal distribution with mean
vector of zeros and covariance matrix Sv

vj|Sv � N2(0, Sv). (4)

For the vector of variety × environment × system interaction
effects wjk = [wjk1, wjk2]

′
we assigned a two-dimensional normal

distribution with mean vector of zeros and covariance matrix Sw

w jk|Sw � N2(0, Sw). (5)

For the effects of replicates nested within environment and system
zklr we assumed a priori that the effects of replicates nested within
environments in organic system (zk1r) and the effects of replicates
nested within environments in conventional system (zk2r) are
independent, and we assigned normal distribution with zero
means and as:

zklr|sz,l � N(0, s2
z,l) l = 1, 2 (6)

For ejklr we assigned a normal distribution with zero mean as:

e jklr|s2
e(lk) � N(0, s2

e(lk)) (7)

In the last stage, prior distributions are assigned for al (l = 1, 2),
Su, Sv , Sw, σz,l (l = 1, 2) and error variances s2

e(lk). For al we
assigned a normal distribution with mean mal and variance
1000 as:

al � N(mal , 1000) l = 1, 2 (8)

For covariance matrix Su, we assigned an inverse-Wishart distri-
bution (IW) with νu degrees of belief and scale matrix Su. For
matrices Sv and Swwe assigned hierarchical a half-t prior
(Huang and Wand, 2013) as

St � IW(n+ 2− 1, 2 · n · Lt) ll,t � Ga 0.5,
1
A2
l,t

( )
l = 1, 2; t = v, w

(9)

where Ga( ⋅ , ⋅ ) denotes Gamma distribution, Lt is diagonal
matrix with lth element λl,t, ν and Al,t (l = 1, 2; t = v, w) are positive
numbers. In the present work we chose ν = 2. For this particular
choice, the marginal distribution of each correlation in St (t= v, w)
is uniform on (−1, 1).

For σz,l we assigned half-Cauchy (HC) distribution centred at
zero with scale hyperparameter equal to 10 as:

sz,l � HC(0, 10) l = 1, 2 (10)

For modelling variance components using hierarchical models
this prior is recommended (see e.g. Gelman et al., 2013).

Finally, for error variances s2
e(lk) we assigned inverse-Gamma

(IG) distribution with parameters α and β

s2
e(lk) � IG(a, b) (11)

We chose α = 1 and β = 0.001 to obtain flat priors. This choice
allows the variance components to be shrunk to very nearly zero,
if this is warranted by the data.

For the data set used in the present study, we also fitted model
(1) and the model described in Przystalski et al. (2008) using the
REML algorithm implemented in Genstat (see Genstat code in
the appendix).

By considering the posterior estimates of environmental means
for each system (Ênvkl), of variety ×system interaction effects (v̂jl)
and of variety × environment × system interaction effects (ŵjkl),
the predicted variety means for each system and environment
were calculated as:

Vjkl = Ênvkl + v̂ jl + ŵ jkl (12)

Next, by using the posterior estimates of environmental means
(Ênvkl) and the predicted variety means for each system and
environment (Vjkl), we calculated within a Bayesian framework
the harmonic mean of the relative performance of genotypic
values (HMRPVG) stability index (see e.g. Resende, 2007;
Colombari Filho et al., 2013; Dias et al., 2018) as:

HMRPVGjl = K∑K
k=1

Ênvkl
V jkl

(13)

Resende (2007) described a method of selecting for yield and sta-
bility based on the harmonic mean of genotypic values (HMVG)
for each genotype tested in different environments. The lower the
standard deviation of genotypic performance across environ-
ments, the greater is the harmonic mean of its genotypic values.
Therefore, varieties with higher HMGV are those that have high
yield and high stability. For adaptability, Resende (2007) used
the relative performance of genotypic values (RPVG) across
environments. To calculate this index, one first expresses the pre-
dicted genotypic values as proportion of the overall mean of each
environment and next, the mean of these ratios is calculated for
each genotype. The HMRPVG method combines the methods
HMVG and RPVG, simultaneously, penalizing genotype instabil-
ity, similarly to the superiority measure (Lin and Binns, 1988). At
the same time, adaptability is expressed in the sense of responding
to environmental improvement, by considering the proportions of
the means of each genotype in each environment, compared with
the overall means in these environments, similar to the method
proposed by Annicchiarico (1992). Therefore, varieties with
higher HMRPGV are those that have high adaptability and high
stability simultaneously for the environments and systems evalu-
ated in the current study.

For comparison, by considering the predicted variety means in
each system and environment, we computed within a Bayesian
framework the superiority stability coefficient (Lin and Binns,
1988) as:

P jl =
∑K

k=1 (Vjkl −Mkl)
2

2 · K (14)

whereMkl is the maximum response among all varieties in the kth
environment and the lth system. Varieties with the smallest values
of the superiority measure tend to have better yields and to be
more stable.
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Finally, based on variety means for each system we calculated
the probabilities that mean tuber yield in that system would be
higher than the mean of control varieties, i.e.

Probab jl = P(mjl . Mcl|y) = 1
S

∑S
s=1

I(ms
jl . Ms

cl|y),

j = 1, . . . , J ; l = 1, 2

(15)

where mjl mean of the jth variety in lth system, Mcl is the mean of
the control varieties in the lth system, I(ms

jl . Ms
cl|y) is an indica-

tor function taking value 1 if the posterior sample ms
jl is greater

than Ms
cl and 0 otherwise.

Every year, the Research Institute of Organic Agriculture FiBL
publishes a list of varieties recommended for organic cultivation
in Switzerland. Two varieties from our list (varieties Jelly and
Ototlia) were recommended for cultivation by FIBL (Dierauer
et al., 2021). For this reason, these two varieties were treated as
control varieties in the organic system and we calculated the prob-
ability that the mean tuber yield of a given variety in this system
would be higher than the mean of those two varieties (Probab1,j1).
In the conventional system, according to methodology used in
COBORU, all varieties are treated as control varieties in the con-
ventional post-registration variety trial system. For this reason, in
the conventional system we calculated the probability that the
mean tuber yield of a given variety in this system would be higher
than the mean of all varieties (Probab2,j2). For comparison we also
calculated Probab2 for varieties grown in organic system.

The data set was analysed using Markov Chain Monte Carlo as
implemented in the R-package NIMBLE (de Valpine et al., 2017,
2022). Three Markov chains were generated with different starting
values. To improve convergence and mixing of the chains,
the observed tuber yields were expressed in tonnes per hectare
(t/ha). Joint analysis of organic and conventional trials is new
in COBORU and no prior knowledge was available. For this rea-
son, to apply the model to the data, we specified the prior means
mal of al (l = 1, 2) as empirical means for each system. In our
model, as scale matrix Su for the covariance Su as we used a diag-
onal matrix of order two with elements equal to empirical var-
iances of environmental means in each system divided by two.
The few of degrees of belief for Su and non-informative priors
for Sv and Sw indicate lack of experience in jointly analysing
organic and conventional field trials. Values defining the prior
distributions of general mean and covariance matrices are sum-
marized in Table 4.

The convergence of chains was examined by visual inspection
of trace plots and using the Gelman and Rubin (1992) conver-
gence diagnostic (potential scale reduction factor, R̂) (see also
Cowles and Carlin, 1996; Gelman et al., 2013) implemented in
the CODA R-package (Plummer et al., 2006). The length of
each Markov chain was selected in such a way that the R̂ was
less than 1.08 for each parameter in the model. For this reason,
the length of each chain was set to 2 500 000 iterations with a
burn-in period of 1 250 000 iterations and a thinning interval
equal to 40. Using the function calculate widely applicable infor-
mation criterion (WAIC) from the NIMBLE package we calcu-
lated the value of the WAIC for the model. For model (1), the
estimates of parameters of interest from all three Markov chains
were summarized using the summary function from MCMCvis
R-package (Youngflesh, 2018).

Results

The data set was analysed using model (1) (see Supplement S1).
The value of WAIC for model (1) was equal to 2471.9. Before
looking at the estimates from model (1), we first examined the
convergence of the random and fixed effects by visually inspect-
ing the trace plots (Supplement S2). From the trace plots, one
can observe that all the chains show good convergence. This
was confirmed by the Gelman and Rubin tests. The values of
point estimates of potential scale reduction factor (Point est.)
for all fixed and random effects were equal to one (see
Supplement S4). The evolution of Gelman and Rubin’s shrink fac-
tor is shown in Supplement S3.

Figure 2 shows the highest posterior density intervals for the
elements of the covariance matrices Su, Sv and Sw.

For covariance Σv,12 zero belongs to the highest posterior dens-
ity interval. This means that there is no evidence of association
between varieties in organic and conventional system. For this
reason, we modified model (1). In the new model, we replaced
(2) by

v jl|sv,l � N(0, s2
v,l) l = 1, 2; v = 1, . . . , J (16)

For σv,l we assigned half-Cauchy (HC) distribution with para-
meters 0 and 10

sv,l � HC(0, 10) l = 1, 2 (17)

The data set was re-analysed using the modified model (1) with
different starting values for each chain (see Supplement S5). We
used the same values defining the prior distributions of general
mean and covariance matrices as in model (1) (Table 4). The
value of WAIC for the new model (1) was equal to 2471.4. The
WAIC values from the two models are statistically identical.
Hence, following the principle of parsimony, we prefer to choose
the simpler model.

Before looking at the estimates from the modified model (1),
we first examined the convergence of the random and fixed effects
by visually inspecting the trace plots (Supplement S6). From the
trace plots, one can observe that all chains show good conver-
gence. This was confirmed by the Gelman and Rubin tests. The
values of point estimates of potential scale reduction factor
(Point est.) for all fixed and random effects were equal to one
(see Supplement S8). The evolution of the Gelman and Rubin’s
shrink factor is shown in Supplement S7.

Table 4. Values defining the prior distributions of general mean and covariance
matrix Su , Sv and Sw

Parameter Estimate

ma1 28.34

ma2 50.38

Su,11 100.175

Su,22 81.97

νu 4

A−2
l,v (l = 1, 2) 0.05

A−2
l,w (l = 1, 2) 0.0005

The Journal of Agricultural Science 101

https://doi.org/10.1017/S0021859623000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859623000084


For the series of field trials, the analysis of the new model pro-
vided several estimated parameters and statistics (Tables 5 and 6).
The posterior estimates of general means in each system, variance
components and covariance matrices are reported in Table 5 (see
also Supplement S8).

It can be noted that the mean value for the organic system was
smaller than the mean value for non-organic system. The mean
for the organic system was equal to 28.3 t/ha, which was 56.3%

of the mean yield of the non-organic system. Next, one can
observe that the environmental variance in organic conditions
was higher than in conventional. The calculated environmental
correlation between the two systems was equal to 0.53. Further,
it can be noticed that for the rest of the variance components,
the values in the organic system were always smaller than the
values in the non-organic system. Finally, in the last two rows
of Table 5, the mean error variances for both agronomic systems
are reported. It can be seen that the mean error variance for the
organic system was smaller than the mean error for the conven-
tional system. A detailed inspection of the residual variances
revealed that the biggest error variance in the organic system
occurred in environments four and eleven. In the conventional
system, the biggest error variance occurred in environments
four, six, seven, eight and twelve.

In Fig. 3 the estimated posterior environmental means for both
agronomic systems is depicted (see also Supplement S8).

Firstly, it can be noticed that the highest values for the organic
system were obtained for environments three, four and seven.
Moreover, one can observe that in all environments the mean
values for the organic system were smaller than the means for
the non-organic system. However, a detailed inspection of envir-
onmental means revealed that, for environments ten and seven,
the yield gap between the two systems was small in comparison
to the rest of environments. For those two environments, the
yield gaps were equal to 9 and 10.9 t/ha, respectively. On the
other hand, the biggest yield gap between the two systems was
observed for environment twelve and was equal to 48.3 t/ha.

Table 6 reports the estimated posterior variety means, values of
HMRPVG index, superiority stability coefficient and the values of
probabilities.

The estimated posterior variety means with their 95% confi-
dence intervals (CI) are reported in columns three and four of
Table 6. Among the tested varieties, variety Jurek had the highest
tuber yield in the conventional system. In the organic system, var-
iety Tajfun had the highest tuber yield, while in the conventional

Fig. 2. The highest posterior density intervals for the elements of covariance matrices
Su (a), Sv (b) and Sw (c).

Table 5. Posterior summaries (mean, 95% confidence interval) for
hyperparameters in the modified model (1)

Parameter Estimate CI0.95

a1 28.3 (20.3–36.3)

a2 50.3 (42.8–57.8)

Σu,11 186.59 (84.31–398.27)

Σu,12 89.50 (8.40–236.94)

Σu,22 144.48 (62.22–317.63)

s2
v,1 6.13 (0.63–23.01)

s2
v,2 15.66 (1.17–57.09)

Σw,11 13.52 (8.37–20.55)

Σu,12 12.66 (6.08–21.28)

Σu,22 46.64 (31.55–67.83)

s2
z,1 1.90 (0.78–3.96)

s2
z,2 2.30 (0.90–4.88)

�s2
e,1 9.12 –

�s2
e,2 11.58 –

�s2
e,1 – the mean error variance for organic experiments.

�s2
e,2 – the mean error variance for conventional experiments.
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Table 6. Posterior variety means, values of HMRPVG index and superiority stability index (P), and probabilities that mean tuber yield in a given system would be higher than the mean of control varieties

System Variety

Mean[t/ha] HMRPVG P Probab

Estimate CI0.95 Estimate CI0.95 Estimate CI0.95 Probab1 Probab2

Organic Jelly 25.2 [7] (17.11–33.25) 0.84 [7] (0.756–0.923) 53.66 [7] (38.38–70.06) 0.005 0.002

Jurek 28.2 [6] (20.20–36.19) 1.02 [3] (0.928–1.127) 19.83 [4] (10.21–29.39) 0.810 0.460

Laskara 28.9 [3] (20.95–36.88) 1.01 [4] (0.912–1.119) 11.77 [3] (6.43–18.61) 0.929 0.754

Mazur 28.3 [5] (20.37–36.28) 0.95 [6] (0.857–1.056) 17.26 [5] (12.29–23.14) 0.843 0.504

Otolia 29.2 [2] (21.16–37.09) 1.04 [2] (0.947–1.154) 11.71 [2] (6.41–18.69) 0.995 0.836

Satina 28.1 [4] (20.10–36.04) 0.98 [5] (0.894–1.084) 32.36 [6] (18.03–45.48) 0.791 0.406

Tajfun 30.3 [1] (22.30–38.27) 1.05 [1] (0.950–1.171) 4.67 [1] (2.98–7.79) 0.992 0.984

Conventional Jelly 49.6 [5] (41.93–57.22) 0.95 [6] (0.890–1.026) 92.92 [6] (72.21–116.22) – 0.313

Jurek 54.7 [1] (46.83–62.68) 1.11 [1] (1.041–1.200) 18.43 [1] (10.65–27.82) – 0.991

Laskara 49.8 [6] (42.21–57.38) 0.97 [4] (0.908–1.049) 73.10 [5] (54.54–94.48) – 0.368

Mazur 50.3 [4] (42.75–57.93) 0.99 [3] (0.920–1.063) 65.93 [4] (49.85–83.68) – 0.505

Otolia 50.6 [3] (43.07–58.27) 0.97 [5] (0.906–1.049) 54.87 [3] (44.09–67.74) – 0.579

Satina 46.0 [7] (38.03–53.89) 0.86 [7] (0.805–0.930) 182.88 [7] (149.01–218.21) – 0.009

Tajfun 51.3 [2] (43.67–58.90) 1.02 [2] (0.955–1.102) 48.06 [2] (33.81–64.33) – 0.723

The numbers in square brackets denote the ranking of variety. Most favourable scores are highlighted in bold while least favourable scores are shown in italics.
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system this variety was ranked second. Varieties Jelly and Otolia,
recommended by FIBL, were ranked seventh and second, respect-
ively, in the organic system. In the conventional system, these var-
ieties were ranked fifth and third, respectively. The posterior
distributions of variety means are shown in Supplement S6.

The posterior estimates of HMRPVG indices and superiority
stability coefficients with their 95% CI are reported in columns
five to eight of Table 6. The posterior distributions of the two sta-
bility measures are shown in Supplement S6. One can observe
that, in the organic system, variety Tajfun had the highest value
of HMRPVG index and the lowest value of the superiority stabil-
ity coefficient. This means that this variety was the most stable
among the tested varieties in the organic system. The second-best
variety in terms of HMRPVG index and superiority stability coef-
ficient was variety Otolia. On the other hand, variety Jelly was the
most unstable in terms of both stability measures. In the conven-
tional system, variety Jurek was the most stable variety in terms of
both stability coefficients. The best variety in the organic system
was the second most stable variety. Furthermore, variety Otolia
was the fifth best variety in terms of HMRPVG index, while in
the case of superiority stability coefficient it was ranked third.
Finally, the Spearman rank correlations between the systems
were equal to 0.5 and 0.571, for the HMRPVG index and the
superiority stability coefficient, respectively. Moreover, for the
organic system, the Spearman rank correlation between the two
stability measures was equal to 0.821, whereas, for the conven-
tional system, the value of the correlation coefficient was equal
to 0.893.

In the last two columns of Table 6, the probabilities that mean
tuber yield in a given system would be higher than the mean of
control varieties are reported. It can be noticed that in the organic
system the highest values of Probab1 and Probab2 were obtained
for varieties Otolia and Tajfun. In the conventional system the
highest value of Probab2 was obtained for variety Jurek.
Furthermore, it can be seen that variety Tajfun was the second

best in the conventional system. On the other hand, variety
Jelly was one of the worst varieties in both agronomic systems.

Discussion

In the present study, we simultaneously assessed the yield stability
of potato varieties in organic and conventional systems. In the lit-
erature, stability of varieties is assessed in multi-environment
trials, which are analysed using either a two-stage approach or
one-stage approach (see e.g. Flis et al., 2014; Caliński et al.,
2017; Damesa et al., 2017; Lenartowicz et al., 2020). In the first
approach, one first analyses each trial separately and next, the var-
iety means from all trials are analysed using a linear mixed model
or AMMI model (Gauch, 1992). In the latter approach, the plot
data from all trials in the series are analysed in a single stage.

In the present work, the stability analysis was performed on
plot data and by using Bayesian hierarchical models. This
approach was preferred for several reasons. First of all, the
Bayesian approach allows one to incorporate the knowledge
about likely values of average yields and variance components
in a systematic way using proper priors. For example, one can
use the knowledge from previous studies. For variance compo-
nents such a procedure has been described in Silva et al.
(2013), where the authors initially performed the analyses with
non-informative priors for the inverse of variance components.
As the same population and phenotypes were analysed by
ANOVA and REML in a previous study, they used those results
to construct informative priors. However, in order to validate
the inclusion of these two studies in the meta-analysis, they
used a homogeneity test based on the Q statistics (Hedges and
Olkin, 1985). As variety offices or plant breeding companies
have long-term trial data at their disposal, it is possible to update
the hyperparameters and consequently update the knowledge
regarding the variance parameters. Considering ten years of col-
lection, Azevedo et al. (2022) used two types of prior information

Fig. 3. Adaptive tuber yield response patterns across
12 environments in Poland for organic and conven-
tional system.
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in the analysis in the ith year of study: (a) the hyperparameters
were calculated by analysing the (i − 1)-th year, (b) the hyper-
parameters were calculated by joint analysis of the years 1, …, i
− 1. However, according to Silva et al. (2013), given a trait,
using estimates of additive and error variances from distinct
experiments as prior information can provide biased estimates
of the scale parameters’ mean and variance. Azevedo et al.
(2022) came to the same conclusion regarding their procedure
II. To overcome this problem, Silva et al. (2013) proposed to
re-parameterize the model using heritability and phenotypic vari-
ance. Although heritability is also a population parameter under a
given experimental condition, heritability values are more consist-
ent. However, the breeders know that for some traits the heritabil-
ity is low, but for other traits the heritability is consistently high,
and they can easily incorporate their knowledge about likely
values of heritability. A similar concept is used in the FW package
(Lian and de los Campos, 2016), in which prior values of variance
components in the model are expressed as a proportion of pheno-
typic variance. In the present study, as a prior knowledge about
environments, the empirical variances of environmental means
in each system were used. A similar approach was used in
Mathew et al. (2016): the authors applied a multi-trait animal
model in the analysis of plant breeding trials and as the prior
knowledge about parameters of interest they used phenotypic var-
iances for each analysed trait. In a different study, Dias et al.
(2022) used weakly-informative priors for standard deviations
in their model and defined the known global hyperparameter as
max( y) × 10. Moreover, we assumed a priori that the effects of
replication nested in environments in an organic system and
the effects of replication nested in environments in a conventional
system are independent. The same assumption was used for ejlkr
errors. The main reason for this approach was that organic and
conventional trials are managed differently and that experimental
designs for organic and conventional trials in the same environ-
ment were generated independently. Further, Bayesian analysis
offers a possibility of calculating posterior distributions of new
quantities, which are functions of model parameters. In the pre-
sent study, the posterior distributions for HMRPVG indices and
superiority stability coefficients were calculated. Finally, by
using the MCMC samples we were able to calculate the probabil-
ity that the mean of a given variety for a given system exceeds the
mean of control varieties in that system. A similar approach was
used by Dias et al. (2022), where the authors used the probability
methods of stability analysis in a Bayesian framework for unrav-
elling genotype × environment interaction.

Based on the results from the current study, it can be con-
cluded that the varieties Tajfun and Otolia were the highest yield-
ing varieties among the tested varieties in the organic system. The
lowest tuber yield in the organic system was found for variety
Jelly. According to the HMRPVG index and superiority stability
coefficient, the highest yielding varieties in the organic system
were also the most stable. Thus, one can draw the conclusion
that varieties Tajfun and Otolia should be promoted, and variety
Jelly should not be recommended for cultivation in the organic
system.

In the present paper, we also compared tuber yields in organic
and conventional systems. The tuber yield in the organic system
was approx. 44% lower than the tuber yield in the conventional
system. This is agreement with the results obtained by
Kazimierczak et al. (2019). However, for environments seven
and ten the yield gap between the two systems was smaller. For
these two environments, the tuber yields in organic trials were

9 and 11%, respectively, lower than the tuber yields in conven-
tional trials. On the other hand, the biggest difference between
the two systems was observed in environment twelve. In general,
such big differences can be partly explained by the fact that the
tested varieties were bred and selected for their ability to produce
under the conventional system. Till now, no modern variety that
is developed to produce high yields under organic conditions has
been registered in the Polish National List. In the literature,
depending on the crop, different yield gaps between the two sys-
tems are reported. In a meta-analytic study, Lesur-Dumoulin et al.
(2017) showed that the yield in the organic system was on average
10 to 32% lower than the yields in the conventional system.
For potato, the tuber yield in the organic system was on average
30% lower than the tuber yield in the conventional system
(de Ponti et al., 2012; Ponisio et al., 2015). However, the yield
gap can be still reduced. Schrama et al. (2018) have shown that
the yield gap between organic and conventional systems declines
with progressing time since conversion, which coincides, accord-
ing to the authors, with enhanced N-input efficiency of organic
compared to the other systems.

We conclude from the current study that there is no associ-
ation between varieties in organic and conventional systems,
since zero belonged to the highest posterior density interval for
Σv,12. The estimated posterior genetic correlation between the
two systems was approx. equal to 0.2. This result was surprising.
However, for the data set used in the present study, a similar
behaviour has been observed for the REML estimates in the
model (1) and the model in Przystalski et al. (2008). The
REML estimates of the genetic correlations were equal: 0.41
(S.E. = 0.45) and 0.44 (S.E. = 0.49), respectively. On the other
hand, for the original data set with eleven varieties, the estimated
genetic correlations in the two models were equal, 0.80
(S.E. = 0.16) and 0.83 (S.E. = 0.16), and were within the range pro-
vided by Przystalski et al. (2008) (0.79–1) for the yield. Therefore,
it can be concluded that the value of the genetic correlation
between the two systems depends on the number of varieties in
the data set. Moreover, the value of the genetic correlation
between the two systems depends on the aim of the study. In
the case of interest in a joint stability assessment in both agro-
nomic systems, a data set with a reduced number of varieties
should be used and a low genetic correlation value should be
expected. On the other hand, if the main goal is estimation of
the genetic correlation between the two systems, then one should
use the whole data set. In the present study we were interested in
assessing yield stability, for this reason we used results for var-
ieties which were tested for three years.

The models described in the present work can be easily pro-
grammed in NIMBLE R-package. In this package the syntax
used to specify the model is similar to that used by WinBUGS
or JAGS, so scientists familiar with WinBUGS or JAGS will not
have problems with specifying their models. Moreover, for large
data sets, to speed up the computations one can fit the model
in NIMBLE using parallel computing and run each chain on sep-
arate core. However, in this case one obtains the WAIC value for
each Markov chain and not a single value of the WAIC for all
chains. One can also fit the models described in the present
study by using the MCMCglmm package (Hadfield, 2012).
However, in this case the models should be compared in terms
of the deviance information criterion (Spiegelhalter et al., 2002;
DIC). Further, the NIMBLE package has an extended list of avail-
able probability distributions in comparison to WinBUGS, JAGS
or MCMCglmm. For example, one can directly assign the
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inverse-Wishart distribution prior for a covariance matrix. In
Lunn et al. (2013), it was pointed out that the least informative
proper inverse-Wishart is obtained by setting degrees of belief
equal to dimSu. In the present study to estimate the covariance
matrix Su an inverse-Wishart distribution with dimSu + 2
degrees of belief was used. This distribution can be considered
as weakly-informative. In the literature concerning Bayesian sta-
tistics, it is argued against using the inverse-Wishart distribution
priors for covariance matrices because they impose a degree of
informativity and are sensitive to the choice of hyperparameters.
Instead, it was proposed to use the half-Cauchy distribution or
inverse-Gamma distribution with parameters α = 2 and β = 2/A
(where A is large number) for standard deviations, and
scaled-inverse-Wishart (SIW) distribution or LKJ distribution
(Lewandowski et al., 2009) for covariance matrices (Gelman
et al., 2013). In the MCMCglmm package, by default, an
inverse-Wishart distribution is used as prior for variance compo-
nents and covariance matrices. In the present work, by using the
IW distribution in NIMBLE, we assigned hierarchical half-t priors
(Huang and Wand, 2013) for the covariance matrices Sv and Sw.
This distribution can be easily programmed within the NIMBLE
framework. Alternatively, one can try to program in NIMBLE the
SIW or LKJ distributions using the piece of code given in the nim-
ble manual (de Valpine et al., 2022).

In the current study, for each variety, we calculated the prob-
ability that the mean of a given variety in a given system exceeds
the mean of the controls in that system. A similar approach was
used by Eskridge and Mumm (1992), who were also interested
in the selection of cultivars based on the probability of dominance
of the control cultivar. They calculated the probabilities assuming
normality and using a nonparametric model. The normality
assumption was also used by Eskridge (1990), Lenartowicz et al.
(2020) and Przystalski and Lenartowicz (2020) in their risk ana-
lysis. However, the distribution of difference between the means
of the test variety and the control variety, or the distribution of
yield across the environments is usually unknown. For this rea-
son, as in Dias et al. (2022), the probabilities were calculated
using MCMC samples from Bayesian analysis. In a frequentist
approach, a similar procedure was proposed by Piepho (1998)
to calculate the probability that one system outperforms another
system. In that study, to calculate the probability that System 1
outperforms System 2, he proposed to test both systems in a
large number of environments, calculate the difference Dj = y1j
− y2j in each, and determine the relative frequency with which
Dj > 0.

In the present study we used the HMRPVG index and the
superiority stability coefficient to simultaneously assess stability
of varieties in both agronomic systems. The two stability measures
were preferred for several reasons. First of all, just like animal
breeders, plant breeders also use best linear unbiased predictions
(BLUP’s) to select the best lines and to evaluate their stability. For
example, Colombari Filho et al. (2013) used BLUP’s to assess
adaptability and stability of lines of upland rice in Brazil.
Recently, Bocianowski and Liersch (2021) used the HMPRVG
index to select the best oilseed rape lines. In a different study,
Derejko et al. (2020) evaluated 12 varieties using the superiority
stability coefficient separately for each of six agro-zones in
Poland, and based on the values of this stability measure they
chose the best variety for each region. Next, these two stability
measures can be easily estimated within R-NIMBLE framework.
Finally, these measures have recently been implemented in the
metan package (Olivoto and Lúcio, 2020). However, we also

estimated Shukla’s stability variances for varieties in both systems
(results not shown) by extending the linear mixed model method-
ology described in Piepho (1999). For this purpose, we assumed
in Eqn (5) that

w jk|Sw,j � N(0, Sw,j)

For a fixed agronomic system, model (1) with the above assump-
tion reduces to the Shukla’s stability variance model described in
Przystalski and Lenartowicz (2020). From this perspective, model
(1) with the above assumption can be considered as an extension
of the Shukla’s stability variance model described in that paper to
the case of three-way variety × environment × system data set and
cannot be implemented in the MCMCglmm package. However,
from the practical point of view, model (1) with the above
assumption is computationally demanding and time consuming,
especially for large data. In our case, we had to generate seven
covariance matrices. From this perspective, a better method of
estimation Shukla’s stability variance is a method proposed by
Dias et al. (2022). In that paper, the authors assessed the stability
of a given genotype across k environments based on the variance
of GEI effects (var(ge)sjk). Finally, further improvement of the ana-
lysis can be achieved by analysing a variety × year × site × system
data set. On the other hand, in VCU and post-registration trials,
apart from yield, other traits are observed (e.g. plant height, dis-
ease resistance). By slightly modifying the proposed methodology,
it is possible to analyse multi-trait multi-environment data (either
variety × environment × trait data set or variety × year × site ×
trait data set) and at the same time assess the stability of the ana-
lysed traits. Further, since the problem of recommending varieties
for cultivation can be treated as a Bayesian decision-theoretical
problem (see e.g. Theobald and Talbot, 2002, 2004; Theobald
et al., 2006), one can try to build a multi-trait utility function
and calculate a posteriori the expected utility for each variety.
We plan to explore these topics in a future work.

Conclusion

The tuber yield in the organic system was approx.44% lower than
the tuber yield in the conventional system. For organic system,
varieties Tajfun and Otolia were the highest yielding varieties
among the tested varieties. For conventional system, the variety
Jurek was the highest yielding variety. According to HMPRGV
stability index and the superiority index, variety Tajfun was the
most stable variety in organic system, whereas variety Jurek was
the most stable in conventional system. Additionally, varieties
Tajfun and Otolia were the most stable and highest yielding var-
ieties in the organic system, whereas in the conventional system,
the variety Jurek was the most stable and highest yielding variety
among the tested varieties.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859623000084
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Appendix

This Appendix presents the Genstat code used to fit the model described in
Przystalski et al. (2008) and model (1).

job
import ‘orgconv.xlsx’;sheet = ‘Arkusz10’
list
pointer [values = sys, env] d
facproduct d;ss
‘Przystalski et al. (2008)’
vcomponents [fixed = system+ env + env.system;factorial = 9;experiments = ss]\
random = variety.system + env.variety + variety.system.env +

env.system.rep
vstructure [terms = system.variety] model = correlation, iden;heterogeneity

= outside; factor = system, variety
reml [print = model, components, wald, deviance, means; pse = differ-

ences; mvinclude = *;\
method = AI;workspace = 30]yield/10
‘Model (1)’
vcomponents [fixed = system;factorial = 9;experiments = ss]\
random = env.system + variety.system + variety.system.env +

env.system.rep
vstructure [terms = system.env] model = correlation, iden;heterogeneity =

outside; factor = system, env
vstructure [terms = system.variety] model = correlation, iden;heterogeneity

= outside; factor = system, variety
vstructure [terms = system.variety.env] model = correlation, iden, iden;het-

erogeneity = outside; factor = system, variety, env
vstructure [terms = env.system.rep] model = iden, diag, iden; factor = env,

system, rep
reml [print = model, components, wald, deviance, means; pse = differ-

ences; mvinclude = *;\
method = AI;workspace = 30]yield/10
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