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Abstract

In this article we give a geometric construction of a tilting perverse sheaf on Drinfeld’s
compactification, by applying the nearby cycles functor to a family of nondegenerate
Whittaker sheaves. Its restrictions along the defect stratification are shown to be certain
perverse sheaves attached to the nilpotent radical of the Langlands dual Lie algebra. We
also describe the subquotients of the monodromy filtration using the Picard–Lefschetz
oscillators introduced by Schieder. We give an argument that the subquotients are
semisimple based on the action, constructed by Feigin, Finkelberg, Kuznetsov, and
Mirković, of the Langlands dual Lie algebra on the global intersection cohomology of
quasimaps into flag varieties.

1. Introduction

1.1 In this article we study the degeneration of a Whittaker sheaf on Drinfeld’s compactification
to an object of the principal series category (for us ‘sheaf’ will mean D-module, but our results
carry over mutatis mutandi to `-adic sheaves in characteristic p > 0 for ` 6= p). In [AG15b] this
degeneration is implemented by a gluing functor, meaning !-extension from the general locus
followed by !-restriction to the special fiber. This operation produces a complex of sheaves,
which the authors of [AG15b] link to the constant term of Poincaré series.

Nearby cycles provide a different, although closely related, method of degeneration. Notably,
if we apply nearby cycles (more precisely, the geometric Jacquet functor of [ENV04]) to the
perverse cohomological shift of a nondegenerate Whittaker sheaf, the result is still a perverse
sheaf. It comes equipped with a nilpotent endomorphism, which gives rise to the so-called
monodromy filtration. We describe the restrictions of this nearby cycles sheaf to the defect
strata in terms of the Langlands dual Lie algebra, showing in particular that these restrictions
are perverse, and hence that the nearby cycles sheaf is tilting. We also describe the associated
graded sheaf of the monodromy filtration on nearby cycles along with its Lefschetz sl2-action,
in terms of the Picard–Lefschetz oscillators, which are certain factorizable perverse sheaves with
sl2-action introduced in [Sch18].

In [Cam17], the author introduced a similar construction in the situation of a finite-
dimensional flag variety. Namely, we showed that the nearby cycles of a one-parameter family of
nondegenerate Whittaker sheaves on a flag variety is the big projective sheaf, which is isomorphic
to the tilting extension of the constant perverse sheaf on the big cell. Thus in both cases taking
nearby cycles of Whittaker sheaves produces tilting sheaves.
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1.2 Fix an algebraically closed field k of characteristic zero and a smooth connected curve X

over k. Let G be a connected reductive group over k. We assume for simplicity that the derived

subgroup [G,G] is simply connected. We write I for the set of vertices of the Dynkin diagram of

G, and ZG for the center. Fix a Borel subgroup B with unipotent radical N , and put T := B/N .

For Y an algebraic stack locally of finite type, we write D(Y ) for the unbounded derived

category of D-modules on Y and denote by Dhol(Y ) the full subcategory consisting of bounded

complexes with holonomic cohomologies. The reader is free to view D(Y ) as a triangulated

category for most of the paper, with the exception of § 3, where the differential graded (DG)

enhancement of D(Y ) is used.

We denote by BunNω Drinfeld’s compactification of the moduli stack BunNω of canonically

twisted N -bundles. A choice of isomorphism N/[N,N ] ∼= GI
a gives rise to a map

ev : BunNω −→ Ga,

constructed for example in [FGV01, § 4.1].

Let χ be a nontrivial exponential D-module on Ga. As in [FGV01], one shows that ev∆ χ

extends cleanly to a perverse sheaf W1 on BunNω , where ev∆ denotes cohomologically normalized

inverse image along the smooth morphism ev. The sheaf W1 has irregular singularities because

χ does, so, to be clear, by ‘perverse sheaf’ we mean any holonomic D-module.

Choose a dominant regular cocharacter γ : Gm→ T , which determines an action

aγ : Gm × BunNω → BunNω .

We will denote by W the perverse sheaf a∆
γ W1 on Gm × BunNω . Consider the embeddings

BunNω
i−→ A1 × BunNω

j
←− Gm × BunNω .

The Gm-equivariant object i!j!W of D(BunNω) is studied in [AG15b].

We will consider instead a closely related perverse sheaf on BunNω , namely the nearby

cycles Ψ(W ) with respect to the projection A1 × BunNω → A1. This sheaf is unipotently Gm-

monodromic, and (the logarithm of) the monodromy endomorphism of nearby cycles agrees with

the obstruction to Gm-equivariance, a nilpotent endomorphism. The composition Ψ ◦ a∆
γ for a

Gm-equivariant one-parameter family is studied in [ENV04] under the name geometric Jacquet

functor.

Up to isomorphism Ψ(W ) does not depend on the choice of χ. In particular Ψ(W ) is Verdier

self-dual, since Ψ commutes with Verdier duality and the Verdier dual of W is the clean extension

of ev∆ χ−1.

The object i!j!W can be recovered from Ψ(W ) as the derived invariants of monodromy,

and conversely Ψ(W ) is the derived coinvariants of the natural H•(Gm)-action on i!j!W (see

Definition 3.1.1 and Proposition 3.2.2). One can summarize by saying that nearby cycles and

the ‘gluing functor’ i!j! are related by Koszul duality.

From the standpoint of the geometric Langlands program this Koszul duality motivates

the study of Ψ(W ), since the gluing functors play a crucial role in the proof of the geometric

Langlands equivalence sketched in [Gai15]. Namely, they are used to achieve a spectral description

of the so-called extended Whittaker category. Nearby cycles has the advantage over the gluing

functor of being t-exact, so that Ψ(W ), unlike i!j!W , is a perverse sheaf.
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Nearby cycles of Whittaker sheaves on Drinfeld’s compactification

1.3 The stack BunNω has a stratification by defect of the generalized N -bundle. Our first main
theorem is a description of the restrictions of Ψ(W ) to the strata. In particular we will prove
that this sheaf is tilting with respect to the defect stratification, meaning its !- and ∗-restrictions
to the strata are perverse (although generally not lisse).

Write Λ for the lattice of cocharacters of T , and denote by Λpos ⊂ Λ the positive coweights
with respect to B. The defect stratification of BunNω is indexed by Λpos, and for each µ ∈ Λpos

we denote the locally closed stratum embedding by

j=µ : BunNω ,=µ −→ BunNω .

Denote by X(n) the n-fold symmetrized power of X. If µ =
∑

i∈I niαi for some nonnegative
integers ni (here αi is the simple coroot corresponding to i) then the corresponding configuration
space of points in X is defined by

Xµ :=
∏
i∈I

X(ni),

and there is a smooth surjection

mµ : BunNω ,=µ −→ Xµ.

In [BG08] the authors introduced certain factorizable perverse sheaves Ωµ on the
configuration spaces Xµ. The !-fiber of Ωµ at a point

∑
i µixi is⊗

i

C•(ň)µi ,

where ň is the unipotent radical of a Borel subalgebra in the Langlands dual Lie algebra ǧ, and
C•(ň) is its Ť -graded cohomological Chevalley complex.

Theorem 1.3.1. For any µ ∈ Λpos there is an isomorphism j!=µΨ(W )→̃m∆
µ Ωµ.

In fact, Ωµ is indecomposable and mµ has contractible fibers, so the isomorphism in the
theorem is automatically unique up to scaling. Since Ψ(W ) is Verdier self-dual, Theorem 1.3.1
implies that it is tilting with respect to the defect stratification.

1.4 Recall that the monodromy filtration on Ψ(W ) is the unique filtration by perverse sheaves

F−m ⊂ · · · ⊂ Fm−1 ⊂ Fm = Ψ(W )

such that for all 1 6 i 6 n the ith power of the monodromy endomorphism induces an
isomorphism Fi/Fi−1→̃F−i/F−i−1. The associated graded sheaf gr Ψ(W ) has an action of the so-
called Lefschetz sl2 such that the lowering operator is induced by the monodromy endomorphism
and Fi/Fi−1 has weight i for the Cartan operator.

We now formulate a description of gr Ψ(W ) in terms of certain factorizable perverse sheaves
with sl2-action, called the Picard–Lefschetz oscillators after [Sch18] (see also § 3.2 of [Sch17]).

First let us define the Picard–Lefschetz oscillators on X(n). Let std denote the standard
two-dimensional representation of the Lefschetz sl2, and write sgn for the sign character of the
symmetric group Σn. The Σn × sl2-representation sgn⊗ std⊗n (here Σn also permutes the std

factors) gives rise to a local system with sl2-action on the disjoint locus X
(n)
disj, by applying the

associated bundle construction to the canonical Σn-torsor Xn
disj → X

(n)
disj. Then Pn is defined
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as the intermediate extension to X(n) of the (perverse cohomological shift of the) local system
attached to sgn⊗ std⊗n. The perverse sheaf Pn carries an sl2-action by functoriality, and is
evidently semisimple.

Recall that a Kostant partition of µ ∈ Λpos is an expression of the form µ =
∑

β∈R+ nββ,

where the nβ are nonnegative integers and R+ denotes the set of positive coroots. Denote by
Kost(µ) the set of Kostant partitions of µ. To any k ∈ Kost(µ) given by µ =

∑
β∈R+ nββ we

attach a partially symmetrized power

Xk :=
∏
β∈R+

X(nβ),

which is equipped with a canonical finite map ιk : Xk
→ Xµ.

The Picard–Lefschetz oscillator on Xµ is defined by the formula

Pµ :=
⊕

k∈Kost(µ)

ιk∗

(
�

β∈R+
Pnβ

)
.

In particular, we have Pnα = Pn for α a simple coroot. By construction, Pµ is a semisimple
perverse sheaf with sl2-action.

Theorem 1.4.1. There is an sl2-equivariant isomorphism

gr Ψ(W ) −̃→
⊕

µ∈Λpos

j=µ,!∗m
∆
µ Pµ. (1.4.1)

In particular gr Ψ(W ) is semisimple. Using the theorem we can compute the kernel of the
monodromy operator, whose simple subquotients are the lowest weight sheaves for the Lefschetz
sl2-action.

Corollary 1.4.1.1. The canonical morphism j=0,! ICBunNω → Ψ(W ) is an isomorphism onto
the kernel of the monodromy operator.

1.5 A key step in the proof of Theorem 1.4.1 is establishing that gr Ψ(W ) is semisimple. We give
a standard weight-theoretic argument, justified by Mochizuki’s theory of weights for holonomic
D-modules developed in [Moc15]. We also present a more direct proof of Theorem 1.4.1 which uses
the remarkable action, constructed in [FFKM99], of ǧ on the intersection cohomology of quasimap
spaces. As we now explain, this action can be obtained via a deformation-theoretic argument
from the global unramified categorical geometric Langlands conjecture, together with its expected
compatibility with geometric Eisenstein series. This leads us to a natural generalization of the
action from [FFKM99], which the author intends to return to in future work.

Write p : BunB → BunG and q : BunB → BunT for the canonical morphisms. The functor of
compactified Eisenstein series Eis!∗ : D(BunT )→ D(BunG), introduced in [BG02], is defined by

Eis!∗(−) = p∗(ICBunB

!
⊗ q!(−)).

The rest of this section plays a motivational role only, and is otherwise not necessary to
understand the contents of this paper.

For any algebraic group H, we denote by LSH the DG algebraic stack of de Rham H-local
systems on X. For any DG stack Y we denote by QCoh(Y ) the unbounded derived category of
quasicoherent sheaves on Y .
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The form of the geometric Langlands conjecture which we now state is a coarse version of the

one formulated in [AG15a], but at this level of precision it goes back to Beilinson and Drinfeld. It

is expected to enjoy various compatibilities, but here we only describe the conjectural interaction

with Eisenstein series. Let

rspec : LSŤ −→ LSǦ

be the map induced by the inclusion Ť → Ǧ.

Conjecture 1.5.1 (Global unramified geometric Langlands). There is a fully faithful functor

LG : QCoh(LSǦ) −→ D(BunG)

which makes the following square commute up to natural isomorphism.

QCoh(LSŤ )
ρ(ω) ◦LT //

rspec
∗
��

D(BunT )

Eis!∗
��

QCoh(LSǦ)
LG // D(BunG)

Here ρ(ω) denotes the automorphism of D(BunT ) given by translation by the same-named

T -bundle.

Kodaira–Spencer theory tells us that the tangent space to LSǦ at a Ǧ-local system EǦ is

identified with H•dR(X, ǧEǦ)[1], where ǧEǦ denotes the local system attached to EǦ and the

adjoint representation ǧ. Moreover, the (derived) endomorphism algebra of the skyscraper sheaf

δEǦ in QCoh(LSǦ) is the enveloping algebra of the DG Lie algebraH•dR(X, ǧEǦ), and in particular

H•dR(X, ǧEǦ) acts on δEǦ .

Applying these principles in the case EǦ = rspec(EŤ ) for a Ť -local system EŤ , we derive

the following concrete consequence of Conjecture 1.5.1. According to geometric class field theory

LT (δEŤ ) is a multiplicative flat line bundle, and in particular is invariant under translation by

any T -bundle.

Conjecture 1.5.2. The DG Lie algebra H•dR(X, ǧEŤ ) acts on Eis!∗(LT (δEŤ )).

Moreover, we expect that the full endomorphism algebra of Eis!∗(LT (δEŤ )) is the enveloping

algebra of H•dR(X, ǧEŤ ). We also remark that LT (δEŤ ) has a simple and nonconjectural

description: it is the multiplicative line bundle with flat connection on BunT corresponding to

EŤ under geometric class field theory. This means that it is characterized (among multiplicative

flat line bundles) by the property that for any coweight λ : Ť → Gm, its inverse image along the

map X → BunT sending x 7→Ptriv
T (λ · x) is λ(EŤ ).

When EŤ is trivial, which is the only case we will use in this paper, Conjecture 1.5.2 says that

ǧ⊗H•dR(X) acts on p∗ ICBunB
. In § 6.3 we specify the action of certain generators of ǧ⊗H•dR(X),

namely the factors in the triangular decomposition. In [FFKM99] the authors verify the necessary

relations for ǧ⊗H0(X), which suffices for our application. This approach seems intractable when

approaching Conjecture 1.5.2 in full generality: the derivedness of the Lie algebra ǧ⊗H•dR(X),

or more generally H•dR(X, ǧEŤ ), makes the checking of relations difficult or impossible to do ‘by

hand.’
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2. Drinfeld compactifications and Zastava spaces

2.1 Let 2ρ : Gm→ T denote the sum of the simple coroots and fix a square root ω
⊗1/2
X of ωX .

We define
ρ(ωX) := 2ρ(ω

⊗1/2
X ) ∈ BunT (k).

By definition, BunNω is the fiber product

BunNω //

��

BunB

��
Spec k

ρ(ωX) // BunT

(see [BG02, § 0.2.1] for the definition of Drinfeld’s compactification BunB). The T -bundle ρ(ωX)
and the action of T on N give rise to a group scheme Nω over X, and the open stratum
BunNω → BunNω is identified with the moduli stack of Nω-bundles, as the notation suggests.
By construction, T acts on BunNω in such a way that BunNω → BunB factors through a closed
embedding

BunNω/T −→ BunB.

For each µ ∈ Λpos the corresponding stratum BunNω ,=µ fits into a fiber square

BunNω ,=µ
//

��

BunB

��
Xµ // BunT

where the lower horizontal morphism is the twisted Abel–Jacobi map D 7→ ρ(ωX)(D). We write

BunNω ,6µ :=
⋃
µ′6µ

BunNω ,=µ′

and j6µ for the corresponding open embedding.
The embedding j=µ of the stratum, which is known to be affine, extends to a finite map

j>µ : BunNω ,>µ −→ BunNω ,

where BunNω ,>µ := Xµ ×BunT BunB.

2.2 Now we introduce the Zastava spaces, which are factorizable local models for BunNω . There
are several versions of Zastava space, and notations vary significantly within the literature (ours
is similar to [AG15b]).

Define the Zastava space Z to be the open locus in BunNω×BunGBunB− where the generalized
N -reduction and B−-reduction are transverse generically on X. It is well known that Z is a
scheme, with connected components

Zλ := Z ∩ (BunNω ×BunG Bun
λ+deg ρ(ωX)
B− )

indexed by λ ∈ Λpos.
The map p− : BunB− → BunG gives rise to ′p− : Z → BunNω . It is shown in [BG02] that

p−,λ and therefore ′p−,λ are smooth for λ sufficiently dominant. Moreover, given a quasicompact
open U ⊂ BunNω , for λ sufficiently dominant the image of Zλ→ BunNω contains U .
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For each 0 6 µ 6 λ we have the corresponding stratum Zλ=µ := Zλ ×BunNω
BunNω ,=µ with

locally closed embedding
′jλ=µ : Zλ=µ −→ Zλ.

Define
◦
Zλ := Zλ=0. Similarly, we have Zλ6µ := Zλ ×BunNω

BunNω ,6µ with the open embedding

′jλ6µ : Zλ6µ −→ Zλ.

Put Zλ>µ := Z ×BunNω
BunNω ,>µ, so that ′jλ=µ extends to the finite map

′jλ>µ : Zλ>µ −→ Zλ.

2.3 Let us recall the factorization structure on Z. For every λ ∈ Λpos there is a canonical map

πλ : Zλ→ Xλ, which is well known to be affine. We write (Xλ1 ×Xλ2)disj ⊂ Xλ1 ×Xλ2 for the

open locus where the two divisors are disjoint. Similarly, put

(Zλ1 × Zλ2)disj := (Zλ1 × Zλ2)×Xλ1×Xλ2 (Xλ1 ×Xλ2)disj.

The factorization structure is a canonical morphism (Zλ1 × Zλ2)disj→ Zλ1+λ2 which fits into a

fiber square, as follows.

(Zλ1 × Zλ2)disj
//

��

Zλ1+λ2

��
(Xλ1 ×Xλ2)disj

// Xλ1+λ2

The factorization structure is compatible with the defect stratification in the following sense.

The factorization structure on the strata consists of, for each decomposition µ1+µ2 = µ satisfying

0 6 µ1 6 λ1 and 0 6 µ2 6 λ2, a morphism (Zλ1
=µ1
× Zλ2

=µ2
)disj → Zλ1+λ2

=µ which fits into a fiber

square, as follows. ∐
µ1+µ2=µ(Zλ1

=µ1
× Zλ2

=µ2
)disj

//

��

Zλ1+λ2
=µ

��
(Xλ1 ×Xλ2)disj

// Xλ1+λ2

One has similar factorization structures on Zλ6µ and Zλ>µ. Moreover, these factorization structures

are compatible with ′jλ=µ, ′jλ>µ, etc.

2.4 We will also need the compactified Zastava space Z, which is the open locus in BunNω×BunG

BunB− where the generalized N - and B−-reductions are generically transverse. In particular

there is an open embedding ′j− : Z → Z obtained from j− : BunB− → BunB− by base change.

For any ν ∈ Λpos we put

=νZ := Z ×BunB−
BunB−,=ν ,

and similarly for 6νZ and >νZ.

The projections πλ extend to proper morphisms πλ : Z
λ
→ Xλ. The factorization structure

on Z extends to Z in a way compatible with both defect stratifications on Z.
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3. Nearby cycles and adelic invariance

3.1 We now reinterpret Beilinson’s construction of nearby cycles from [Bei87], which will help to
streamline our first proof of Theorem 1.3.1. In this section we use the language of DG categories
in the sense of Lurie, meaning k-linear stable ∞-categories: see [GR17, ch. I.1] for a summary of
the theory.

Let Y be a scheme of finite type equipped with an action of Gm and a Gm-equivariant

morphism f : Y → A1. Write Y0 for the fiber of Y over 0 and
◦
Y for the preimage of Gm ⊂ A1.

We temporarily denote the embeddings by

Y0
i−→ Y

j
←−

◦
Y.

The projection
◦
Y → Gm gives rise to an action of D(Gm), viewed as a symmetric monoidal

DG category under !-tensor product, on the DG category D(
◦
Y ). We claim that this naturally

induces an action of the DG algebra H•(Gm) on the identity functor of D(
◦
Y ). Namely, we view

the action of D(Gm) on D(
◦
Y ) as a monoidal functor

D(Gm) −→ Fun(D(
◦
Y ), D(

◦
Y )).

Since H•(Gm) is the algebra of endomorphisms of the monoidal unit in D(Gm), this monoidal
functor induces the desired action.

In particular, for any holonomic D-module F on
◦
Y , we have an action of H•(Gm) on

i!j!F by functoriality. The point 1 ∈ Gm induces an augmentation H•(Gm) → k, and since
H•(Gm) is generated by a single element in cohomological degree 1, the endomorphism algebra
EndH•(Gm)-mod(k) is canonically isomorphic to the polynomial ring k[t]. Here H•(Gm)-mod is
the DG category of modules over the DG algebra H•(Gm).

Definition 3.1.1. We define unipotent nearby cycles with respect to f to be the functor

Ψ : Dhol(
◦
Y ) −→ D(Y0)

given on objects by the formula

Ψ(F ) = k ⊗
H•(Gm)

i!j!F .

In particular EndH•(Gm)-mod(k) = k[t] acts on Ψ, and we call the action of the generator the
monodromy endomorphism of Ψ.

More precisely, the action of H•(Gm) on the identity functor of D(
◦
Y ) defines a lift of the

latter to a functor
D(

◦
Y ) −→ H•(Gm)-mod(D(

◦
Y )),

and likewise on the holonomic subcategory. Then Ψ is by definition the composition

Dhol(
◦
Y ) −→ H•(Gm)-mod(Dhol(

◦
Y ))

i!j!−→ H•(Gm)-mod(D(Y0)) −→ D(Y0),

where the last functor is tensor product with the augmentation H•(Gm)-module. Since H•(Gm)
is isomorphic to Sym(k[−1]), an action of H•(Gm) is the same as an action of the abelian
DG Lie algebra k[−1]. Tensor product with the augmentation H•(Gm)-module corresponds to
(homotopy) k[−1]-coinvariants.
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3.2 The following lemma will be used to compare our construction of Ψ with Beilinson’s. It says

that the homotopy coinvariants of H1(Gm)[−1] acting on the constant sheaf kGm is the ‘infinite

Jordan block.’

For any a > 1 let La be the shifted D-module on Gm corresponding to the local system whose

monodromy is a unipotent Jordan block of rank a. There are canonical injections La → La+1

(in the heart of the constructible t-structure), and we put

L∞ := colim
a>1

La.

Observe that L∞ has a canonical injective ‘shift’ endomorphism with cokernel kGm .

Lemma 3.2.1. There is a canonical isomorphism

k ⊗
H•(Gm)

kGm −̃→ L∞

in D(Gm), which identifies the action of the generator in k[t] = EndH•(Gm)-mod(k) with the

canonical endomorphism of L∞.

Proof. First, observe that since any self-extension of L∞ splits, the action of H1(Gm)[−1] on

L∞ is trivial. Thus the canonical inclusion kGm = L1→ L∞ factors through a map

k ⊗
H•(Gm)

kGm −→ L∞. (3.2.1)

To prove that this map is an isomorphism, we use a Koszul-type resolution of the

augmentation H•(Gm)-module. Namely, put M1 := H•(Gm), and let

M2 := cofib(H•(Gm)[−1]→ H•(Gm))

be the cofiber (i.e., mapping cone) of the action of a generator of H1(Gm). Proceeding inductively,

we define

Ma+1 := cofib(H•(Gm)[−a]→Ma),

so there are canonical maps Ma → Ma+1. We define M∞ to be the colimit of the Ma. Since

the module Ma has cohomology k ⊕ k[−a], the canonical map M∞ → k to the augmentation

H•(Gm)-module is an isomorphism. In particular k[t] acts on M∞, and it is not hard to see that

the generator acts by the canonical ‘shift’ map M∞→M∞ with cofiber M1.

Thus we may replace the left-hand side of (3.2.1) with M∞ ⊗H•(Gm) kGm . A straightforward

inductive argument shows that Ma⊗H•(Gm) kGm maps isomorphically onto La, which proves that

(3.2.1) is an isomorphism which moreover preserves the filtrations on both sides. The action of

k[t] on both sides agrees by inspection: both endomorphisms shift the filtration by 1. 2

Proposition 3.2.2. The functor Ψ has the following properties.

(i) It coincides with the construction in [Bei87] and in particular preserves holonomicity.

(ii) If F is Gm-equivariant, then Ψ(F ) is unipotently Gm-monodromic, and the monodromy

endomorphism agrees with the obstruction to Gm-equivariance.
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Proof. Let F be a holonomic D-module on
◦
Y . Then Beilinson’s nearby cycles is given by the

formula
Ψ̃(F ) := colim

a>1
i!j!(F

∗
⊗ f∗La).

Moreover, we have Ψ̃(F ) = H0i!j!(F
∗
⊗ f∗La) for large a, which is evidently holonomic. The

functor
Dhol(Gm) −→ D(Y0)

given on objects by M 7→ i!j!(F
∗
⊗ f∗M ) admits a unique colimit-preserving extension to the

category of ind-holonomic sheaves on Gm, so one can write

Ψ̃(F ) = i!j!(F
∗
⊗ f∗L∞).

The functor Ψ̃ carries a canonical endomorphism induced by the shift endomorphism L∞→ L∞.
Now it follows from Lemma 3.2.1 that Ψ(F )→̃Ψ̃(F ), preserving the monodromy endomorphisms
on both sides.

For (ii), note that the Gm-equivariance of i!j!F implies that Ψ(F ) = H0i!j!(F
∗
⊗ f∗La) is

Gm-monodromic (here a is large). By construction, the monodromy endomorphism is induced
by the canonical endomorphism of La with one-dimensional kernel and cokernel. But the latter
is precisely the obstruction to Gm-equivariance for La, so the claim follows from the functoriality
of this obstruction. 2

It follows from part (i) of Proposition 3.2.2 that Ψ enjoys the standard properties of the
unipotent nearby cycles functor: it is t-exact, commutes with Verdier duality, and commutes
with proper direct image and smooth inverse image.

3.3 Before proving Theorem 1.3.1, we will show that j!=µΨ(W ) is pulled back from Xµ for any
µ ∈ Λpos. This property is equivalent to invariance under the ‘adelic Nω,’ as we now explain.

For any x ∈ X, we define the open substack Bun
x
Nω ⊂ BunNω to consist of those generalized

Nω-bundles whose defect is disjoint from x. A point of the ind-algebraic stack H x
Nω consists of two

points of Bun
x
Nω together with an identification over X\{x}. Note that H x

Nω has the structure
of a groupoid acting on Bun

x
Nω . The fibers of H x

Nω over Bun
x
Nω × Bun

x
Nω are isomorphic to

ind-affine space colimnAn, which implies that the functor which forgets H x
Nω -equivariance is

fully faithful, i.e., H x
Nω -equivariance is a property.

We say that an object of D(BunNω) is Nω(A)-equivariant if, for every x ∈ X, its restriction
to Bun

x
Nω is H x

Nω -equivariant.

Proposition 3.3.1. An object F of D(BunNω) is Nω(A)-equivariant if and only if, for every
µ ∈ Λpos, the canonical morphism

m∗µmµ,∗j
!
=µF −→ j!=µF

is an isomorphism.

For each x ∈ X, denote by Ox the completed local ring of X at x, with fraction field
Kx. If R is a k-algebra, we denote by R ⊗̂ Ox and R ⊗̂ Kx the respective completed tensor
products.

The local Hecke stack H loc,x
Nω is defined as follows: a SpecR-point of H loc,x

Nω consists of two
Nω-bundles over Spec(R ⊗̂ Ox) equipped with an isomorphism over Spec(R ⊗̂ Kx). There

is a natural restriction map resx : H x
Nω →H loc,x

Nω .
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Our choice of isomorphism N/[N,N ] ∼= G⊕Ia induces a map H loc,x
Nω → Ga in the following

way. The projection N → [N,N ] induces a morphism

H loc,x
Nω −→

∏
I

H loc,x
Gωa

,

where Gω
a is the additive group scheme over X attached to the canonical line bundle ωX . Note

that there is a canonical isomorphism of groupoids

H loc,x
Gωa

−̃→ Gω
a (Ox)\Gω

a (Kx)/Gω
a (Ox),

so taking residues defines a morphism rsdx : H loc,x
Gωa

→ Ga. The composition

rsdxψ : H x
Nω

resx−→H loc,x
Nω −→

∏
I

H loc,x
Gωa

∏
rsdx−→

∏
I

Ga
add−→ Ga

is an additive character, meaning it is a morphism of groupoids.
It follows that χ̃x := rsdx,!ψ χ is a character sheaf on H x

Nω , i.e., it is multiplicative for the

groupoid structure. In particular we can speak of (H x
Nω , χ̃x)-equivariant sheaves on Bun

x
Nω , which

form a full subcategory of D(Bun
x
Nω). Likewise, if a sheaf on BunNω is (H x

Nω , χ̃x)-equivariant for
all x ∈X we say that it is (Nω(A), χ̃)-equivariant. Although we will not use this fact, the category
of (Nω(A), χ̃)-equivariant sheaves on BunNω is equivalent to the derived category of vector
spaces, being generated by the object W1 introduced above. Moreover (H x

Nω , χ̃x)-equivariance
for a single x ∈ X implies (Nω(A), χ̃)-equivariance.

Observe that there is a natural T -action on H loc,x
Nω . Using the chosen dominant regular

cocharacter γ : Gm → T , the resulting Gm-action on H loc,x
Nω is contracting. In particular, it

extends to an action A1 ×H loc,x
Nω → H loc,x

Nω of the multiplicative monoid A1. The !-pullback of
χ along the composition

A1 ×H x
Nω

idA1 × resx

−→ A1 ×H loc,x
Nω −→H loc,x

Nω −→ Ga

defines an A1-family χ̃xext of character sheaves on H x
Nω . Its !-restriction to {1}×H x

Nω is χ̃x, and
it is trivial along {0} ×H x

Nω .

Lemma 3.3.2. The sheaf Ψ(W ) is Nω(A)-equivariant.

Proof. Fix x ∈ X; we omit restriction to Bun
x
Nω from the notation in what follows. By

construction W is χ̃xext|Gm×H x
Nω

-equivariant. Since χ̃xext|!{0}×H x
Nω

is the trivial character sheaf, it

follows from our construction of Ψ (or equivalently, Beilinson’s) that Ψ(W ) is H x
Nω -equivariant

as desired. 2

4. Restriction to the strata

4.1 Now we give the first proof of Theorem 1.3.1 by deducing it from [AG15b, Theorem 1.3.6],
which describes the restrictions to the strata of i!j!W in terms of the perverse sheaf Ω. Since
we work with a fixed dominant regular coweight γ rather than the entire torus T , it will be
necessary to prove a slightly different formulation of the latter theorem.

As in [AG15b, § 7.2], the inclusion

D(BunNω)N
ω(A) −→ D(BunNω)
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of Nω(A)-equivariant sheaves on BunNω admits a right adjoint, which we denote by

Av
Nω(A)
∗ : D(BunNω) −→ D(BunNω)N

ω(A).

Let i and j be as in § 1.2, and write p : A1 × BunNω → BunNω for the projection. We will also

abusively denote p ◦ j by p.

Proposition 4.1.1. There is a canonical isomorphism i!j!W →̃Av
Nω(A)
∗ p!W .

Proof. See [AG15b, § 10.3], where the claim is proved for the action of the entire torus T . The

same proof applies mutatis mutandi to our claim, which involves only the Gm-action. 2

First proof of Theorem 1.3.1. Since j!=µ preserves (homotopy) colimits, we see that

j!=µΨ(W ) −̃→ k ⊗
H•(Gm)

j!=µi
!j!W .

By Proposition 4.1.1 we have

j!=µi
!j!W −̃→ j!=µ Av

Nω(A)
∗ p!W ,

and Proposition 3.3.1 implies that

j!=µ Av
Nω(A)
∗ p!W −̃→ m∗µmµ,∗j

!
=µp!W .

Now Theorem 1.3.6 of [AG15b] yields

m∗µmµ,∗j
!
=µp!W −̃→ m∆

µ Ωµ ⊗H•c (Gm)[1]. (4.1.1)

It remains to show that under the composed isomorphism

j!=µi
!j!W −̃→ m∆

µ Ωµ ⊗H•c (Gm)[1],

the action of H•(Gm) on the left-hand side corresponds to the natural action on H•c (Gm) on the

right-hand side. Since H•c (Gm) = H•(Gm)[−1] as H•(Gm)-modules, this will finish the proof.

It is clear that

j!=µi
!j!W −̃→ m∗µmµ,∗j

!
=µp!W

intertwines the actions of H•(Gm), since it is obtained by evaluating a morphism of functors on

W . Tracing through the proof of Theorem 1.3.6 in [AG15b], we see that the isomorphism (4.1.1)

is also obtained by evaluating a morphism of functors on W , with the appearance of H•c (Gm)

accounted for by the isomorphism

aγ,!W −̃→ W1 ⊗H•(Gm)[−1] −̃→ W1 ⊗H•c (Gm)[1].

The latter isomorphism intertwines the actions of H•(Gm) as needed. 2
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4.2 The rest of this subsection is devoted to the second proof of Theorem 1.3.1. This proof
applies [Ras16, Theorem 4.6.1], which says that Ω can be realized as the twisted cohomology of
Zastava space. Accordingly, we must formulate the analogue of Theorem 1.3.1 on Zastava space.
First, the Whittaker sheaf: we claim that

WZλ := (idGm ×′p−,λ)!W [dim BunNω − dimZλ]

is perverse for any λ. For λ sufficiently dominant p−,λ is smooth, so that WZλ is the
cohomologically normalized inverse image of the perverse sheaf W . If λ′ 6 λ then we can pull
back WZλ along idGm times the factorization morphism

(Zλ
′ × Zλ−λ′)disj −→ Zλ,

and it is not hard to see that we obtain the restriction of WZλ′ � WZλ−λ′ . Since the factorization
map is étale, this implies that WZλ′ is perverse as desired.

Since the map BunNω → BunG is T -equivariant for the trivial action of T on BunG, we obtain
an action of T on Z which makes ′p− a T -equivariant map. In particular our fixed dominant
regular cocharacter γ : Gm→ T induces an action of Gm on Z, and since W was Gm-equivariant,
so is WZ .

Theorem 4.2.1. For any µ ∈ Λpos there is an isomorphism

′j!=µΨ(WZ) −̃→ ′m∆
µ Ωµ.

We will need to use the factorization structure on Z in the following way. First, observe that
WZ admits a natural factorization structure. Thus Ψ(WZ) admits a factorization structure by the
Künneth formula for nearby cycles. Although the Künneth formula holds for the total nearby
cycles functor, in this case the total nearby cycles equals the unipotent nearby cycles because
WZ is Gm-equivariant.

4.3 In the second proof, Theorems 1.3.1 and 4.2.1 will be proved simultaneously by an inductive
argument. The argument uses the following key lemma.

Let f : X → Y be a morphism of Artin stacks with Y smooth, and suppose we are given a
function Y → A1. Let g : S → Y be a morphism where S is an affine scheme and consider the
following cartesian square.

X ×Y S

′f
��

′g //X

f

��
S

g // Y

Write i : S0→ S for the inclusion of the vanishing locus of the function S → Y → A1.

Lemma 4.3.1. For any F ∈ D(X ) which is universally locally acyclic (ULA) over Y and any
G ∈ D(S), there is a canonical isomorphism

Ψ(′g!(F )
!
⊗ ′f !(G )) −̃→ ′g!(F )

!
⊗ ′f !(i!Ψ(G )).

Fix ν ∈ Λpos. We will apply the lemma in the case X = A1 × Bun
λ
B−,6ν , F =

ICA1 � j−! (ICBunλ
B−

)|
Bun

λ
B−,6ν

, and Y = A1 × BunG. Let us check that the ULA property holds

when λ is sufficiently dominant relative to ν.
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According to [BG08, Corollary 4.5], the perverse sheaf j−! (ICBunB−
)|

Bun
λ
B−,6ν

has a filtration

by η 6 ν, with its subquotients being the perverse sheaves j−>η,!(Ω
η � IC

Bun
λ−η
B−,6ν−η

). Here Ωη is

attached to ň− rather than ň. Since the ULA property is stable under extensions and exterior
products, it suffices to show that these subquotients are ULA over BunG.

Observe that the diagram

Xη × Bun
λ−η
B−

��

j−>η // Bun
λ
B−

��
Bun

λ−η
B−

// BunG

commutes, where the left vertical arrow is projection onto the second factor. Since j−>η is proper,

the functor j−>η,! preserves the ULA property. Thus it suffices to prove that, for λ sufficiently
dominant, IC

Bun
λ−η
B−,6ν−η

is ULA over BunG for all η 6 ν. This follows immediately from [Cam16,

Corollary 4.1.1.1].

Second proof of Theorems 1.3.1 and 4.2.1. Observe that Theorem 1.3.1 is trivial on the open
stratum, since

Ψ(W )|BunNω = Ψ(W |Gm×BunNω ) = Ψ(ICGm � ICBunNω ) = ICBunNω ,

and similarly for Theorem 4.2.1 on
◦
Z.

We begin by proving Theorem 4.2.1 for the deepest strata, i.e., the closed embeddings

′jµ=µ : Xµ −→ Zµ.

Recall that Ψ(WZ) is Gm-monodromic by construction, so the contraction principle says that

′jµ,!=µΨ(WZ) = πµ! Ψ(WZ).

Write
◦
πµ := πµ ◦ ′jµ=0. Theorem 4.6.1 in [Ras16] implies that there is an isomorphism

(idGm ×
◦
π)!(WZ |Gm× ◦Z) −̃→ ICGm � Ω,

compatible with the factorization structures. Since WZ is !-extended from Gm ×
◦
Z, we obtain

(idGm ×π)!WZ −̃→ ICGm � Ω.

Since π = π ◦ ′j− and Ψ commutes with proper pushforwards, we have

π!Ψ((idGm ×′j−)!WZ) −̃→ Ω.

Therefore it suffices to prove that the canonical morphism

′j−! Ψ(WZ) −→ Ψ((idGm ×′j−)!WZ)

is an isomorphism. Since Ψ commutes with Verdier duality we can replace the !-pushforwards
with ∗-pushforwards.
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Fix S → BunNω with S an affine scheme and apply Lemma 4.3.1 with f = idA1 ×p−,

g : A1 × S −→ A1 × BunNω −→ A1 × BunG,

F = ICA1 � j−∗ (ωBunB−
)|

Bun
λ
B−,6ν

, and G = W |!A1×S . Then the lemma yields an isomorphism

Ψ((idGm ×′j−)∗WZ)|
6νZ

λ −̃→ ′j−∗ Ψ(WZ)|
6νZ

λ

for λ sufficiently dominant. Changing λ if necessary so that λ > µ, we can restrict this

isomorphism along the map

(6νZ
µ ×

◦
Zλ−µ)disj −→ 6νZ

λ
.

By factorizability we obtain the desired isomorphism on 6νZ
µ
. Since ν was arbitrary,

Theorem 4.2.1 is proved for the deepest strata.

Now we prove Theorem 1.3.1. Fix µ ∈ Λpos and choose λ > µ dominant enough that Zλ=µ

surjects smoothly onto Xµ ×BunT BunB. Note that (Xµ ×
◦
Zλ−µ)disj is one of the connected

components of the fiber product

(Xµ ×Xλ−µ)disj ×Xλ Zλ=µ,

and that the former surjects onto BunNω ,=µ. Theorem 4.2.1 for the deepest and open strata

implies that the cohomologically normalized pullback of j!=µΨ(W ) to (Xµ ×
◦
Zλ−µ)disj is Ωµ �

IC ◦
Zλ−µ

. Theorem 1.3.1 follows once we observe that the composition

(Xµ ×
◦
Zλ−µ)disj −→ BunNω ,=µ

mµ−→ Xµ

is the projection onto the first factor and apply Lemma 3.3.2.

The previous paragraph implies Theorem 4.2.1 holds on the stratum Zλ=µ. Let λ′ > µ and

change λ if necessary so that λ > λ′. By restricting along the morphism

(Zλ
′

=µ ×
◦
Zλ−λ

′
)disj −→ Zλ=µ

and invoking factorization, we obtain Theorem 4.2.1.

The remainder of Theorems 1.3.1 and 4.2.1 follows as in the first proof. 2

5. First proof of Theorem 1.4.1

5.1 Like Theorem 1.3.1, we formulate the analogue of Theorem 1.4.1 on Zastava space.

Theorem 5.1.1. For any λ ∈ Λpos, there is an sl2-equivariant isomorphism of factorizable sheaves

gr Ψ(WZλ) −̃→
⊕

06µ6λ

′jλ=µ,!∗
′mλ,∆

µ Pµ. (5.1.1)

Now we work out three of the simplest cases of Theorem 5.1.1. For brevity, we will write

Ψ := Ψ(WZλ).
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Example 5.1.2. Let α be a simple coroot. There is an isomorphism Zα ∼= X × A1 under which
◦
Zα ∼= X ×

◦
A1, where

◦
A1 := A1\{0}. The canonical map

◦
Zα → A1 is given in these terms by

(x, t) 7→ 1/t. It follows from [Cam17, Example 4.3] that Ψ is the cohomologically normalized
pullback of the unique indecomposable tilting sheaf on A1 which extends IC◦

A1
. Moreover, the

monodromy filtration
F−1 ⊂ F0 ⊂ F1 = Ψ

satisfies F−1
∼= ICZα=α , F0/F−1

∼= ICZα , and F1/F0
∼= ICZα=α , where Zα=α =X×{0} ⊂X×A1 = Zα.

This confirms Theorem 5.1.1 in the case λ = α.

Example 5.1.3. Now consider the case λ = 2α. By Theorem 4.2.1 for µ = 2α, we have a short
exact sequence

Ω2α −→ Ψ −→ ′j2α6α,∗
′j2α,∗6α Ψ

(recall that Ω2α is the clean extension of the sign local system on X
(2)
disj). Similarly, applying

Theorem 4.2.1 for µ = α and 0 we obtain an exact triangle

′j2α=α,∗ ICZ2α
=α
−→ ′j2α6α,∗

′j2α,∗6α Ψ −→ ′j2α=0,∗ IC ◦
Z2α

,

where we used the fact that Ωα ∼= ICX . Applying Verdier duality to the equation in [BG08,
Corollary 4.5] (or rather the analogous equation on Zastava space), we have

[′j2α=0,∗ IC ◦
Z2α

] = [ICZ2α ] + [IC
Z2α

=α
] + [Ω2α],

where we identified Ω2α with its Verdier dual. Finally, one computes the simple constituents of
′j2α=α,∗ ICZ2α

=α
as follows. First, consider the short exact sequence

IC
Z2α

=α
−→ ′j2α=α,∗ ICZ2α

=α
−→ ′j2α,!=2α IC

Z2α
=α

[1].

To compute the third term, observe that there is a Cartesian square

X2

��

// Z2α
>α

′j2α>α
��

X(2)
′j2α=2α // Z2α

and that the !-restriction of ICZ2α
>α

along the top horizontal morphism is ICX2 [−1]. Since ′j2α>α is

finite and birational onto its image, we can use base change to compute

′j2α,!=2α IC
Z2α

=α
[1] = ′j2α,!=2α

′j2α>α,∗ ICZ2α
>α

[1] = ICZ2α
=2α
⊕Ω2α.

Summarizing, we have

[Ψ] = [ICZ2α ] + 2[IC
Z2α

=α
] + [ICZ2α

=2α
] + 3[Ω2α].

Now we will determine which graded component of gr Ψ each simple subquotient lies in.
In what follows, ‘weight’ refers to an eigenvalue of the Lefschetz Cartan operator. Since the
monodromy filtration is compatible with the factorization structure, when we pull back gr Ψ
along the factorization map

(Zα × Zα)disj −→ Z2α
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we get (gr Ψ(WZα))�2 restricted to (Zα×Zα)disj. By the previous example, the latter sheaf with
sl2-action is isomorphic to

(std⊗2⊗ ICX2)⊕ (std⊗ ICX×Zα)⊕ (std⊗ ICZα×X)⊕ (triv⊗ ICZα×Zα). (5.1.2)

It follows immediately that ICZ2α has weight 0 and that the two copies of IC
Z2α

=α
have weights

±1. Since std⊗2 ∼= V2 ⊕ triv, the three copies of Ω2α have weights −2, 0, and 2, and ICZ2α
=2α

has
weight 0.

In terms of the monodromy filtration

F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2 = Ψ,

we have F−2
∼= Ω2α ∼= F2/F0, F−1/F−2

∼= IC
Z2α

=α

∼= F1/F0, and F0/F−1 has simple constituents

ICZ2α , ICZ2α
=2α

, and Ω2α. So in order to prove Theorem 5.1.1 in the case λ = 2α, it remains to

show that F0/F−1 is semisimple. Its pullback along the factorization map is semisimple, and
since semisimplicity is étale local the restriction of F0/F−1 to Z2α\π−1(X) is semisimple. But
Ψ has no simple subquotients supported on π−1(X), so F0/F−1 is the intermediate extension of
its restriction to Z2α\π−1(X) and therefore semisimple.

Example 5.1.4. Suppose λ = α + β is a coroot, where α and β are distinct simple coroots.
Applying Theorem 4.2.1 for µ = α+ β, we obtain the short exact sequence

Ωλ −→ Ψ −→ ′jλ<λ,∗
′jλ,∗<λΨ.

Similar considerations yield the short exact sequence

′jλ=α,∗ ICZλ=α
⊕ ′jλ=β,∗ ICZλ=β

−→ ′jλ<λ,∗
′jλ,∗<λΨ −→ ′jλ=0,∗ IC ◦

Zλ
.

Applying [BG08, Corollary 4.5], we have

[′jλ=0,∗ IC ◦
Zλ

] = [ICZλ ] + [IC
Zλ=α

] + [IC
Zλ=β

] + [Υλ],

where Υλ is the Verdier dual of Ωλ. According to [AG15b, § 1.3.2], in this case Ωλ is the ∗-
extension of ICX2

disj
to Xλ = X2, whence Υλ is the !-extension. In particular [Ωλ] = [Υλ] =

[ICX2 ] + [ICX ]. As for the remaining simple constituents, consider the short exact sequence

IC
Zλ=α
−→ ′jλ=α,∗ ICZλ=α

−→ ′jλ,!=α IC
Zλ=α

[1],

and similarly for β. The third term is ICX2 , so finally we see that

[Ψ] = [ICZλ ] + 2[IC
Zλ=α

] + 2[IC
Zλ=β

] + 4[ICX2 ] + 2[ICX ].

Now we compute the weights of the simple subquotients of Ψ. We have the factorization
morphism

(Zα × Zβ)disj −→ Zα+β,

and after pulling back gr Ψ the result is (5.1.2), up to relabeling β as α. As in Example 5.1.3, it
follows that ICZα+β has weight 0, the two copies of IC

Zλ=α
have weights ±1 and likewise for IC

Zλ=β
,

and the four copies of ICX2 have weights −2, 0, 0, and 2. We will see below that in any case
where λ is a coroot, there are two simple subquotients of Ψ isomorphic to ICX , with weights ±1.

1791

https://doi.org/10.1112/S0010437X18007285 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007285


J. Campbell

In terms of the monodromy filtration, we have F−2
∼= ICX2

∼= F2/F1, F−1/F−2 and F1/F0 each
have simple subquotients IC

Zλ=α
, IC

Zλ=β
, and ICX , and F0/F−1 has simple subquotients ICZλ and

ICX2 , the latter with multiplicity two. As in Example 5.1.3, one uses factorization to show that
F0/F−1 is semisimple. To prove the semisimplicity of F−1/F−2 and F1/F0, it is enough to show
that there are no extensions between ICX and IC

Zλ=α
. By Verdier duality, it suffices to prove that

Ext1
D(Zλ)(ICX , ICZλ=α

) = 0.

We have ′jλ,!=λ IC
Zλ=α

= ICX2 [−1], whence ∆! IC
Zλ=α

= ICX [−2]. Thus

RHomD(Zλ)(ICX , ICZλ=α
) = H•(X)[−2],

and in particular Ext1 vanishes.

5.2 The following lemma will be used in both proofs of Theorems 1.4.1 and 5.1.1. For any
µ ∈ Λpos write

∆µ : X ×BunT BunB −→ BunNω

for the finite birational map defined as the composition of j>µ and the embedding

X ×BunT BunB = X ×Xµ BunNω ,>µ −→ BunNω ,>µ

induced by the diagonal map X → Xµ.

Lemma 5.2.1. If µ is a coroot, then there is an indecomposable subquotient M of Ψ(W ) with a
filtration

M−1 ⊂M0 ⊂M1 = M

such that M−1
∼= ∆µ

∗ ICX×BunT
BunB

, M0/M−1
∼= ICBunNω

, and M /M0
∼= ∆µ

∗ ICX×BunT
BunB

.

Proof. First, we claim the subsheaf j=0,! ICBunNω of Ψ(W ) has a quotient M0 of the form
described above. Recall that j=0,! ICBunNω has a descending filtration with subquotients
j=ν,!∗r

∆
ν Ων , and in particular has j=µ,!∗Ω

µ as a subquotient and ICBunNω
as a quotient. The

former sheaf has ∆µ
∗ ICX×BunT

BunB
as a quotient because µ is a coroot, so it suffices to show that

for any 0 < ν < µ we have

Ext1(j=ν,!∗r
∆
ν Ων ,∆µ

∗ ICX×BunT
BunB

) = 0,

or dually
Ext1(∆µ

∗ ICX×BunT
BunB

, j=ν,!∗r
∆
ν Υν) = 0,

where Υν is the Verdier dual of Ων . One computes using base change that

∆µ,!j=ν,!∗r
∆
ν Υν = ∆!Υν

!
⊗ ∆µ,! ICBunNω

.

Since ∆µ,! ICBunNω
is concentrated in cohomological degrees greater than or equal to 1, and both

∆!Υν and ∆µ,! ICBunNω
have lisse (actually constant) cohomology sheaves, their !-tensor product

is concentrated in cohomological degrees greater than or equal to 2. It follows that the Ext1

above vanishes.
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We have shown that j=0,! ICBunNω has a quotient M0 which fits into a short exact sequence

∆µ
∗ ICX×BunT

BunB
−→M0 −→ ICBunNω

.

This sequence does not split because M0 is the quotient of the indecomposable sheaf j=0,! ICBunNω

with simple cosocle ICBunNω
. Dually, we obtain a subsheaf M /M−1 of j=0,∗ ICBunNω of the desired

form, from which follows the existence of M . 2

We will first give a proof of Theorem 1.4.1 under the assumption that gr Ψ(W ) is semisimple.
The semisimplicity can be proved via Mochizuki’s theory of weights for holonomic D-modules,
since W is pure and (up to shift) the monodromy filtration on nearby cycles of a pure sheaf
coincides with the weight filtration (see [Moc15, Corollary 9.1.10]).

First proof of Theorems 1.4.1 and 5.1.1. Both sides of the isomorphism (1.4.1) restrict to
ICBunNω . Suppose that we have constructed the isomorphism over BunNω ,<µ. Then for λ > µ
sufficiently dominant, pulling back along ′p− yields the isomorphism (5.1.1) over Zλ<µ. One
obtains (5.1.1) on Zµ<µ by pullback along the factorization map

(Zµ<µ ×
◦
Zλ−µ)disj −→ Zλ<µ,

since the inverse images of both sides of the isomorphism factorize and are constant along the

second component. The same argument yields (5.1.1) on Zµ
′

<µ = Zµ
′

for µ′ < µ.
On the other hand, one can use factorization to obtain (5.1.1) on Zµ\π−1(X). Namely, for

µ1 + µ2 = µ, µ1, µ2 < µ, the pullback of both sides of the isomorphism along

(Zµ1 × Zµ2)disj −→ Zµ

are identified. Since this factorization map is étale but not necessarily an embedding, we must
argue that the isomorphism descends to its image. This immediately reduces to the case that
µ = n · α for some α ∈ ∆. In this case, both sides of (5.1.1) are the intermediate extension
of their restriction to π−1(Xµ

disj), so it suffices to show that the isomorphism over (Zα)ndisj

descends to π−1(Xµ
disj) ⊂ Zµ. Since (Zα)ndisj is a Σn-torsor over π−1(Xµ

disj) and Σn is generated by
transpositions, the claim reduces to the case n = 2. But this was already done in Example 5.1.3.

Note that Zµ<µ ∪ (Zµ\π−1(X)) = Zµ\∆(X). The isomorphisms of the previous two
paragraphs clearly agree on Zµ<µ ∩ (Zµ\π−1(X)), hence glue to an isomorphism away from the
main diagonal.

If µ is not a coroot, then we claim that Ψ(WZµ) has no simple subquotients supported on the
main diagonal, whence gr Ψ(WZµ) is the intermediate extension of its restriction to Zµ\∆(X).
This is true for the right-hand side of (5.1.1) by construction, so the claim implies that the
isomorphism extends to Zµ in this case. By Theorem 4.2.1 there is a filtration of Ψ(WZµ) by the

sheaves ′jµ=ν,∗
′mµ,∆

ν Ων for 06 ν 6 µ. Using [BG08, Corollary 4.5], one can show that ′jµ=ν,∗
′mµ,∆

ν Ων

surjects onto ′jµ=µ,∗ add∗(Ω
ν � Υµ−ν), and that no subquotient of the kernel is supported on Xµ.

Now the claim follows, because out of the latter sheaves only Ωµ and Υµ could have subquotients
supported on the diagonal, and by § 3.3 of [BG08] this occurs if and only if µ is a coroot.

Suppose that µ is a coroot. Then ∆∗ ICX appears as a subquotient of Ωµ and of Υµ with
multiplicity one. By the analysis in the previous paragraph ∆∗ ICX appears as a summand of
gr Ψ(WZµ) with multiplicity two, and there are no other subquotients supported on the main
diagonal. Thus the isomorphism (5.1.1) extends to Zµ, and it remains to show that sl2 acts on
the summand IC⊕2

X of gr Ψ(WZµ) as the standard representation.
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The only other possibility is that sl2 acts on IC⊕2
X trivially, which would imply that the

subquotient M from Lemma 5.2.1 is a subquotient of F0/F−1. But M is indecomposable and
F0/F−1 is semisimple, so this is impossible.

Having constructed the isomorphism of Theorem 5.1.1 over Zµ, we can complete the inductive
step of Theorem 1.4.1 by extending the isomorphism from BunNω ,<µ to BunNω ,6µ. Choose λ > µ
dominant enough that Zλ6µ surjects smoothly onto BunNω ,6µ. As in the proof of Theorem 1.3.1,

note that (Zµ ×
◦
Zλ−µ)disj is one of the connected components of the fiber product

(Xµ ×Xλ−µ)disj ×Xλ Zλ6µ,

and that the former surjects onto BunNω ,6µ. By factorization, the cohomologically normalized

pullback of gr Ψ(W ) to (Zµ ×
◦
Zλ−µ)disj is (gr Ψ(WZµ))� IC ◦

Zλ−µ
.

A factorization argument as in the proof of Theorem 4.2.1 allows us to construct the
isomorphism (5.1.1) over Zλ6µ for arbitrary λ > µ, which completes the proof of Theorem 5.1.1.

2

Proof of Corollary 1.4.1.1. It suffices to prove the corresponding claim on Zλ for any λ ∈ Λpos.
The morphism

′jλ=0,! ICBunNω −→ Ψ(W )

is injective because Ψ(W ) is tilting, so it suffices to show that ′jλ=0,! ICBunNω and the kernel of
monodromy have the same class in the Grothendieck group. By factorization and induction this
holds away from the main diagonal, and [BG08, Corollary 4.5] implies that the only subquotient
of ′jλ=0,! ICBunNω supported on the main diagonal is ∆∗ ICX with multiplicity one. Theorem 5.1.1
implies that the same is true for the kernel of the monodromy operator on Ψ(W ). 2

6. Second proof of Theorem 1.4.1

6.1 In this section we will give a proof of Theorems 1.4.1 and 5.1.1 which does not use weights
for irregular holonomic D-modules to prove the semisimplicity of gr Ψ(W ), but instead depends
on Conjecture 1.5.2 (but only the part proved in [FFKM99]). First we make the statement of
the conjecture more precise in the case of a trivial Ť -local system by specifying the action of
generators of ǧ⊗H•(X) on p∗ ICBunB

.

We construct the action of ȟ⊗H•(X) as follows. Pullback along the evaluation map

X × BunT −→ pt /T

defines a homomorphism

Sym(h∗[−2]) = H•(pt /T ) −→ H•(X)⊗H•(BunT ).

By adjunction we obtain a morphism h∗ ⊗ H•(X)[−2] −→ H•(BunT ). Identifying h∗ ∼= ȟ and
H•(X)[−2] ∼= H•(X), the latter using Poincaré duality, we obtain a morphism

ȟ⊗H•(X) −→ H•(BunT ).

Then the action of H•(BunT ) on ωBunT induces by functoriality the desired action of ȟ⊗H•(X)
on Eis!∗ ωBunT = p∗ ICBunB

.
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Next we construct the action of ň⊗H•(X). Denote by U (ň) the factorization algebra whose

fiber at
∑

i µixi ∈ Xµ is ⊗
i

U(ň)µi ,

where the superscript µi indicates the corresponding Ť -graded component. The following is part

of [BG08, Theorem 5.6], which itself is a restatement of results from [FFKM99]: for any µ ∈ Λpos

there is a canonical morphism

j>µ,!(U (ň)µ � ICBunB
) −→ ICBunB

,

which induces an isomorphism

U (ň)µ � ICBunB −̃→ j!=µ ICBunB
.

Here we abuse notation slightly by denoting the maps j>µ : Xµ × BunB → BunB and j=µ :

Xµ×BunB → BunB by the same symbols we used in the case of BunNω . The latter are obtained

from the former by base change along BunNω → BunB.

Pushing forward to BunG, we obtain a morphism

H•(Xµ,U (ň)µ)⊗ p∗ ICBunB
−→ p∗ ICBunB

.

The object U (ň)µ is concentrated in (perverse) cohomological degrees greater than or equal to

1, and if µ is a coroot then we have H1(U (ň)µ) = ICX . The resulting morphism kX → U (ň)µ

induces

H•(X)⊗ p∗ ICBunB
−→ H•(Xµ,U (ň)µ)⊗ p∗ ICBunB

−→ p∗ ICBunB
,

which defines the action of ňµ ⊗H•(X) ∼= H•(X) on p∗ ICBunB
.

Dually, for any µ ∈ Λpos there is a canonical morphism

ICBunB
−→ j>µ,∗(U

∨(ň−)µ � ICBunB
),

which induces an isomorphism

j∗=µ ICBunB
−̃→ U ∨(ň−)µ � ICBunB .

Here U ∨(ň−) is by definition the Verdier dual of U (ň−).

Thus we obtain a morphism

p∗ ICBunB
−→ H•(Xµ,U (ň−)µ)∨ ⊗ p∗ ICBunB

,

or by adjunction

H•(Xµ,U (ň−)µ)⊗ p∗ ICBunB
−→ p∗ ICBunB

.

If µ is a coroot, then as before we have a morphism H•(X)→ H•(Xµ,U (ň−)µ), which defines

the action of ň−−µ ⊗H•(X) ∼= H•(X) on p∗ ICBunB
.
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6.2 Fix a coroot µ. Recall the subquotient M of Ψ(W ) from Lemma 5.2.1. The action of ǧ on
p∗ ICBunB

relates to our problem through the following key lemma, whose proof will occupy this
subsection.

Lemma 6.2.1. The sheaf M does not descend to BunNω/Gm.

First, observe that M0 and M /M−1 descend to BunNω/T and hence to BunNω/Gm, being
subquotients of j=0,! ICBunNω and j=0,∗ ICBunNω respectively. The obstruction to descent of M
to BunNω/Gm is the resulting composition

∆µ
∗ IC(X×BunT

BunB)/Gm −→ ICBunNω/Gm [1] −→ ∆µ
∗ IC(X×BunT

BunB)/Gm [2]. (6.2.1)

Similarly, the obstruction to its descent to BunNω/T is the composition

∆µ
∗ IC(X×BunT

BunB)/T −→ ICBunNω/T
[1] −→ ∆µ

∗ IC(X×BunT
BunB)/T [2]. (6.2.2)

Denote by
◦
∆µ : X ×BunT BunB → BunNω the locally closed embedding given by composing

∆µ with the open embedding X×BunT BunB → X×BunT BunB. Composition with the canonical
morphisms

◦
∆µ

! IC(X×BunT
BunB)/T → ∆µ

∗ IC(X×BunT
BunB)/T

and
∆µ
∗ IC(X×BunT

BunB)/T →
◦
∆µ
∗ IC(X×BunT

BunB)/T

gives
End(∆µ

∗ IC(X×BunT
BunB)/T ) −→ H•(X × pt /T ), (6.2.3)

since the map (X ×BunT BunB)/T → X × pt /T induces an isomorphism on cohomology.

Lemma 6.2.2. The image of the endomorphism (6.2.2) under (6.2.3) is

−1⊗ hµ ∈ H0(X)⊗ h∗ ⊂ H2(X × pt /T ).

Proof. Theorem 5.1.5 in [BG02] says that ICBunB
is ULA over BunT , which implies that the

!-restriction of ICBunB
to BunNω/T is ICBunNω/T

[dimT − dim BunT ]. It follows that the

!-restriction of ∆µ
∗ ICX×BunB

to BunNω/T is a shift of ∆µ
∗ IC(X×BunT

BunB)/T , where we abusively

write ∆µ : X × BunB → BunB for the similarly defined finite map. This gives rise to a
commutative square

End(∆µ
∗ ICX×BunB

)

��

// H•(X × BunT )

��
End(∆µ

∗ IC(X×BunT
BunB)/T ) // H•(X × pt /T )

where the upper horizontal arrow is defined similarly to (6.2.3) and the right vertical arrow is
idX times restriction along ρ(ω) : pt /T → BunT . The previous subsection implies that M0 and
M /M−1 extend to BunB, giving rise to a morphism

∆µ
∗ ICX×BunB

−→ ICBunB
[1] −→ ∆µ

∗ ICX×BunB
[2] (6.2.4)
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which restricts to (6.2.2) on BunNω/T . Thus it suffices to show that the image of (6.2.4) in
H2(X × BunT ) restricts to −1⊗ hµ along idX ×ρ(ω).

Observe that

End(∆µ
∗ ICX×BunB

) = Hom(∆µ
∗ (kX � ICBunB

),∆µ
∗ (ωX � ICBunB

))[−2],

so p∗ induces a morphism

End(∆µ
∗ ICX×BunB

) −→ Hom(H•(X)⊗ p∗ ICBunB
, H•(X)⊗ p∗ ICBunB

)[−2].

Composing with the canonical map k→ H•(X) and its dual H•(X)→ k, we obtain

End(∆µ
∗ ICX×BunB

) −→ End(p∗ ICBunB
)[−2]. (6.2.5)

By construction, the image of (6.2.2) under (6.2.5) coincides with the action of fµeµ ∈ U(ǧ). By
composing with the morphisms p! ICBunB → p∗ ICBunB

and p∗ ICBunB
→ p∗ ICBunB , we obtain

End(p∗ ICBunB
) −→ Hom(p! ICBunB , p∗ ICBunB ). (6.2.6)

Note that (6.2.6) annihilates the endomorphism of p∗ ICBunB
given by the action of eµfµ, since

it factors through a sheaf supported on the boundary. Proposition 4.9 in [FFKM99] says that
the relation [eµ, fµ] = hµ holds in End(p∗ ICBunB

), which implies that the images of fµeµ and
−hµ under (6.2.6) coincide.

Now consider the commutative square

End(∆µ
∗ ICX×BunB

)

(6.2.5)

��

(6.2.3) // H•(X × BunT )

��
End(p∗ ICBunB

)[−2]
(6.2.6)// Hom(p! ICBunB , p∗ ICBunB )[−2]

where the right vertical morphism is the composition

H•(X × BunT ) = Hom(
◦
∆µ

! ICX×BunB ,
◦
∆µ
∗ ICX×BunB )

−→ Hom(H•(X)⊗ p! ICBunB , H•(X)⊗ p∗ ICBunB )[−2]

−→ Hom(p! ICBunB , p∗ ICBunB )[−2].

Note that idX ×ρ(ω) : X × pt /T → X × BunT admits a canonical retraction, given by the
projection X × BunT → X and the evaluation map X × BunT → pt /T . So far we have shown
that the image of (6.2.2) under the resulting composition

R2 End(∆µ
∗ IC(X×BunT

BunB)/T ) −→ H2(X × pt /T ) −→ H2(X × BunT )

−→ R0 Hom(p! ICBunB , p∗ ICBunB )

agrees with the image of −1⊗ hµ under

H2(X × pt /T ) −→ H2(X × BunT ) −→ R0 Hom(p! ICBunB , p∗ ICBunB ),

so it suffices to show that the latter composition is injective.
We have H2(X×pt /T ) = ȟ⊕H2(X), and we have already used the fact that for each λ ∈ Λ,

an element h ∈ ȟ maps to 〈h, λ〉 times the canonical morphism p! ICBunλB
→ p∗ ICBunλB

. One

checks that the canonical generator of H2(X) maps to canonical map p! ICBunB → p∗ ICBunB

itself, which proves the desired injectivity. 2
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Note that Lemma 6.2.2 already implies that M does not descend to BunNω/T , since hµ 6= 0.

Proof of Lemma 6.2.1. The morphism (6.2.1) induces an element of H2(X×pt /Gm) in the same
way that (6.2.2) gives rise to −1⊗ hµ ∈ H2(X × pt /T ). Moreover, these constructions fit into a
commutative square

End(∆µ
∗ IC(X×BunT

BunB)/T )

��

// H•(X × pt /T )

��
End(∆µ

∗ IC(X×BunT
BunB)/Gm) // H•(X × pt /Gm)

where the vertical morphisms are induced by γ, and in particular (6.2.2) maps to (6.2.1) along
the left vertical morphism. The image of hµ under H2(pt /T )→ H2(pt /Gm) = k is the positive
integer 〈hµ, γ〉, so the lemma follows. 2

6.3 We need another, more elementary lemma. Fix µ ∈ Λpos and k ∈ Kost(µ) given by µ =∑
nββ.

Lemma 6.3.1. If L is a nonconstant simple summand of �β∈R+Pnβ , then

∆!ιk∗L = 0 = ∆∗ιk∗L .

Proof. This follows from the fact that the local system on X
(n)
disj associated to a nontrivial

irreducible Σn-representation extends cleanly over the main diagonal. 2

Second proof of Theorems 1.4.1 and 5.1.1. We proceed as in the first proof, until we have
constructed the isomorphism (5.1.1) over Zµ\∆(X) and reduced to the case that µ is a coroot.
We showed that in this case Ψ(WZµ) contains ∆∗ ICX with multiplicity two but has no other
subquotients supported on the main diagonal (in particular, the two sides of (5.1.1) agree in the
Grothendieck group). Either sl2 acts trivially on both copies of ∆∗ ICX or they have weights 1
and −1. In order to show that (5.1.1) extends to Zµ we need to rule out the first case, and then
show that gr Ψ(WZµ) is semisimple.

We must rule out the possibility that sl2 acts trivially on the subquotient M from
Lemma 5.2.1. Since the monodromy endomorphism of Ψ(WZµ) is the obstruction to Gm-
equivariance, this would imply that M is Gm-equivariant, contradicting Lemma 5.2.1.

Now we finish the proof that gr Ψ(WZµ) is semisimple. Using the sl2-action, it decomposes
into the direct sum of its isotypic components, indexed by the irreducible sl2-representations.
The previous paragraph says that the two copies of ∆∗ ICX are subquotients of the std-isotypic
component. Thus the other isotypic components have no subquotients supported on the main
diagonal, so they are the same as the corresponding isotypic components on the right-hand
side of (5.1.1) and in particular are semisimple. We will show that for any simple subquotient
L 6= ∆∗ ICX of the std-isotypic component we have

Ext1(∆∗ ICX ,L ) = 0 = Ext1(L ,∆∗ ICX),

from which it follows that IC⊕2
X is a direct summand of the std-isotypic component. Since the

other summand has no subquotients supported on the main diagonal, it is semisimple by the
induction hypothesis.
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We will show that H i(∆!L ) = 0 for i 6 1, which implies that Ext1(∆∗ ICX ,L ) = 0. The
other vanishing follows by applying Verdier duality: since gr Ψ(WZµ) is Verdier self-dual, so is its

std-isotypic component. Observe that L has the form ′jµ=ν,!∗
′mµ,∆

ν F for some 0 < ν 6 µ and a
simple summand F of Pν . The case ν = 0 is excluded because then L = ICZµ has weight 0.

First suppose that ν < µ. Then we have

∆!′jµ=ν,!∗
′mµ,∆

ν F −̃→ ∆!F ⊗! ∆! ICZµ−ν .

Since ∆! ICZµ−ν is concentrated in cohomological degrees greater than or equal to 1 (see [BG08])
and ∆!F is concentrated in degrees greater than or equal to 0, and both complexes have lisse
cohomology sheaves, their !-tensor product is concentrated in degrees greater than or equal to 2
as desired.

Finally, we address the case ν = µ, where F = L . By Lemma 6.3.1, we can assume L is a
summand of add∗ IC∏

X
(nβ) for some Kostant partition µ =

∑
nββ. If

∑
nβ > 3 then the claim

follows by base change. By assumption L 6= ∆∗ ICX , so
∑
nβ > 1. This leaves only the case∑

nβ = 2, and since µ is a coroot the only possibility is that µ = β1 +β2 is a sum of two distinct
coroots. As shown in Lemma 5.1.4, in this case the std-isotypic component of gr Ψ(WZµ) is just
IC⊕2

X . 2
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