ON ODD-DIMENSIONAL COMPLEX ANALYTIC KLEINIAN GROUPS

MASAHIDE KATO

(Received 5 August 2018; accepted 4 September 2018; first published online 12 February 2019)

Communicated by F. Larusson

Abstract

We shall explain here an idea to generalize classical complex analytic Kleinian group theory to any odd-dimensional cases. For a certain class of discrete subgroups of $PGL_{2n+1}(C)$ acting on P^{2n+1} , we can define their domains of discontinuity in a canonical manner, regarding an *n*-dimensional projective linear subspace in P^{2n+1} as a point, like a point in the classical one-dimensional case. Many interesting (compact) non-Kähler manifolds appear systematically as the canonical quotients of the domains. In the last section, we shall give some examples.

2010 *Mathematics subject classification*: primary 32J18; secondary 30F40, 32F10, 32F17, 53C56. *Keywords and phrases*: compact non-Kähler manifold, projective structure, Kleinian group theory.

Notation

- $M(p \times q, \mathbf{C})$: the set of matrices of size $p \times q$ with coefficients in \mathbf{C} .
- $M_p(\mathbf{C})$: the set of matrices of size $p \times p$ with coefficients in \mathbf{C} .

1. Introduction

The theory of discrete subgroups of $PGL_2(\mathbb{C})$ has a long history. Let Γ be a discrete subgroup of $PGL_2(\mathbb{C})$. We say that the action of Γ at a point $z \in \mathbb{P}^1$ is *discontinuous* if there is a neighborhood W of z such that $\gamma(W) \cap W = \emptyset$ for all but finitely many $\gamma \in \Gamma$. Following Maskit [11], we call a subgroup $\Gamma \subset PGL_2(\mathbb{C})$ whose action is discontinuous at some point $z \in \mathbb{P}^1$ a *Kleinian group*.

Let $\Gamma \subset PGL_2(\mathbb{C})$ be a Kleinian group. The set $\Omega(\Gamma)$ of points $z \in \mathbb{P}^1$ at which Γ acts discontinuously is called the *set of discontinuity* of Γ . The set $\Omega(\Gamma)$ is a Γ -invariant open subset in \mathbb{P}^1 on which Γ acts properly discontinuously. The geometry of the quotient space $\Omega(\Gamma)/\Gamma$ is one of the main themes in the classical Kleinian group theory.

If we seek a higher-dimensional version of the Kleinian group theory, we must first define the set of discontinuity for a given discrete subgroup. Let $n \ge 2$. Take a discrete

^{© 2019} Australian Mathematical Publishing Association Inc.

subgroup $\Gamma \subset PGL_{n+1}(\mathbb{C})$ acting of \mathbb{P}^n . Consider, as above, the set $\Omega(\Gamma)$ of points $z \in \mathbb{P}^n$ at which Γ acts discontinuously. Then it is true that Γ acts on $\Omega(\Gamma)$, but the action is not properly discontinuous in general. Therefore, we must find another definition of the set of discontinuity to get a good quotient space.

In this paper, we consider a class of discrete subgroups in $PGL_{2n+2}(\mathbb{C})$ $(n \ge 1)$, that is, the class of *type* \mathbb{L} groups (Definition 4.5). A type \mathbb{L} group Γ has the nonempty set of discontinuity $\Omega(\Gamma)$, which is defined in a canonical manner. The set $\Omega(\Gamma)$ contains a subdomain $W \subset \mathbb{P}^{2n+1}$, which is biholomorphic to

$$\{z \in \mathbf{P}^{2n+1} : |z_0|^2 + \dots + |z_n|^2 < |z_{n+1}|^2 + \dots + |z_{2n+1}|^2\}$$
(1.1)

and satisfies

$$\gamma(W) \cap W = \emptyset$$
 for any $\gamma \in \Gamma \setminus \{1\}$,

where $z = [z_0 : \cdots : z_n : z_{n+1} : \cdots : z_{2n+1}].$

For type L groups, *n*-dimensional projective linear subspaces in \mathbf{P}^{2n+1} play the same role as points do in one-dimensional Kleinian group theory. In the following, an *n*-dimensional projective linear subspace is called an *n*-plane for short. The paper is organized as follows.

In Section 2, we shall make some preparations on the Grassmannian Gr(m, 2m) of *m*-dimensional subspaces in \mathbb{C}^{2m} . As is well known, $\operatorname{Gr}(m, 2m)$ can be embedded into the projective space \mathbf{P}^N , $N = {}_{2m}C_m - 1$, by Plücker coordinates. We remark that the embedded Gr(m, 2m) is contained in a $PGL_m(\mathbb{C})$ -invariant hyperquadric (Proposition 2.3). This fact plays an important role in studying limit sets of type L groups. In Section 3, we study some convergence properties of infinite sequences of projective transformations. In Section 4, we define the set of discontinuity $\Omega(\Gamma)$ for a type L group Γ (Definitions 4.3, 4.5), and show that the action of Γ on $\Omega(\Gamma)$ is properly discontinuous (Theorem 4.11). Hence the quotient $\Omega(\Gamma)/\Gamma$ becomes a good space. A domain $\Omega \subset \mathbf{P}^{2n+1}$ is said to be *large* if Ω contains an *n*-plane. The definition of the term 'large' is different from [10], where a domain $\Omega \subset \mathbf{P}^{2n+1}$ is said to be large if the 4n-dimensional Hausdorff measure of its complement vanishes. Any holomorphic automorphism of a large domain extends to an element of $PGL_{2n+2}(\mathbb{C})$ (Ivashkovich [4]). Using this, we show in Section 5, that a large domain which covers a compact manifold is a connected component of $\Omega(\Gamma)$ of some type L group Γ (Theorem 5.5). This may justify our definition of $\Omega(\Gamma)$. There are many groups of type L. As an example, we explain briefly an analogue of Klein combinations and handle attachments in Section 6. See also [6] on this topic. In Section 7, an analogue of the Ford region is defined. We prove that this region gives a fundamental set of a type L group under some additional conditions. In Section 8, we shall give examples of type L groups and their quotient spaces $\Omega(\Gamma)/\Gamma$.

2. The Grassmannian Gr(*m*, 2*m*)

Let $Gr(m, 2m), m \ge 2$, be the Grassmannian of the *m*-dimensional subspaces in \mathbb{C}^{2m} . The aim of the section is to show that Gr(m, 2m) is embedded in a quadric hypersurface in a big projective space by Plücker coordinates. This is a well-known fact. But since this is important for the later argument, we will explain it here for the reader's convenience.

Let $\{e_1, \ldots, e_{2m}\}$ be a basis of \mathbb{C}^{2m} and let \mathcal{I} be the set of multiindices

$$I = \{i_1, \ldots, i_m\} \subset \{1, \ldots, 2m\}, \quad i_1 < \cdots < i_m,$$

of cardinality *m*. In the set of multiindices $I = \{I\}$, we introduce the lexicographic order. Namely, for multiindices $I = \{i_1, \ldots, i_m\}$, $J = \{j_1, \ldots, j_m\}$, $I \neq J$, we write I < J, if $i_{\mu} < j_{\mu}$ for $\mu = \min\{\lambda : i_{\lambda} \neq j_{\lambda}\}$. We put

$$\delta_{JK} = \delta^{KJ} = \begin{cases} (-1)^{\nu} & \text{if } J \cap K = \emptyset, \\ 0 & \text{if } J \cap K \neq \emptyset, \end{cases}$$

where $v = \#\{(p, q) \in J \times K : p > q\}$, and

$$\delta_J^I = \begin{cases} 1 & \text{if } I = J, \\ 0 & \text{if } I \neq J. \end{cases}$$

Then we have $\delta_{IJ} = (-1)^m \delta_{JI}$, $\delta^{IJ} = (-1)^m \delta^{JI}$, and

$$\delta_{IJ}\delta^{JK} = \begin{cases} 1 & \text{if } I = K, \\ 0 & \text{if } I \neq K. \end{cases}$$
 (Einstein's convention)

As a basis of $\Lambda^m(\mathbb{C}^{2m})$ of the space of *m*-vectors, we use $\{e_l\}_l$, where

$$e_I = e_{i_1} \wedge \cdots \wedge e_{i_m}, \quad I = \{i_1, \ldots, i_m\} \in \mathcal{I}.$$

Then

$$e_J \wedge e_K = \delta_{JK} e_1 \wedge \dots \wedge e_{2m}. \tag{2.1}$$

Any $w \in \Lambda^m(\mathbb{C}^{2m})$ is written uniquely as a linear combination over \mathbb{C} ,

$$w = w^I e_I, \quad w^I \in \mathbf{C},$$
 (Einstein's convention).

If $w \neq 0$, it determines a point $[w^I] \in \mathbf{P}^N$, regarding $\{w^I\}_I$ as a homogeneous coordinates, where $N = {}_{2m}C_m - 1$.

Let X be an *m*-dimensional subspace in \mathbb{C}^{2m} spanned by 2*m*-vectors $\{x_1, \ldots, x_m\}$. Then X corresponds to the *m*-vector $\hat{X} = x_1 \wedge \cdots \wedge x_m \in \operatorname{Gr}(m, 2m)$. Letting $x_j = x_j^k e_k$,

$$\hat{X} = x_1^{k_1} e_{k_1} \wedge \dots \wedge x_m^{k_m} e_{k_m} = X^K e_K, \qquad (2.2)$$

where

$$X^{K} = \det \begin{pmatrix} x_{1}^{k_{1}} & \cdots & x_{m}^{k_{1}} \\ \vdots & & \vdots \\ x_{1}^{k_{m}} & \cdots & x_{m}^{k_{m}} \end{pmatrix}$$

The set of numbers $\{X^K\}_{K \in I}$ determines the point $[x^K] \in \mathbf{P}^N$, which are the Plücker coordinates of the vector subspace *X*.

Let $A \in M_{2m}(\mathbb{C})$ be any element. Put $Ae_j = a_j^k e_k$. Then

$$Ae_J = Ae_{j_1} \wedge \cdots \wedge Ae_{j_m} = a_{j_1}^{k_1}e_{k_1} \wedge \cdots \wedge a_{j_m}^{k_m}e_{k_m} = A_J^K e_K,$$

where

4

$$A_{j}^{K} = \det \begin{pmatrix} a_{j_{1}}^{k_{1}} & \cdots & a_{j_{m}}^{k_{1}} \\ \vdots & & \vdots \\ a_{j_{1}}^{k_{m}} & \cdots & a_{j_{m}}^{k_{m}} \end{pmatrix}.$$

Hence, for $J, K \in \mathcal{I}$ with $J \cap K = \emptyset$,

$$A(e_J \wedge e_K) = A_J^L e_L \wedge A_K^M e_M = \delta_{LM} A_J^L A_K^M e_1 \wedge \dots \wedge e_{2m}$$

On the other hand,

$$A(e_J \wedge e_K) = \delta_{JK} \det(A) e_1 \wedge \cdots \wedge e_{2m}.$$

Thus

$$\delta_{LM} A_J^L A_K^M = \delta_{JK} \det A. \tag{2.3}$$

Define a bilinear form Q(z, w) on \mathbb{C}^{N+1} by

$$Q(z,w) = \delta_{JK} z^J w^K, \quad z = (z^J), \quad w = (w^K).$$

Put

$$\hat{A}z = (A_I^K z^I), \quad z = (z^I).$$

Then, by (2.3),

$$Q(\hat{A}z, \hat{A}w) = (\det A)Q(z, w).$$

For \hat{A} , we define $\hat{A}^* \in M_{N+1}(\mathbb{C})$ by

$$(\hat{A}^*)^I_J = \delta^{IK} \delta_{LJ} A^L_K. \tag{2.4}$$

Then

$$Q(\hat{A}z, w) = Q(z, \hat{A}^*w), \qquad (2.5)$$

$$\hat{A}^* \hat{A} = (\det A) I_{N+1}.$$
 (2.6)

PROPOSITION 2.1. Let $X, Y \subset \mathbb{C}^{2m}$ be m-dimensional vector subspaces. Put $X = X^K e_K$ and $Y = Y^K e_K$. Then $\dim(X \cap Y) \ge 1$ holds if and only if

$$Q((X^K), (Y^K)) = 0.$$

In particular, the equation

$$Q((X^K), (X^K)) = 0$$

holds for any m-dimensional subspace X of \mathbf{C}^{2m} .

PROOF. This is clear from (2.2) and (2.1).

We apply the above argument to the case Gr(n + 1, 2n + 2). Set $N =_{2n+2} C_{n+1} - 1$. Then, by Proposition 2.1, we have easily the following proposition.

PROPOSITION 2.2. Let Q(z, w) be the quadratic form defined by

$$Q(z,w) = \delta_{JK} z^J w^K$$

defined on $\mathbb{C}^{N+1} \times \mathbb{C}^{N+1}$. Let ℓ_1, ℓ_2 be n-planes in \mathbb{P}^{2n+1} and let $[x^I]$, $[y^I]$ be their Plücker coordinates. Then ℓ_1 and ℓ_2 intersect if and only if the equality

$$Q([x^{I}], [y^{I}]) = 0$$

holds. In particular, for an n-plane with the Plücker coordinates $[x^{I}]$,

$$Q([x^{I}], [x^{I}]) = 0.$$

We have also the following proposition.

PROPOSITION 2.3. The quadric hypersurface $Q = \{Q(z, z) = 0\}$ in \mathbf{P}^N is invariant by the image group of the group representation

$$\rho : \operatorname{PGL}_{2n+2}(\mathbb{C}) \to \operatorname{PGL}_{N+1}(\mathbb{C}), \quad \rho(A) = \hat{A},$$

and the Grassmannian Gr(n + 1, 2n + 2) is contained in Q.

3. Limit of projective transformations

Let $N \ge 1$ and let Γ be a discrete infinite subgroup of $PGL_{N+1}(\mathbb{C})$ that acts on the projective space \mathbb{P}^N . Consider an infinite sequence $\{\sigma_v\}$ of elements of Γ . Let $\tilde{\sigma}_v \in GL_{N+1}(\mathbb{C})$ be a representative of σ_v such that $|\tilde{\sigma}_v| = 1$, where, for a matrix $A = (a_{jk})$ of size N + 1, we put $|A| = \max_{0 \le j,k \le N} |a_{jk}|$. We say that $\{\sigma_v\}$ is a *normal sequence* if the following conditions are satisfied.

- (1) The sequence $\{\sigma_{\gamma}\}$ consists of distinct elements of Γ .
- (2) The sequence of matrices $\{\tilde{\sigma}_{\nu}\}$ can be chosen to be convergent to a matrix $\tilde{\sigma} \in M_{N+1}(\mathbb{C})$.

The projective linear subspace defined by the image of the linear map $\tilde{\sigma} : \mathbb{C}^{N+1} \to \mathbb{C}^{N+1}$ is called the *limit image* of the normal sequence $\{\sigma_v\}$ and denoted by $I(\{\sigma_v\})$. Similarly, the projective linear subspace defined by the kernel of $\tilde{\sigma}$ is called the *limit kernel* of $\{\sigma_v\}$ and is denoted by $K(\{\sigma_v\})$. Here $r = \operatorname{rank} \tilde{\sigma}$ is called the rank of the normal sequence. Note that $I(\{\sigma_v\}), K(\{\sigma_v\})$ and r are determined independently of the choice of representatives $\tilde{\sigma}_v$. Obviously, dim $I(\{\sigma_v\}) = r - 1$ and dim $K(\{\sigma_v\}) = N - r$.

THEOREM 3.1 [12, Satz 2]. Let $\{\sigma_{\nu}\} \subset \Gamma$ be a normal sequence. Suppose that the sequence of representatives $\{\tilde{\sigma}_{\nu}\}$ converges to $\tilde{\sigma} : \mathbb{C}^{N+1} \to \mathbb{C}^{N+1}$. Let I be its limit image and let K be the limit kernel. Then the sequence $\{\sigma_{\nu}\}$ converges uniformly on compacts in $\mathbb{P}^{N} \setminus K$ to the projection $\sigma : \mathbb{P}^{N} \setminus K \to I$ defined by $\tilde{\sigma}$.

THEOREM 3.2. Let $\{\sigma_{\nu}\}_{\nu} \subset \Gamma$ be a normal sequence such that the sequence $\{\hat{\sigma}_{\nu}\}_{\nu}$ is also normal. Then the limit image of $\{\hat{\sigma}_{\nu}\}_{\nu}$ is contained in Q, and the limit kernel coincides with the orthogonal subspace (with respect to Q(z, z)) of the limit image of $\{\hat{\sigma}_{\nu}^{-1}\}_{\nu}$.

PROOF. Let $S_{\nu} \in \text{GL}_{N+1}(\mathbb{C})$ be a representative of $\hat{\sigma}_{\nu}$. We can assume that $|S_{\nu}| = 1$ and that the sequence $\{S_{\nu}\}$ converges to $S \in M_{N+1}(\mathbb{C})$. Since Γ is discrete, det $S = \lim_{\nu \to \infty} \det S_{\nu} = 0$. Therefore

$$Q(S_{\nu z}, S_{\nu z}) = (\det S_{\nu})Q(z, z)$$
 and $Q(Sz, Sz) = 0$,

by Proposition 2.3. Hence the limit image of $\{\hat{\sigma}_{\nu}\}$ is contained in Q. Since

$$(\operatorname{Im} S^*)^{\perp} = \{ z \in \mathbf{C}^{N+1} : Q(z, S^*w) = 0 \,\,\forall w \in \mathbf{C}^{N+1} \} \\ = \{ z \in \mathbf{C}^{N+1} : Q(Sz, w) = 0 \,\,\forall w \in \mathbf{C}^{N+1} \} \\ = \operatorname{Ker} S,$$

we have

Ker
$$S = (\text{Im } S^*)^{\perp}$$
.

By (2.6), we see that the projection $\mathbf{P}^N \cdots \to \mathbf{P}^N$ defined by S^* is the limit of the normal sequence $\{\hat{\sigma}_{\gamma}^{-1}\}_{\gamma}$. Thus we have the theorem.

4. Discontinuous groups in the projective (2n + 1)-space

Let $\Gamma \subset \text{PGL}_{2n+2}(\mathbb{C})$ be a discrete subgroup. Put $N = {}_{2n+2}C_{n+1} - 1$ and $\mathcal{G} = \text{Gr}(n + 1, 2n + 2)$. We shall say, from now on, that a sequence $\{\sigma_v\} \subset \Gamma$ is *normal* if not only the original sequence $\{\sigma_v\}$ is normal but also is the corresponding sequence $\{\hat{\sigma}_v\}$, $\hat{\sigma}_v = \rho(\sigma_v)$, of $\text{PGL}_{N+1}(\mathbb{C})$. Thus a normal sequence $\{\sigma_v\} \subset \Gamma$ defines also $I(\{\hat{\sigma}_v\})$ and $K(\{\hat{\sigma}_v\})$ in \mathbb{P}^N . Note that any normal sequence in the old sense contains a subsequence that is normal in the new one.

DEFINITION 4.1. An *n*-plane ℓ in \mathbf{P}^{2n+1} is called a *limit n-plane* of Γ if there is a normal sequence $\{\sigma_{\nu}\}$ of Γ with $\hat{\ell} \in \mathcal{G} \cap I(\{\hat{\sigma}_{\nu}\})$.

Let $\mathcal{L}(\Gamma) \subset \mathcal{G}$ denote the set of points that correspond to limit *n*-planes of Γ .

DEFINITION 4.2. The union

$$\Lambda(\Gamma) = \bigcup_{\hat{\ell} \in \mathcal{L}(\Gamma)} |\ell|$$

of the support of limit *n*-planes of Γ is called *the limit set* of Γ .

Here we indicate by $|\ell|$ the support of an *n*-plane ℓ in \mathbf{P}^{2n+1} in order to express explicitly the set of points on the *n*-plane.

DEFINITION 4.3. The set

$$\Omega(\Gamma) = \mathbf{P}^{2n+1} \setminus \Lambda(\Gamma)$$

is called the set of discontinuity of the group Γ .

DEFINITION 4.4. A domain Ω in \mathbf{P}^{2n+1} is said to be *large* if Ω contains an *n*-plane.

There are examples of Γ with nonempty $\Omega(\Gamma)$, but which contain no *n*-planes. For example, in the case \mathbf{P}^3 , let Γ be the infinite cyclic group generated by $\sigma = \begin{pmatrix} I & 0 \\ A & I \end{pmatrix} \in PGL_4(\mathbb{C}), A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then $\Omega(\Gamma) = \mathbb{P}^3 \setminus \{z_0 = 0\}$. Thus we define type \mathbb{L} groups as follows.

DEFINITION 4.5. A discrete subgroup in $PGL_{2n+2}(\mathbb{C})$ is said to be of type \mathbb{L} if $\Omega(\Gamma)$ contains a large domain.

From now on, we assume that $\Gamma \subset PGL_{2n+2}(\mathbb{C})$ is of type L, if not stated otherwise explicitly. This is our higher-dimensional *complex analytic* analogue of Kleinian groups.

LEMMA 4.6. $\mathcal{G} \cap I(\{\hat{\sigma}_{v}\})$ consists of a single point for any normal sequence $\{\sigma_{v}\}$ in Γ .

PROOF. Let $\{\sigma_{\nu}\}_{\nu}$ be any normal sequence in $\Gamma \subset \text{PGL}_{2n+2}(\mathbb{C})$ and let $\{S_{\nu}\}_{\nu} \subset \text{GL}_{N+1}(\mathbb{C})$ be any convergent sequence of representatives of $\{\hat{\sigma}_{\nu}\}_{\nu}$ with $|S_{\nu}| = 1$. Put $S = \lim S_{\nu}$. Let $I = [\operatorname{Im} S] = I(\{\hat{\sigma}_{\nu}\}), K = [\operatorname{Ker} S] = K(\{\hat{\sigma}_{\nu}\}) \subset \mathbb{P}^{N}$ be the limit image and the limit kernel of $\{S_{\nu}\}$, respectively. If the algebraic set $I \cap \mathcal{G}$ is of positive dimension, then $B = \bigcup_{\hat{\ell} \in I \cap \mathcal{G}} |\ell|$ is an algebraic manifold contained in $\Lambda(\Gamma)$ with dimension more than n. This is absurd since $\Omega(\Gamma)$ contains an n-plane which does not intersect B. Hence $I \cap \mathcal{G}$ is a finite set. Consequently, $I \cap \mathcal{G}$ consists of a single point since it is the set of limit points of $\mathcal{G} \setminus K$, which is connected.

PROPOSITION 4.7. The limit image $I(\{\hat{\sigma}_v\})$ consists of a single point in G for any normal sequence $\{\sigma_v\}$ in Γ .

PROOF. We use the notation in the proof of the lemma above. By the lemma, we have $I \cap \mathcal{G} = \{\hat{\ell}\}$ for some point $\hat{\ell} \in \mathcal{G}$. Suppose that dim I > 0. The linear map S defines the projection $S : \mathbf{P}^N - K \to I$. Since \mathcal{G} is not contained in any proper linear subspace in \mathbf{P}^N , there is a point $w \in I \setminus \mathcal{G}$. The fiber $S^{-1}(w)$ does not intersects \mathcal{G} outside K since, otherwise, for $x \in \mathcal{G} \setminus K$, we have $w = S(x) = \lim_v S_v(x) \in \mathcal{G}$. This is absurd. Thus $\mathcal{G} \subset K \cup S^{-1}(\hat{\ell})$. This contradicts again the fact that the manifold \mathcal{G} is not contained in any proper linear subspace in \mathbf{P}^N . Hence we have $I = I \cap \mathcal{G} = \{\hat{\ell}\}$. Thus we have the proposition.

THEOREM 4.8. Let $\{\sigma_{\nu}\}$ be a sequence of distinct elements of Γ . Then there are limit *n*-planes ℓ_{I} , ℓ_{K} and a subsequence $\{\tau_{\nu}\}$ of $\{\sigma_{\nu}\}$ such that $\{\tau_{\nu}\}$ is uniformly convergent to ℓ_{I} on $\mathbf{P}^{2n+1} \setminus \ell_{K}$ in the sense that, for any compact subset $M \subset \mathbf{P}^{2n+1} \setminus \ell_{K}$ and for any neighborhood V of ℓ_{I} , there is an integer m_{0} such that $\tau_{\nu}(M) \subset V$ for any $m > m_{0}$.

PROOF. Choose a normal subsequence $\{\tau_{\nu}\}$ of $\{\sigma_{\nu}\}$ such that $\{\tau_{\nu}^{-1}\}$ also has a convergent sequence of representatives. Let $\{T_{\nu}\} \subset \operatorname{GL}_{N+1}(\mathbb{C})$ be the convergent sequence corresponding to $\{\hat{\tau}_{\nu}\}$. Put $T = \lim_{\nu} T_{\nu}$. Note that $\{T'_{\nu}\}, T'_{\nu} = |T^*_{\nu}|^{-1}T^*_{\nu}$, is a convergent sequence of representatives of $\{\hat{\tau}_{\nu}^{-1}\}$ by (2.4) and (2.6). Hence $\{\tau_{\nu}^{-1}\}$ is also a normal sequence. Put $T' = \lim_{\nu} T'_{\nu}$. By Proposition 4.7, [Im T] is a single point in \mathcal{G} , which corresponds to a limit *n*-plane, denoted by ℓ_I , in \mathbb{P}^{2n+1} . On the other hand, since [Im T'] is the limit image of the normal sequence $\{\hat{\tau}_{\nu}^{-1}\}$, [Im T'] consists of a single point corresponding to a limit *n*-plane in \mathbb{P}^{2n+1} by Proposition 4.7, which we denote by ℓ_K . Note that $[\operatorname{Im} T']^{\perp}$ is the set of points parameterizing *n*-planes intersecting ℓ_K by Proposition 2.2. Since Ker $T = (\operatorname{Im} T')^{\perp}$ by Theorem 3.2, and $\{\hat{\tau}_{\nu}\}$ converges

uniformly on compact sets in $\mathbf{P}^N \setminus [\text{Ker } T]$ to [Im T] by Theorem 3.1, we see that $\{\tau_v\}$ converges uniformly compact on sets on $\mathbf{P}^{2n+1} \setminus \ell_K$ to ℓ_I . This proves the theorem. \Box

In the course of the proof, we have shown the following proposition.

PROPOSITION 4.9. Let ℓ_0 be a limit n-plane of Γ . Then there is a limit n-plane ℓ_{∞} and a normal sequence $\{\sigma_v\} \subset \Gamma$ such that $\{\sigma_v\}$ is uniformly convergent to ℓ_0 on any compact set in $\mathbf{P}^{2n+1} \setminus \ell_{\infty}$ and that $\{\sigma_v^{-1}\}$ is uniformly convergent to ℓ_{∞} on any compact set in $\mathbf{P}^{2n+1} \setminus \ell_0$.

Next we shall show the following theorem.

THEOREM 4.10. For a type **L** group Γ , $\Lambda(\Gamma)$ is a closed, nowhere dense Γ -invariant subset in \mathbf{P}^{2n+1} .

PROOF. To show that $\Lambda(\Gamma)$ is Γ -invariant, we take any point $x \in \Lambda(\Gamma)$. Since x is on a limit *n*-plane, say, ℓ_0 , there is a normal sequence $\{\sigma_v\}$ of Γ with $I(\{\hat{\sigma}_v\}) = \hat{\ell}_0$ by Proposition 4.9. Then $\{\sigma \circ \sigma_v\}$ is a normal sequence with $I(\{\hat{\sigma} \circ \hat{\sigma}_v\}) = \hat{\sigma}(\hat{\ell}_0)$. Since the limit *n*-plane $\sigma(\ell_0)$ passes through the point $\sigma(x)$, $\Lambda(\Gamma)$ is Γ -invariant.

To show that $\Lambda(\Gamma)$ is closed, let $\{x_{\nu}\}$ be a sequence of points of $\Lambda(\Gamma)$ such that $\lim_{\nu} x_{\nu} = x$ for some point $x \in \mathbf{P}^{2n+1}$. Let ℓ_{ν} be a limit *n*-plane through x_{ν} . By Proposition 4.9, for each ν , we can find a limit *n*-plane $\ell_{\nu,\infty}$ and a normal sequence $\{\sigma_{\nu,k}\}_k$ such that $I(\{\hat{\sigma}_{\nu,k}\}_k) = \hat{\ell}_{\nu}$ and that the sequence $\{\sigma_{\nu,k}\}_k$ is uniformly convergent to ℓ_{ν} on compact sets in $\mathbf{P}^{2n+1} \setminus \ell_{\nu,\infty}$. Taking a subsequence of $\{\ell_{\nu}\}$, we can assume that the ℓ_{ν} are all distinct and that $\{\hat{\ell}_{\nu}\}$ and $\{\hat{\ell}_{\nu,\infty}\}_{\nu}$ are convergent in \mathcal{G} .

Since $\{\hat{\ell}_{\nu,\infty}\}_{\nu}$ is convergent, there is an *n*-plane ℓ_a which is disjoint from the closure of $\bigcup_{\nu} |\ell_{\nu,\infty}|$. Take a small tubular neighborhood *W* of ℓ_a , which is biholomorphic to the domain (1.1), such that the closure [*W*] is still disjoint from the closure of $\bigcup_{\nu} |\ell_{\nu,\infty}|$.

Fix a metric on \mathcal{G} and consider the distance of points on \mathcal{G} . Let δ_{ν} be the minimal distance from $\hat{\ell}_{\nu}$ to any other $\hat{\ell}_{\mu}$ in \mathcal{G} . Obviously, $\lim_{\nu} \delta_{\nu} = 0$. Set

$$N_{\delta_{\nu}}(\hat{\ell}_{\nu}) = \{z \in \mathcal{G} : \text{distance}(z, \hat{\ell}_{\nu}) < \delta_{\nu}\}.$$

Choose k(v) such that

$$\hat{\sigma}_{\nu,k(\nu)}([\hat{W}]) \subset N_{\delta_{\nu}}(\hat{\ell}_{\nu})$$

and that the $\sigma_{\nu,k(\nu)}$, $\nu = 1, 2, 3, ...$, are all distinct, where $\hat{W} = \{\hat{\ell} \in \mathcal{G} : \ell \subset \mathcal{W}\}$. Put $\hat{\ell} = \lim_{\nu} \hat{\ell}_{\nu}$. Take any $\delta > 0$. Then there is ν_0 such that $N_{\delta_{\nu}}(\hat{\ell}_{\nu}) \subset N_{\delta}(\hat{\ell})$ holds for any $\nu > \nu_0$. Thus, for $\nu > \nu_0$, we have $\hat{\sigma}_{\nu,k(\nu)}([\hat{W}]) \subset N_{\delta}(\hat{\ell})$. This implies that $\{\sigma_{\nu,k(\nu)}\}$ converges to ℓ uniformly on W. Thus ℓ is a limit *n*-plane passing through *x*. Hence $\Lambda(\Gamma)$ is closed.

Lastly, we shall show that $\Lambda(\Gamma)$ is nowhere dense. Let *x* be any point in $\Lambda(\Gamma)$. By Proposition 4.9, there are *n*-planes ℓ_0 , ℓ_{∞} in \mathbf{P}^{2n+1} and a normal sequence $\{\sigma_{\nu}\}$ such that $x \in \ell_0$ and that $\lim_{\nu} \hat{\sigma}_{\nu}(\hat{K}) = \hat{\ell}_0$ for any compact set $K \subset \mathbf{P}^{2n+1} \setminus \ell_{\infty}$. By the property **L**, we can set *K* as a single *n*-plane ℓ contained in $\Omega(\Gamma)$. Then, for every neighborhood *W* of *x*, there is an integer ν_0 such that $W \cap \sigma_{\nu}(\ell) \neq \emptyset$ for $\nu \ge \nu_0$. Thus *W* contains a point in $\Omega(\Gamma)$. Hence $\Lambda(\Gamma)$ is nowhere dense.

THEOREM 4.11. For a type **L** group Γ , the action of Γ on $\Omega(\Gamma)$ is properly discontinuous.

PROOF. Take any compact set M in $\Omega(\Gamma)$. Suppose that there is an infinite sequence $\{\sigma_{\nu}\}_{\nu}$ of distinct elements of Γ such that $M \cap \sigma_{\nu}(M) \neq \emptyset$ for any ν . By Proposition 4.9, replacing $\{\sigma_{\nu}\}$ with its normal subsequence, we can assume that there are limit *n*-planes ℓ_{K} and ℓ_{I} such that $\{\sigma_{\nu}\}$ converges uniformly on $\mathbf{P}^{2n+1} \setminus \ell_{K}$ to ℓ_{I} . Since $\Omega(\Gamma)$ has no intersection with limit *n*-planes, we see that $M \cap (\ell_{I} \cup \ell_{K}) = \emptyset$. Therefore $\{\sigma_{\nu}(M)\}$ converges to a subset on ℓ_{I} . This contradicts the assumption that $M \cap \sigma_{\nu}(M) \neq \emptyset$ for any ν .

By Theorem 4.11, we can define canonically the quotient space $\Omega(\Gamma)/\Gamma$, which we denote by $X(\Gamma)$,

$$X(\Gamma) = \Omega(\Gamma)/\Gamma.$$

REMARK 4.12. There are examples of Γ for which $X(\Gamma)$ is not connected. Such an example can be constructed easily in the case n = 1 by considering a flat twistor space over a conformally flat four-manifold [7], where every connected component of $\Omega(\Gamma)$ is large. We do not know, however, whether this is the case for all type **L** groups or not.

5. Discontinuous group actions on large domains

In this section, we shall show that a large domain that covers a compact manifold is a connected component of $\Omega(\Gamma)$ of some Γ of type L.

PROPOSITION 5.1. Let Γ be a group of holomorphic automorphisms of a large domain Ω in \mathbf{P}^{2n+1} . Suppose that Γ is torsion free and that the action of Γ on Ω is properly discontinuous. Then Γ is of type **L**.

PROOF. First we shall prove that Γ is a subgroup of $PGL_{2n+2}(\mathbb{C})$. By a *line* we shall mean a one-dimensional projective linear subspace of a projective space. Since every line in \mathbb{P}^{2n+1} has a tubular neighborhood with a smooth convex–concave boundary, the following lemma follows immediately from a theorem of Ivashkovich [4].

LEMMA 5.2. Let L_{ν} , $\nu = 1, 2$, be lines in \mathbf{P}^m $(m \ge 2)$ and let U_{ν} be a tubular neighborhood of L_{ν} . Suppose that $\gamma : U_1 \to U_2$ is a biholomorphic mapping. Then γ extends to an element of $\operatorname{PGL}_{m+1}(\mathbf{C})$.

LEMMA 5.3. Let $\sigma \in \Gamma \setminus \{1\}$ be any element and let $\tilde{\sigma} \in GL_{2n+2}(\mathbb{C})$ be a representative of σ . Then the inequality

$$\operatorname{rank}\left(\tilde{\sigma} - \alpha I\right) \ge n + 1 \tag{5.1}$$

holds for any $\alpha \in \mathbf{C}$ *.*

PROOF. Consider the subspace

$$V = \{ z \in \mathbf{C}^{2n+2} : (\tilde{\sigma} - \alpha I)z = 0 \}.$$

Each point of the projectivized linear subspace $[V] \subset \mathbf{P}^{2n+1}$ is fixed by σ . Suppose that rank $(\tilde{\sigma} - \alpha I) \leq n$. Then dim $V \geq n + 2$. Therefore any *n*-plane in Ω intersects [V] and every point on the intersection is fixed by σ . This is absurd, since Γ is torsion free and properly discontinuous on Ω . Thus we have the lemma.

LEMMA 5.4.¹ If (5.1) holds for any $\alpha \in \mathbb{C}$, then there is an n-plane ℓ such that $\sigma(\ell) \cap \ell = \emptyset$.

PROOF. We have to choose a subspace $L \subset \mathbb{C}^{2n+2}$ of dimension n + 1 such that $\tilde{\sigma}(L) \cap L = \{0\}$. Put

$$\rho = \min_{\alpha \in \mathbf{C}} \operatorname{rank} \left(\tilde{\sigma} - \alpha I \right).$$

We can assume that ρ is attained at $\alpha = 1$ without loss of generality. We put $N = \tilde{\sigma} - I$ and then $\rho = \operatorname{rank} N$. Define $\varphi : C^{2n+2} \to \mathbb{C}^{2n+2}$ by $\varphi(z) = Nz$. Since $\rho \ge n+1$ by the assumption, there is an (n+1)-dimensional subspace $L_1 \subset \operatorname{Im} \varphi$. Put $\tilde{L}_1 = \varphi^{-1}(L_1)$. Then, since dim Ker $\varphi = 2n + 2 - \rho$, we have dim $\tilde{L}_1 = 3n + 3 - \rho$. Since dim $L_1 = n + 1$ and dim Ker $\varphi = 2n + 2 - \rho$, we can choose a subspace $L \subset \tilde{L}_1$ such that dim L = n + 1, $L \cap L_1 = \{0\}$ and $L \cap \operatorname{Ker} \varphi = \{0\}$. We claim that L is the desired linear subspace in \mathbb{C}^{2n+2} . To verify the claim, we choose $X \in M((2n+2) \times (n+1), \mathbb{C})$ with rank X = n + 1such that

$$L = \{ z \in \mathbf{C}^{2n+2} : z = Xu, u \in \mathbf{C}^{n+1} \}.$$

Then $L \cap \tilde{\sigma}(L) = \{0\}$ holds if and only if

$$det(\tilde{\sigma}X, X) \neq 0.$$

This is equivalent to

$$det(NX, X) \neq 0.$$

That $L \cap \text{Ker } \varphi = \{0\}$ implies that *NX* is of maximal rank, and that $L \cap L_1 = \{0\}$ implies that the vectors in *NX* and *X* span \mathbb{C}^{2n+2} . Thus the claim is verified.

Now we go back to the proof of Proposition 5.1. By the assumption that Ω is large, there is a relatively compact subdomain $W \subset \Omega$ which is biholomorphic to U. The *n*-planes in W are parametrized by $\hat{W} \subset \mathcal{G} \subset \mathbf{P}^N$. Since the action of Γ on Ω is properly discontinuous, the set

$$S = \{ \sigma \in \Gamma \setminus \{1\} : \hat{\sigma}(\hat{W}) \cap \hat{W} \neq \emptyset \}$$

is finite. Let ℓ be an *n*-plane in *W*. For $\sigma \in S$, we have $Q(\hat{\ell}, \hat{\sigma}(\hat{\ell})) = 0$ when ℓ intersects $\sigma(\ell)$. By Lemmas 5.3 and 5.4, we see that the set

$$Y_{\sigma} = \{ \zeta \in \mathcal{G} : Q(\zeta, \hat{\sigma}(\zeta)) = 0 \}$$

is a proper analytic subset of G. Hence the set

$$V = \hat{W} \Big\backslash \bigcup_{\sigma \in S} Y_{\sigma}$$

is not empty. Take a point $\hat{\ell}' \in V$. Then we can choose a neighborhood W' of ℓ' which is biholomorphic to U and satisfies $\sigma(W') \cap W' = \emptyset$ for all σ in S and hence in Γ . \Box

¹Compare with [10, Lemma 1.6], which is for 1-planes in \mathbf{P}^{m} .

THEOREM 5.5. Let $\Omega \subset \mathbf{P}^{2n+1}$ be a large domain which is an unramified cover of a compact complex manifold. Then there is a type \mathbf{L} group Γ such that $\Omega(\Gamma)$ contains Ω as a connected component.

PROOF. By Lemma 5.2, there is a group $\Gamma \subset \text{PGL}_{2n+2}(\mathbb{C})$ of holomorphic automorphisms of Ω such that Ω/Γ is compact. Since Γ is finitely generated, we can assume that Γ is torsion free by Selberg's lemma. Hence, by Proposition 5.1, Γ is of type L.

We claim that $\Omega \subset \Omega(\Gamma)$. To verify this, suppose, on the contrary, that there is a point $x \in \Omega \cap \Lambda(\Gamma)$. Then there are limit *n*-planes ℓ_I , ℓ_K such that $x \in \ell_I$ and a sequence $\{\sigma_m\}$ of distinct elements of Γ such that $\{\sigma_m\}$ converges uniformly on $\mathbf{P}^{2n+1} \setminus \ell_K$ to ℓ_I . Let ℓ be an *n*-plane contained in Ω . Displacing ℓ a little, if necessary, we can assume that $\ell \cap \ell_K = \emptyset$. Let K_x be a compact neighborhood of *x* contained in Ω . Put $K = K_x \cup \ell$, which is a compact set contained in Ω . Since $\{\sigma_m(\ell)\}$ converges to ℓ_I , we see that $\sigma_m(K) \cap K \neq \emptyset$ for infinitely many *m*. This contradicts the assumption that Γ is properly discontinuous on Ω . Thus the claim is verified.

Now Ω is contained in a connected component, say, Ω_0 , of $\Omega(\Gamma)$. Since Ω is Γ -invariant, so is Ω_0 . Therefore, by Theorem 4.11, Ω_0/Γ is a connected complex space that contains Ω/Γ . Since Ω/Γ is compact, we infer that $\Omega/\Gamma = \Omega_0/\Gamma$. Hence $\Omega = \Omega_0$. \Box

PROPOSITION 5.6. Let X be a compact Kähler manifold that contains a domain W biholomorphic to

$$U = \{ [z_0 : \dots : z_{2n+1}] \in \mathbf{P}^{2n+1} : |z_0|^2 + \dots + |z_n|^2 < |z_{n+1}|^2 + \dots + |z_{2n+1}|^2 \}.$$

Then X is unirational. In particular, X is simply connected.

PROOF. The proof of [6, Corollary 3.1] works also in this case. Take any *n*-plane $\ell \subset W$. Let *B* be the irreducible component of the Barlet space which contains the point $\hat{\ell}$ corresponding to ℓ . Since *X* is Kähler, *B* is compact. Consider the graph

$$Z = \{(x, b) \in X \times B : x \in b\}.$$

Let $p_X : Z \to X$ and $p_B : Z \to B$ the natural projections. Fix a point $o \in \ell$. Since *B* is compact, we can apply a theorem of Campana [1, Corollaire 1], which says that $p_X^{-1}(o)$ is a compact *algebraic* variety. Hence $B_o := p_B(p_X^{-1}(o))$ is also compact and algebraic. Put $M := p_B^{-1}(B_o)$ and $f = P_B|_M$. Then $f : M \to B_o$ is a \mathbf{P}^n -fiber space over a compact algebraic variety B_o . By the choice of o, B_o is nonsingular at o, and there is a small open neighborhood $N \subset B_o$ centered at $\hat{\ell}$ and a biholomorphic map $\tau : f^{-1}(N) \to N \times \mathbf{P}^n$ such that $f = p \circ \tau$, where $p : N \times \mathbf{P}^n \to N$ is the projection. Let $\mu : M^* \to M$ be a desingularization of M that is a succession of blowing-ups. Here we can assume that μ is biholomorphic on $f^{-1}(N)$. Thus we have a fiber space $g := f \circ \mu : M^* \to B_o$ whose general fiber is \mathbf{P}^n .

LEMMA 5.7. M^{*} is an algebraic variety.

PROOF. As in [13, Section 12], we consider the direct image sheaf $g_*O(-K_{M^*})$, and the associated projective fiber space $\mathbf{P}(g_*O(-K_{M^*}))$ over B_o . Note that $\mathbf{P}(g_*O(-K_{M^*}))$ is an algebraic space. Since $g_*O(-K_{M^*})$ is a locally free sheaf of rank $= 2n+1C_{n+1}$ on a nonempty Zariski open subset of B_o , we have a commutative diagram

$$\begin{array}{cccc} M^* & \stackrel{h}{\longrightarrow} & \mathbf{P}(g_*O(-K_{M^*})) \\ g \searrow & \swarrow & \pi \\ & & B_{a}, \end{array}$$

where *h* is a meromorphic map whose restriction

$$h|_{g^{-1}(b)}: g^{-1}(b) \to \mathbf{P}(g_*O(-K_{M^*}))_b$$

to a general fiber $g^{-1}(b)$ is the map defined by the linear system $|O_{\mathbf{P}^n}(n+1)|$. Hence we infer that dim $h(M^*) = \dim M^*$. Since $\mathbf{P}(g_*O(-K_{M^*}))$ is algebraic, so is $h(M^*)$. Hence M^* is algebraic.

Since $X = p_X(M) = p_X(\mu(M^*))$, we see that X is algebraic by Lemma 5.7. Let $v: Y \to X$ be a succession of blowing-ups such that Y is projective algebraic. Let $j: U \to W$ be a biholomorphic map. Since any meromorphic function on U extends to a meromorphic function on \mathbf{P}^{2n+1} , $v^{-1} \circ j: U \to Y$ extends to a meromorphic map $\mathbf{P}^{2n+1} \dots > Y$. This implies that Y is unirational. Hence X is unirational.

THEOREM 5.8. A compact complex manifold that is covered by a large domain in \mathbf{P}^{2n+1} is non-Kähler, except for \mathbf{P}^{2n+1} itself.

PROOF. This follows from Propositions 5.1, 5.6 and Theorem 5.5.

Note that, for a large domain in Theorem 5.8, we assume nothing on its fundamental group nor on its complement in \mathbf{P}^{2n+1} . Thus our result gives a slight generalization of [10, Proposition 1.9] for odd-dimensional projective spaces.

6. Klein combinations

Let $\Omega_{\nu} \subset \mathbf{P}^{2n+1}$, $\nu = 1, 2$, be large domains and let $\Gamma_{\nu} \subset \operatorname{Aut}(\Omega_{\nu})$ be free and properly discontinuous groups. Put

$$U(\varepsilon) = \{|z_0|^2 + \dots + |z_n|^2 < \varepsilon(|z_{n+1}|^2 + \dots + |z_{2n+1}|^2)\} \subset \mathbf{P}^{2n+1}, \quad \varepsilon > 1,$$
$$N(\varepsilon) = [U(\varepsilon)] \setminus U(\varepsilon^{-1}).$$

Then

$$\sigma: N(\varepsilon) \to N(\varepsilon), \quad \sigma([z_0:\cdots:z_n:z_{n+1}:\cdots:z_{2n+1}]) = [z_{n+1}:\cdots:z_{2n+1}:z_0:\cdots:z_n]$$

is a biholomorphic map. Let $j_{\nu}: U(\varepsilon) \to X_{\nu} = \Omega_{\nu}/\Gamma_{\nu}$ be holomorphic open embeddings. Then we can consider the gluing

$$X_1 # X_2 = (X_1 \setminus j_1(U(\varepsilon^{-1}))) \bigcup (X_2 \setminus j_2(U(\varepsilon^{-1})))$$

by $j_2 \circ \sigma \circ j_1^{-1} : j_1(N(\varepsilon)) \to j_2(N(\varepsilon))$ to obtain a new complex manifold. Then

$$X_1 # X_2 = \Omega / \Gamma$$

for some large domain $\Omega \subset \mathbf{P}^{2n+1}$ and Γ [6]. Here we have $\Gamma \simeq \Gamma_1 * \Gamma_2$. $X_1 \# X_2$ is called the *Klein combination* of X_1 and X_2 . If the Γ_{ν} are cocompact then so is Γ on Ω .

The *handle attachments* can also be defined. In those cases, we have $\Gamma \simeq \Gamma_1 * \mathbb{Z}$. Thus we can get many examples of Γ and $X(\Gamma)$.

7. An analogue of the Ford region

Fix a system of homogeneous coordinates $[z^0: z^1: \dots: z^n: z^{n+1}: \dots: z^{2n+1}]$ on \mathbf{P}^{2n+1} . Put $z' = (z^0, \dots, z^n), z'' = (z^{n+1}, \dots, z^{2n+1})$, and write [z': z''] instead of $[z^0: z^1: \dots: z^n: z^{n+1}: \dots: z^{2n+1}]$ for brevity. Let ℓ'' be the *n*-plane defined by z'' = 0. Put

$$E = \mathbf{P}^{2n+1} \setminus \ell'',$$

and define the projection by

$$\pi: E \to \mathbf{P}^n, \quad \pi([z':z'']) = z''.$$

Then *E* is isomorphic to $O_{\mathbf{P}^n}(1)^{\oplus (n+1)}$ as a vector bundle over \mathbf{P}^n .

7.1. Volume form on *E***.** Take the open covering of $E = \bigcup_{\alpha=1}^{n+1} U_{\alpha}$, where

$$U_{\alpha} = \{ [z': z''] \in \mathbf{P}^{2n+1} : z^{n+\alpha} \neq 0 \} \text{ for all } 1 \le \alpha \le n+1.$$

On each U_{α} , we define a system of coordinates by

$$\begin{cases} \zeta_{\alpha}^{j} = \frac{z^{J}}{z^{n+\alpha}} & \text{for } 0 \le j \le n, \\ x_{\alpha}^{k} = \frac{z^{n+k}}{z^{n+\alpha}} & \text{for } 1 \le k < \alpha, \\ x_{\alpha}^{k-1} = \frac{z^{n+k}}{z^{n+\alpha}} & \text{for } \alpha < k \le n+1. \end{cases}$$

Then $\pi | U_{\alpha}$ is given by

$$\pi(\zeta_{\alpha}^{0},\ldots,\zeta_{\alpha}^{n},x_{\alpha}^{1},\ldots,x_{\alpha}^{n})=(x_{\alpha}^{1},\ldots,x_{\alpha}^{n}).$$

On U_{α} , we define

$$d\zeta_{\alpha} = d\zeta_{\alpha}^{0} \wedge \dots \wedge d\zeta_{\alpha}^{n}$$
$$dx_{\alpha} = dx_{\alpha}^{1} \wedge \dots \wedge dx_{\alpha}^{n}$$

and put

$$dV_{\alpha} = \sqrt{-1}(1 + ||x_{\alpha}||^2)^{-2(n+1)}d\zeta_{\alpha} \wedge \overline{d\zeta_{\alpha}} \wedge dx_{\alpha} \wedge \overline{dx_{\alpha}},$$

where

$$||x_{\alpha}||^{2} = \sum_{k=1}^{n} |x_{\alpha}^{k}|^{2}.$$

It is easy to check that the (2n + 1, 2n + 1)-forms dV_{α} patch together to give a global volume form

$$dV = dV_{\alpha}$$
 on U_{α}

on $E = \mathbf{P}^{2n+1} \setminus \ell''$.

LEMMA 7.1. Consider the projective transformation of \mathbf{P}^m defined by

$$y^{\lambda} = \frac{c_{\mu}^{\lambda} x^{\mu} + c_0^{\lambda}}{c_{\mu} x^{\mu} + c_0} \quad \text{for all } 1 \le \lambda, \mu \le m.$$

Then

$$dy^1 \wedge \dots \wedge dy^m = \frac{\det C}{(c_\mu x^\mu + c_0)^{m+1}} dx^1 \wedge \dots \wedge dx^m,$$

where

$$C = \begin{pmatrix} c_0 & c_1 & \dots & c_m \\ c_0^1 & c_1^1 & \dots & c_m^1 \\ \vdots & & \vdots \\ c_0^m & c_1^m & \dots & c_m^m \end{pmatrix}.$$

PROOF. Put

$$P = c_{\mu}x^{\mu} + c_0, \quad Q = c_{\mu}x^{\mu}, \quad p^{\lambda} = c_{\mu}^{\lambda}x^{\mu} + c_0^{\lambda}, \quad q^{\lambda} = c_{\mu}^{\lambda}x^{\mu},$$

where μ is summed for $\mu = 1, \ldots, m$. Then

$$dy^{1} \wedge \dots \wedge dy^{m} = \bigwedge_{\lambda=1}^{m} (P^{-1}dq^{\lambda} - p^{\lambda}P^{-2}dQ)$$

$$= P^{-2m} \bigwedge_{\lambda=1}^{m} (Pdq^{\lambda} - p^{\lambda}dQ)$$

$$= P^{-(m+1)} \Big(P \bigwedge_{\lambda=1}^{m} dq^{\lambda} + \sum_{k=1}^{m} (-1)^{k} p^{k} dQ \wedge dq^{1} \wedge \dots \wedge dq^{k-1} \wedge dq^{k+1} \wedge \dots \wedge dq^{m} \Big).$$

Define A and A_k by

$$Adx^{1} \wedge \dots \wedge dx^{m} = dq^{1} \wedge \dots \wedge dq^{\lambda},$$

$$A_{k}dx^{1} \wedge \dots \wedge dx^{m} = dQ \wedge dq^{1} \wedge \dots \wedge dq^{k-1} \wedge dq^{k+1} \wedge \dots \wedge dq^{m}.$$

Then

$$dy^{1} \wedge \dots \wedge dy^{m} = P^{-(m+1)} \Big((c_{\mu} x^{\mu} + c_{0}) A + \sum_{k=1}^{m} (-1)^{k} (c_{\mu}^{k} x^{\mu} + c_{0}^{k}) A_{k} \Big) dx^{1} \wedge \dots \wedge dx^{m}.$$
(7.1)

14

Note that

[15]

$$A = \det \begin{pmatrix} c_1^1 & \dots & c_m^1 \\ \vdots & & \vdots \\ c_1^m & \dots & c_m^m \end{pmatrix} \text{ and } A_k = \det \begin{pmatrix} c_1 & \dots & c_m \\ c_1^1 & \dots & c_m^1 \\ \vdots & & \vdots \\ c_1^{k-1} & & c_m^{k-1} \\ c_1^{k+1} & & c_m^{k+1} \\ \vdots & & \vdots \\ c_1^m & \dots & c_m^m \end{pmatrix}.$$

Thus

$$c_{\mu}A + \sum_{k=1}^{m} (-1)^{k} c_{\mu}^{k} A_{k} = \det \begin{pmatrix} c_{\mu} & c_{1} & \dots & c_{m} \\ c_{\mu}^{1} & c_{1}^{1} & \dots & c_{m}^{1} \\ \vdots & & \vdots & \\ c_{\mu}^{m} & c_{1}^{m} & \dots & c_{m}^{m} \end{pmatrix} = 0$$

for $\mu = 1, \ldots, m$, and

$$c_0 A + \sum_{k=1}^m (-1)^k c_0^k A_k = \det \begin{pmatrix} c_0 & c_1 & \dots & c_m \\ c_0^1 & c_1^1 & \dots & c_m^1 \\ \vdots & & \vdots & \\ c_0^m & c_1^m & \dots & c_m^m \end{pmatrix} = \det C.$$

Hence, it follows from (7.1) that

$$dy^1 \wedge \cdots dy^m = P^{-(m+1)} \det C \, dx^1 \wedge \cdots \wedge dx^m.$$

Lemma $7.2.^1$ For

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in SL_{2n+2}(\mathbb{C}), \quad A, B, C, D \in M_{n+1}(\mathbb{C})$$

with det $C \neq 0$, the pull-back of dV is given by

$$g^*dV = \mu_g^{4(n+1)}dV,$$

where

$$\mu_g(z) = \frac{\|z''\|}{\|Cz' + Dz''\|}.$$

¹This is the corrected version of [8, Lemma 3.2]. There was a mistake in the calculation there. The results [8, Proposition 3.1, Lemma 3.3] hold true. Calculations in the proofs there should be corrected accordingly, but need no essential changes. Sublemmas 3.1, 3.2 in [8] and their proofs are correct.

PROOF. We write a square matrix M of size (n + 1) as

$$M = \begin{pmatrix} m_0^0 & \dots & m_n^0 \\ \vdots & & \vdots \\ m_0^n & \dots & m_n^n \end{pmatrix}$$

Set $\alpha = n + 1$ and consider the projective transformation g on $U_{\alpha} = U_{n+1}$. We omit the subscript n + 1, for simplicity, and write the local coordinates by $(\zeta^0, \ldots, \zeta^n, x^1, \ldots, x^n)$ instead of $(\zeta_{n+1}^0, \ldots, \zeta_{n+1}^n, x_{n+1}^1, \ldots, x_{n+1}^n)$. Then g sends (ζ^j, x^k) to $(\zeta^{j'}, x^{k'})$, where

$$\zeta^{j'} = \frac{\sum_{\lambda=0}^{n} a_{\lambda}^{j} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} b_{\mu}^{j} x^{\mu+1} + b_{n}^{j}}{\sum_{\lambda=0}^{n} c_{\lambda}^{n} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{n} x^{\mu+1} + d_{n}^{n}} \quad \text{for all } j = 0, \dots, n,$$
$$x^{k'} = \frac{\sum_{\lambda=0}^{n} c_{\lambda}^{k} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{k} x^{\mu+1} + d_{n}^{k}}{\sum_{\lambda=0}^{n} c_{\lambda}^{n} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{\mu} x^{\mu+1} + d_{n}^{n}} \quad \text{for all } k = 1, \dots, n.$$

Then, by Lemma 7.1,

$$d\zeta' \wedge \overline{d\zeta'} \wedge dx' \wedge \overline{dx'} = \left| \sum_{\lambda=0}^{n} c_{\lambda}^{n} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{n} x^{\mu+1} + d_{n}^{n} \right|^{-4(n+1)} d\zeta \wedge \overline{d\zeta} \wedge dx \wedge \overline{dx}.$$

Hence

$$g^{*}dV = \sqrt{-1} \left(1 + \sum_{k=1}^{n} \left| \frac{\sum_{\lambda=0}^{n} c_{\lambda}^{k} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{k} x^{\mu+1} + d_{n}^{k}}{\sum_{\lambda=0}^{n} c_{\lambda}^{n} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{n} x^{\mu+1} + d_{n}^{n}} \right|^{2} \right)^{-2(n+1)} \\ \times \left| \sum_{\lambda=0}^{n} c_{\lambda}^{n} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{n} x^{\mu+1} + d_{n}^{n} \right|^{-4(n+1)} d\zeta \wedge d\overline{\zeta} \wedge dx \wedge \overline{dx} \\ = \sqrt{-1} \left(\sum_{k=0}^{n} \left| \sum_{\lambda=0}^{n} c_{\lambda}^{k} \zeta^{\lambda} + \sum_{\mu=0}^{n-1} d_{\mu}^{k} x^{\mu+1} + d_{n}^{k} \right|^{2} \right)^{-2(n+1)} d\zeta \wedge d\overline{\zeta} \wedge dx \wedge \overline{dx} \\ = \sqrt{-1} \left| |C\zeta + D\tilde{x}||^{-4(n+1)} d\zeta \wedge d\overline{\zeta} \wedge dx \wedge \overline{dx}, \right|^{2}$$

where $\tilde{x} = (x^1, \dots, x^n, 1)$. Thus

$$g^* dV = \left(\frac{\|\tilde{x}\|}{\|C\zeta + D\tilde{x}\|}\right)^{4(n+1)} dV = \left(\frac{\|z''\|}{\|Cz' + Dz''\|}\right)^{4(n+1)} dV$$

This proves the lemma.

7.2. *F*-region. Recall that the norm of $u = (u_1, \ldots, u_m) \in \mathbb{C}^m$ is defined by

$$||u|| = (|u_1|^2 + \dots + |u_m|^2)^{1/2}$$

The norm of a matrix $A = (a_{ij}) \in M_m(\mathbb{C})$ is defined by the operator norm

$$||A|| = \sup_{z \neq 0, z \in \mathbf{C}^m} \frac{||Az||}{||z||}.$$

https://doi.org/10.1017/S1446788718000344 Published online by Cambridge University Press

16

Let $\Gamma \subset PGL_{2n+2}(\mathbb{C})$ be a type \mathbb{L} group, and set $\Omega = \Omega(\Gamma)$, $\Lambda = \Lambda(\Gamma)$. Put $\Gamma^* = \Gamma \setminus \{1\}$. Recall the proof of Proposition 5.1, where it is shown that Y_{σ} is a proper analytic subset of \mathcal{G} . That proof shows that, moving the *n*-plane $l'' = \{z'' = 0\}$ slightly, if necessary, we can choose a positive number R such that the set

$$V_R = \{ [z': z''] \in \mathbf{P}^{2n+1} : ||z'|| > R ||z''|| \}$$

is contained in Ω and that

$$g(V_R) \cap V_R = \emptyset \tag{7.2}$$

holds for any $g \in \Gamma^*$. Every $g \in \Gamma$ has a representative $\tilde{g} \in SL_{2n+2}(\mathbb{C})$, which we write as

$$\tilde{g} = \begin{pmatrix} A_g & B_g \\ C_g & D_g \end{pmatrix}, \quad A_g, B_g, C_g, D_g \in \mathcal{M}_{n+1}(\mathbb{C}).$$

LEMMA 7.3. There is a constant $R_0 > 0$ such that, for any $g \in \Gamma^*$, (i) det $C_g \neq 0$, (ii) $||A_g C_g^{-1}|| \leq R_0$, (iii) $||C_g^{-1} D_g|| \leq R_0$.

PROOF. We fix an $R_0 = R$ that satisfies (7.2). (i) Suppose that det $C_g = 0$. Then there is a point *z* on *l*'' such that $g(z) \in l''$. Thus $g(l'') \cap l'' \neq \emptyset$. Since $g \neq 1$, by assumption, this contradicts (7.2). (ii) The *n*-plane g(l'') is given by $z' = A_g C_g^{-1} z''$. Since $g(l'') \cap V_{R_0} = \emptyset$ by (7.2), we have $||A_g C_g^{-1}|| \le R_0$. (iii) The equation of the *n* plane $g^{-1}(l'')$ is given by $z' = -C_g^{-1}D_g z''$. We have $||C_g^{-1}D_g|| \le R_0$ by the argument above.

Put

$$\begin{split} &\Delta_g = \{z = [z':z''] \in \mathbf{P}^{2n+1} : ||z''|| < ||C_g z' + D_g z''||\}, \\ &\bar{\Delta}_g = \{z = [z':z''] \in \mathbf{P}^{2n+1} : ||z''|| \le ||C_g z' + D_g z''||\}, \\ &\Sigma_g = \{z = [z':z''] \in \mathbf{P}^{2n+1} : ||z''|| = ||C_g z' + D_g z''||\}, \\ &\Delta_g^c = \{z = [z':z''] \in \mathbf{P}^{2n+1} : ||z''|| \ge ||C_g z' + D_g z''||\} \end{split}$$

and

$$\bar{\Delta} = \bigcap_{g \in \Gamma^*} \bar{\Delta}_g.$$

DEFINITION 7.4. Consider the set of interior points

$$F = \text{Int}\overline{\Delta}$$

of $\overline{\Delta}$, which we call the *F*-region of the type **L** groups.

This is an analogue of the Ford region in the Kleinian group theory. Indeed, for some type L groups that satisfy an additional condition (see (\clubsuit), (\bigstar) below), F will give a fundamental set of the action of Γ on Ω . Now we put

$$\bar{F} = \text{the closure of } F \text{ in } \mathbf{P}^{2n+1},$$

$$\partial \bar{F} = \bar{F} \setminus F.$$
(7.3)

We consider the set of positive real numbers,

$$\mathcal{R} = \{ \| C_g^{-1} \| : g \in \Gamma^* \},\$$

and consider the conditions on \mathcal{R} :

- (*) \mathcal{R} is bounded in **R**; and
- (\bigstar) \mathcal{R} has no accumulation points other than 0 in **R**.

REMARK 7.5. The number $||C_g^{-1}||$ is something like the radius of the isometric circle of g in Kleinian group theory. The conditions (**4**) and (**6**) may depend on the choice of homogeneous coordinates on \mathbf{P}^{2n+1} . But they are preserved under the coordinate change $w = \tau(z)$ of the form $\tau = \begin{pmatrix} p & Q \\ 0 & S \end{pmatrix} \in \text{PGL}_{2n+2}(\mathbb{C})$.

PROPOSITION 7.6. The condition (*) is satisfied if and only if \overline{F} contains V_R for some R > 0.

PROOF. To prove that (\clubsuit) is sufficient, let $\rho > 0$ be an upper bound of \mathcal{R} . Set $R = R_0 + \rho$, where R_0 is the constant in Lemma 7.3(iii). Then, for any point $z = [z' : z''] \in V_R$ and any $g \in \Gamma^*$,

$$||C_g z' + D_g z''|| \ge \frac{||z' + C_g^{-1} D_g z''||}{||C_g^{-1}||} \ge \frac{||z'|| - R_0 ||z''||}{||C_g^{-1}||} \ge \frac{\rho ||z''||}{||C_g^{-1}||} \ge ||z''||.$$

To prove that (\clubsuit) is necessary, take any *n*-plane

 $\ell_Y : z'' = Yz', \quad Y \in \mathbf{M}_{n+1}(\mathbf{C}), \quad ||Y|| < R^{-1}$

in V_R . Since $\ell_Y \subset \overline{\Delta}_g$ for any $g \in \Gamma^*$,

$$||Yz'|| \le ||C_g z' + D_g Yz'|| \tag{7.4}$$

for any $z' \in \mathbb{C}^2$. Put

$$G = (C_g + D_g Y)^* (C_g + D_g Y) - Y^* Y = (I + C_g^{-1} D_g Y)^* C_g^* C_g (I + C_g^{-1} D_g Y) - Y^* Y,$$

where $M^* = {}^t \overline{M}$.

For Hermitian matrices A, B, we write $A \ge B$ if A - B is positive semidefinite, and we write A > B if A - B is positive definite.

Note that $G \ge 0$ by (7.4) and that $\det(I + C_g^{-1}D_gY) \ne 0$ holds for any Y with $||Y|| < \min\{R^{-1}, R_0^{-1}\}$ and any $g \in \Gamma^*$ by Lemma 7.3(iii). Therefore, the inequality

$$C_g^* C_g \ge (I + C_g^{-1} D_g Y)^{*^{-1}} Y^* Y (I + C_g^{-1} D_g Y)^{-1}$$

holds for $||Y|| < \min\{R^{-1}, R_0^{-1}\}$ and $g \in \Gamma^*$. Set Y = tI, $t = \frac{1}{2} \min\{1, R^{-1}, R_0^{-1}\}$. Then

$$C_g^* C_g \ge t^2 (I + t C_g^{-1} D_g)^{*^{-1}} (I + t C_g^{-1} D_g)^{-1} > \frac{t^2}{4} I.$$

Thus

$$\|C_g^{-1}\| \le \frac{2}{t}.$$

LEMMA 7.7. Suppose that Γ satisfies (**4**). Then, for any normal sequence $\{g_n\} \subset \Gamma$, the sequence $\{\Sigma_{g_n}\}$ converges as sets to a single limit *n*-plane if and only if Γ satisfies (**4**).

PROOF. Set $\tilde{g}_n = \begin{pmatrix} A_n & B_n \\ C_n & D_n \end{pmatrix} \in SL_{2n+2}(\mathbb{C})$. By the defining equation $||C_n z' + D_n z''|| = ||z''||$,

$$\Sigma_{g_n} = \{ [z':z''] \in \mathbf{P}^{2n+1} : z' = (C_n^{-1}U - C_n^{-1}D_n)\eta, z'' = \eta, \eta \in S^{2n+1}, U \in U_{n+1} \},\$$

where S^{2n+1} is the unit sphere in \mathbb{C}^{n+1} and U_{n+1} is the group of unitary matrices of size n + 1. The sequence $\{C_n^{-1}D_n\}$ is bounded by Lemma 7.3(iii) and so is $\{C_n^{-1}\}$ by assumption (**4**). Now consider any subsequence of $\{g_n\}$ such that $\{C_n^{-1}\}$ converges. Then take again a subsequence such that $\{C_n^{-1}D_n\}$ also converges. Put $L = -\lim_{n\to\infty} C_n^{-1}D_n$ and $G = \lim_{n\to\infty} C_n^{-1}$. Then we see that the set Σ_{g_n} converges to the set

$$\Sigma := \{ [z' : z''] \in \mathbf{P}^{2n+1} : z' = (GU + L)\eta, z'' = \eta, \eta \in S^{2n+1}, U \in U_{n+1} \}.$$

Thus Σ consists of a single *n*-plane if and only if G = 0. Here z' = Lz'' is the limit *n*-plane of $\{g_n^{-1}(\ell'')\}$. This implies the lemma.

LEMMA 7.8. Suppose that Γ satisfies (\clubsuit) and (\blacklozenge). Then, for $a \in \Omega$, there can be at most a finite number of Σ_g that contain a.

PROOF. Suppose that there is an infinite number of $g_n \in \Gamma$, n = 1, 2, ..., such that $a \in \Sigma_{g_n}$. Then taking a normal subsequence of $\{g_n\}$, we see that *a* is on a limit *n*-plane by Lemma 7.7, since Γ satisfies (\blacklozenge). This contradicts $a \in \Omega$.

Now recall the definition of μ_g for $g \in \Gamma^*$. We also define

$$\mu_1(z) \equiv 1$$
 for $g = 1$.

LEMMA 7.9. For $g, h \in \Gamma$,

$$\mu_{h\circ g}(z) = \mu_h(g(z))\mu_g(z), \quad z \in \mathbf{P}^{2n+1} \setminus \{g^{-1}(\ell'') \cup (h \circ g)^{-1}(\ell'')\}.$$

PROOF. This is easy by Lemma 7.2.

LEMMA 7.10. For any $g \in \Gamma$, we have $g(\overline{\Delta}) \subset \Delta_{g^{-1}}^c$.

PROOF. By Lemma 7.9, $\mu_{g^{-1}}(g(z)) = \mu_g(z)^{-1}$. Since $\mu_g(z) \le 1$ for $z \in \overline{\Delta}$, we have the lemma.

THEOREM 7.11. Let $\Gamma \subset PGL_{2n+2}(\mathbb{C})$ be a type \mathbb{L} group. Assume that Γ is torsion free and satisfies both (\clubsuit) and (\bigstar). Then F has the following properties.

- (1) For $g \in \Gamma$, $g(F) \subset F$ holds if and only if g = 1.
- (2) For $g \in \Gamma^*$, $g(F) \cap F = \emptyset$ holds.
- (3) For every $z \in \Omega$, there is an element $g \in \Gamma$ such that $g(z) \in \Omega \cap \overline{F}$.
- (4) Suppose that the equality w = g(z) holds for some $z, w \in \Omega \cap \overline{F}$ and $g \in \Gamma^*$. Then both z and w are on $\Omega \cap \partial \overline{F}$.

PROOF. The following proof is an analogue of [11, pages 33–34].

(1) By Proposition 7.6, *F* contains a tubular neighborhood *W* of ℓ'' . Suppose that $g(F) \subset F$, Then, by Lemma 7.9,

$$\mu_{h\circ g}(z) = \mu_h(g(z))\mu_g(z) \le \mu_g(z) \le 1$$

on W for any h. Letting $h = g^{-1}$, we see that $\mu_g(z) = 1$ on W. This implies that $C_g = 0$. Hence $g(\ell'') = \ell''$. Since ℓ'' is not a limit *n*-plane, we see that g is of finite order. Since Γ is torsion free, by assumption, we see that g = 1. The converse is obvious.

(2) By Lemma 7.10, we have $g(\bar{\Delta}) \subset \Delta_{g^{-1}}^c$. This implies that $g(\bar{F}) \cap \bar{\Delta}_{g^{-1}} = \emptyset$, since F is open. Hence $g(F) \cap F \subset g(F) \cap \bar{\Delta} \subset g(F) \cap \bar{\Delta}_{g^{-1}} = \emptyset$.

(3) Take a point z in Ω . If $g(z) \in \ell''$ for some $g \in \Gamma$, then $g(z) \in \Omega \cap \overline{F}$ by the assumption (*****) and Proposition 7.6. Therefore we can assume that $g(z) \notin \ell''$ for any g. Then $\mu_g(z)$ is defined and hence has a finite-value for any g. By the assumptions (*****) and (**•**), $\mu_g(z) < 1$ holds for all except for finitely many $g \in \Gamma$. Therefore we can choose g such that $\mu_g(z)$ is maximal among all g. Then, by Lemma 7.9, we have $\mu_h(g(z)) \leq 1$ for any $h \in \Gamma$. This implies that $g(z) \in \overline{\Delta}$. Thus $\Omega \subset \bigcup_{g \in \Gamma} g(\overline{\Delta})$ and hence

$$\Omega = \bigcup_{g \in \Gamma} g(\Omega \cap \bar{\Delta}). \tag{7.5}$$

We claim that the set $\Omega \cap (\overline{\Delta} \setminus \overline{F})$ is empty. To verify this, we suppose, on the contrary, that a point $w \in \Omega \cap (\overline{\Delta} \setminus \overline{F})$ exists. Since $\overline{\Delta} \setminus \overline{F}$ is thin in \mathbf{P}^{2n+1} , so is $\bigcup_{g \in \Gamma} g(\Omega \cap (\overline{\Delta} \setminus \overline{F}))$. Hence, by

$$\Omega \Big\backslash \bigcup_{g \in \Gamma} g(\bar{F}) = \bigcup_{g \in \Gamma} g(\Omega \cap \bar{\Delta}) \Big\backslash \bigcup_{g \in \Gamma} g(\Omega \cap \bar{F}) \subset \bigcup_{g \in \Gamma} g(\Omega \cap (\bar{\Delta} \setminus \bar{F})),$$

we see that the set $\Omega \setminus \bigcup_{g \in \Gamma} g(\bar{F})$ is thin in Ω . Therefore we can find sequences $\{w_n\} \subset \Omega \cap \bar{F} \subset \bar{\Delta}$ and $\{g_n\} \subset \Gamma$ such that $\lim_{n \to \infty} g_n(w_n) = w$. Since $w \notin \partial \bar{F}$, $\{g_n\}$ can be chosen to be a sequence of distinct elements. By Lemma 7.3 and the assumptions (\clubsuit) and (\blacklozenge), we can choose a subsequence of $\{g_n\}$ such that the *n*-plane $g_n(\ell'') = \{z' + C_{g_n}^{-1}D_{g_n}^{-1}z'' = 0\}$ converges to a limit *n*-plane $\ell_L = \{z' = Lz''\}$, $L = -\lim_{n \to \infty} C_{g_n}^{-1}D_{g_n}^{-1}$, and such that $\lim_{n \to \infty} \|C_{g_n}^{-1}\| = 0$ holds. The set $\Delta_{g_n}^c$ is the image of the map

$$\varphi_n: [0,1] \times U_{n+1} \times S^{2n+1} \to \mathbf{P}^{2n+1}$$

defined by

$$\varphi_n: (t, U, \eta) \mapsto [tC_{g_n^{-1}}^{-1}U\eta - C_{g_n^{-1}}^{-1}D_{g_n^{-1}}\eta:\eta].$$

Therefore the sequence $\{\Delta_{g_{-}}^{c}\}$ of sets converges to the image of the limit map

$$\varphi: [0,1] \times U_{n+1} \times S^{2n+1} \to \mathbf{P}^{2n+1}, \quad (t, U, \eta) \mapsto [L\eta:\eta],$$

https://doi.org/10.1017/S1446788718000344 Published online by Cambridge University Press

which is ℓ_L . Since $g_n(\ell'') \subset g_n(\bar{\Delta}) \subset \Delta_{g_n^{-1}}^c$ holds by Lemma 7.10, $\{g_n(\bar{\Delta})\}$ also converges to ℓ_L . Hence *w* is on the limit *n*-plane ℓ_L . Since $w \in \Omega$, this is absurd. Thus our claim is verified. Now, by (7.5),

$$\Omega = \bigcup_{g \in \Gamma} g(\Omega \cap \bar{F})$$

This proves (3).

(4) By (2), either $z \in \partial \overline{F}$ or $w \in \partial \overline{F}$. Replacing g with g^{-1} , if necessary, we can assume that $z \in \partial \overline{F}$. Since $z, w \in \overline{F}$, $\mu_f(z) \leq 1$ and $\mu_f(w) \leq 1$ hold for any $f \in \Gamma^*$. Hence, by the equality

$$1 = \mu_1(z) = \mu_{g^{-1}g}(z) = \mu_{g^{-1}}(g(z))\mu_g(z) = \mu_{g^{-1}}(w)\mu_g(z),$$

we have $\mu_{g^{-1}}(w) = \mu_g(z) = 1$. Hence, in particular, we have $w \in \Sigma_{g^{-1}}$. On the other hand, there can be at most a finite number of Σ_f with $w \in \Sigma_f$ by Lemma 7.8. This implies that $w \in \partial \overline{F}$.

REMARK 7.12. For type L groups, both conditions (\clubsuit) and (\bigstar) are automatically satisfied if the series

$$\sum_{g\in\Gamma^*}\|C_g^{-1}\|^\delta$$

is convergent for some constant $\delta > 0$.

Theorem 7.11 is useful when we check whether the quotient space $\Omega(\Gamma)/\Gamma$ becomes compact or not. See examples in Section 8.2.

8. Examples

8.1. Type L groups in general dimension. Suppose that we are given two groups $\Gamma_{\nu} \subset PGL_{2n+1}(\mathbb{C}), \nu = 1, 2$, of type L which satisfy (*****) and (*****). Applying a Klein combination, we can construct another group Γ of type L which is isomorphic to the free product $\Gamma_1 * \Gamma_2$. In this subsection, we show that, replacing Γ_{ν} with their suitable conjugate subgroups in PGL_{2n+1}(\mathbb{C}), we can make Γ also satisfy both (*****) and (*****).

Let F_{ν} the *F*-region of Γ_{ν} with respect to [z] = [z' : z'']. Let $\rho_{\nu} > 0$ be the numbers such that $||C_{g}^{-1}|| \le \rho_{\nu}$ for all $g \in \Gamma_{\nu}^{*}$.

LEMMA 8.1. Let $a \in \mathbf{R}$ be a positive constant, and consider the new system of coordinates $[\zeta' : \zeta'']$ on \mathbf{P}^{2n+1} defined by

$$\zeta' = az', \quad \zeta'' = a^{-1}z''.$$

Let $\alpha = \begin{pmatrix} aI & 0 \\ 0 & a^{-1}I \end{pmatrix} \in \text{PGL}_{2n+2}(\mathbb{C})$. Then, for a given number r > 0, we can choose a > 0 so that the following are satisfied simultaneously.

- (i) $\alpha(F_1 \cap F_2)$ contains the set $V = \{ \|\zeta'\| \ge r \|\zeta''\| \}$.
- (ii) $||C_g^{-1}|| \le 1$ for all $g = \begin{pmatrix} A_g & B_g \\ C_g & D_g \end{pmatrix} \in \alpha \Gamma_{\nu}^* \alpha^{-1}, \nu = 1, 2.$

PROOF. Since F_{ν} contains a tubular neighborhood of z'' = 0, there is $r_1 > 0$ such that

$$\{||z'|| \ge r_1 ||z''||\} \subset F_1 \cap F_2.$$

Choose a > 0 satisfying

$$a^2 \le r_1^{-1} r. (8.1)$$

Take any $[\zeta' : \zeta''] \in V$, and set $[z' : z''] = \alpha^{-1}([\zeta' : \zeta''])$. Then $z' = a^{-1}\zeta'$ and $z'' = a\zeta''$, and

$$||z'|| = a^{-1} ||\zeta'|| \ge a^{-1} r ||\zeta''|| = a^{-2} r ||z''|| \ge r_1 ||z''||.$$

Hence $[z':z''] \in F_1 \cap F_2$. This shows that $[\zeta':\zeta''] \in \alpha(F_1 \cap F_2)$. Thus (i) is satisfied for a > 0 with (8.1).

Let $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_{\nu}^*$. Then by $g = \alpha \gamma \alpha^{-1} = \begin{pmatrix} A & a^2 B \\ a^{-2}C & D \end{pmatrix}$, we have $||C_g^{-1}|| = a^2 ||C^{-1}||$. Therefore the number a > 0 with

$$a^2 \le \rho_v^{-1}, \quad v = 1, 2$$
 (8.2)

satisfies (ii). Thus it is enough to choose a > 0 which satisfies (8.1) and (8.2).

Fix a > 0 such that (i) and (ii) in the lemma above hold and replace the original coordinates [z':z''] with $[\zeta':\zeta'']$, Γ_{ν} with $\alpha\Gamma_{\nu}\alpha^{-1}$ and F_{ν} with $\alpha(F_{\nu})$. We use the original notation such as [z':z''], Γ_{ν} and F_{ν} to avoid abuse of notation. Let $U_r = \{||z'|| \le r ||z''||\}$. Then $\gamma(F_{\nu}) \subset U_r$ for $\gamma \in \Gamma_{\nu}^*$, $(\nu = 1, 2)$.

Put $\sigma = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \in \text{PGL}_{2n+2}(\mathbb{C})$, and consider the sets F_1 and $\sigma(F_2)$ as two subsets in the same projective space \mathbb{P}^{2n+1} . Note that the set $\{r ||z''|| \le ||z'|| \le r^{-1} ||z''||\}$, 0 < r < 1, is contained in $F_1 \cap \sigma(F_2)$ and that $\gamma(\sigma(F_2)) \subset \sigma(U_r)$ for $\gamma \in \sigma \Gamma_2 \sigma^{-1}$.

Put $\tau = \begin{pmatrix} I & I \\ -I & I \end{pmatrix} \in \text{PGL}_{2n+2}(\mathbb{C})$. Introduce a new coordinate system [w] = [w' : w''] by $w = \tau(z)$. Put $\Gamma'_1 = \tau \Gamma_1 \tau^{-1}$ and $\Gamma'_2 = \tau(\sigma \Gamma_2 \sigma^{-1})\tau^{-1}$. Let Γ be the group generated by Γ'_1 and Γ'_2 . This subsection is devoted to proving the following theorem.

THEOREM 8.2. Γ is a group of type **L** which satisfies (\clubsuit) and (\blacklozenge) with respect to [w].

PROOF. By the construction, we see that $\tau(F_1 \cap \sigma(F_2))$ is a fundamental set of Γ . The *n*-plane {w'' = 0} has a tubular neighborhood contained in $\tau(F_1 \cap \sigma(F_2))$. Thus, by Proposition 7.6, it is enough to show that (\blacklozenge) is satisfied.

LEMMA 8.3. Let $\ell_P : w' = Pw''$ and $\ell_Q : w' = Qw''$ be *n*-planes in $\tau(U_r)$ and $\tau\sigma(U_r)$, respectively. Then there is a positive constant K_r such that

$$||(P-Q)^{-1}|| \le K_r,$$

where

$$\lim_{r\to 0} K_r = 2^{-1}$$

PROOF. Take the *n*-planes $\ell_X : z' = Xz''$ in U_r and $\ell_Y : z'' = Yz'$ in $\sigma(U_r)$ such that $\tau(\ell_X) = \ell_P$ and $\tau(\ell_Y) = \ell_O$, respectively. Then

$$P = (I + X)(I - X)^{-1}, \quad Q = -(I + Y)(I - Y)^{-1}.$$

Since $\ell_P \cap \ell_Q = \emptyset$, det $(P - Q) \neq 0$ holds. Hence

$$||(P-Q)^{-1}|| = ||((I+X)(I-X)^{-1} + (I+Y)(I-Y)^{-1})^{-1}||.$$

Set

$$K_r = \sup_{\{||X|| \le r, ||Y|| \le r\}} \|((I+X)(I-X)^{-1} + (I+Y)(I-Y)^{-1})^{-1}\|$$

It is clear that K_r is finite for $0 \le r < 1$ and that $\lim_{r\to 0} K_r = 2^{-1}$. This implies the lemma.

Any element $f \in \Gamma^*$ can be written in the *normal* form [11, page 136].

$$f = g_m \cdots g_1$$

Here either $g_{2j+1} \in {\Gamma'}_1^*$, $g_{2j} \in {\Gamma'}_2^*$, or $g_{2j+1} \in {\Gamma'}_2^*$, $g_{2j} \in {\Gamma'}_1^*$. The number *m* is called the *length* of *f*, which is denoted by |f|.

LEMMA 8.4. Take any element $f \in \Gamma^*$, and write f in the normal form as

$$f=g_m\cdot g_{m-1}\cdots g_1.$$

Then

$$||C_f^{-1}|| \le K_r^{m-1} \prod_{j=1}^m ||C_{g_j}^{-1}||,$$

where

$$f = \begin{pmatrix} A_f & B_f \\ C_f & D_f \end{pmatrix}, \quad g_j = \begin{pmatrix} A_{g_j} & B_{g_j} \\ C_{g_j} & D_{g_j} \end{pmatrix}$$

PROOF. Set $g = g_m$ and $h = g_{m-1} \cdots g_1$. Comparing the components of f = gh gives

$$C_f = C_g A_h + D_g C_h = C_g (A_h C_h^{-1} + C_g^{-1} D_g) C_h.$$
(8.3)

First, assume that $g_1 \in {\Gamma'}_1^*$. If $g \in {\Gamma'}_1^*$, then |f| = m is odd. Since $g^{-1} \in {\Gamma}_1^*$, we have

$$g^{-1}(\{w''=0\}) = \{w' = -C_g^{-1}D_gw''\} \subset \tau(U_r).$$

Since |h| is even, we see that $h(\{w''=0\}) = \{w' = A_h C_h^{-1} w''\} \subset \tau \sigma(U_r)$. Since $\tau(U_r) \cap \tau \sigma(U_r) = \emptyset$, we see that $\det(A_h C_h^{-1} + C_g^{-1} D_g) \neq 0$. Hence C_f is also nonsingular and, by (8.3),

$$C_f^{-1} = C_h^{-1} (A_h C_h^{-1} + C_g^{-1} D_g)^{-1} C_g^{-1}.$$
(8.4)

By Lemma 8.3, it follows that

$$||(A_h C_h^{-1} + C_g^{-1} D_g)^{-1}|| \le K_r.$$

Hence, by (8.4),

$$\|C_f^{-1}\| \le K_r \|C_g^{-1}\| \cdot \|C_h^{-1}\|.$$
(8.5)

If $g \in \Gamma_2^*$, then |f| = m is even. Since $g^{-1} \in \Gamma_2^*$, $g^{-1}(\{w^{\prime\prime} = 0\}) = \{w^{\prime} = -C_g^{-1}D_gw^{\prime\prime}\} \subset \tau\sigma(U_r)$. Since |h| is odd, we see that $h(\{w^{\prime\prime} = 0\}) = \{w^{\prime} = A_h C_h^{-1}w^{\prime\prime}\} \subset \tau(U_r)$. Then, by the same argument as the case $g = g_m \in \Gamma_1^{\prime*}$, we obtain (8.5).

Next, assume that $g_1 \in {\Gamma'}_2^*$. If $g \in {\Gamma'}_1^*$, then |f| = m is even. Since $g^{-1} \in {\Gamma}_1^*$, $g^{-1}(\{w'' = 0\}) = \{w' = -C_g^{-1}D_gw''\} \subset \tau(U_r)$. Since |h| is odd, we see that $h(\{w'' = 0\}) = \{w' = A_h C_h^{-1}w''\} \subset \tau\sigma(U_r)$. Then the rest of the argument is the same as above, and we obtain (8.5).

If $g \in {\Gamma'}_2^*$, then |f| = m is odd. Since $g^{-1} \in {\Gamma}_2^*$, $g^{-1}(\{w'' = 0\}) = \{w' = -C_g^{-1}D_gw''\} \subset \tau\sigma(U_r)$. Since |h| is even, we see that $h(\{w'' = 0\}) = \{w' = A_hC_h^{-1}w''\} \subset \tau(U_r)$. Then the rest of the argument is the same as above, and we obtain (8.5).

The lemma follows from (8.5) by induction on *m*.

[24]

PROOF OF THEOREM 8.2 (CONTINUED). It remains to show that Γ satisfies (\blacklozenge). By Lemma 8.1, we can assume that $\rho_{\nu} \le 1$, $\nu = 1, 2$. By Lemma 8.3, we fix small *r*, 0 < r < 1, such that $K_r < 1$ holds. Now we shall show that Γ satisfies (\blacklozenge).

Suppose that (•) does not hold. Then there is a sequence $\{f_m\}_m \subset \Gamma^*$ such that

$$\lim_{n \to \infty} \|C_{f_m}^{-1}\| = \varepsilon > 0. \tag{8.6}$$

If there is a subsequence $\{h_m\}$ of $\{f_m\}$ such that $\lim_{m\to\infty} |h_m| = \infty$, then $\lim_{m\to\infty} ||C_{h_m}^{-1}|| = 0$ follows from $K_r < 1$ and $\rho_v \le 1$, by Lemma 8.4. This contradicts (8.6). Therefore the sequence $\{|f_m|\}_m$ of lengths is bounded. Let *b* be a bound of $\{|f_m|\}_m$, that is, $|f_m| \le b$ for all *m*. Write f_m in the 'extended' normal form,

$$f_m = g_{m,b}g_{m,b-1}\cdots g_{m,1},$$

where $g_{m,|f_m|} \cdots g_{m,1}$ is the normal form of f_m and $g_{m,j} = 1$ for $|f_m| < j \le b$. Since both Γ_1^* and Γ_2^* satisfy (\blacklozenge) and (\blacklozenge), we can find some k, $1 \le k \le b$, such that $\{||C_{g_{m,k}}^{-1}||\}_m$ contains a subsequence which converges to zero. This implies that the corresponding subsequence of $\{||C_{f_m}^{-1}||\}_m$ also converges to zero. This again contradicts (8.6).

REMARK 8.5. A typical higher-dimensional example treated in this subsection is a Schottky group. Let Γ be the infinite cyclic group generated by $g = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \in$ $PGL_{2n+2}(\mathbb{C})$. Let α_j be the eigenvalues of A and let β_k be the eigenvalues of B. Assume that $|\alpha_j| < |\beta_k|$ holds for any pairs (α_j, β_k) . Then Γ is a type \mathbb{L} group, where $\Omega(\Gamma) = \mathbb{P}^{2n+1} \setminus (\{z' = 0\} \cup \{z'' = 0\})$. Introduce a new coordinate [w' : w''] by w' = z' + z'' and w'' = -z' + z''. Then Γ satisfies (**4**) and (**4**) with respect to [w' : w'']. By successive Klein combinations, we can get type \mathbb{L} groups with (**4**) and (**4**) with respect to some coordinate system.

8.2. Type L groups in dimension three. In this subsection, we shall give three examples of type L groups. If a finitely generated discrete infinite subgroup $\Gamma \subset PGL_4(\mathbb{C})$ admits an invariant surface *S* in \mathbb{P}^3 and never admits invariant planes, then *S* is necessarily one of the following: (i) the tangential surface of a twisted cubic curve; (ii) a nonsingular quadric surface; or (iii) a cone over a nonsingular conic [9].

24

Each case has examples of type L groups with (\clubsuit) and (\bigstar). In the cases (i) and (ii), there are examples with compact connected canonical quotients. The example for the case (ii) is due to Fujiki [2]. For the case (iii), we have only one example at present, whose canonical quotient is connected and noncompact, but it has an invariant plane.

8.2.1. *Kleinian groups acting on a twisted cubic curve*. Fix a twisted cubic curve $C \subset \mathbf{P}^3$, which is defined to be the image of the map

$$\tau : \mathbf{P}^1 \to \mathbf{P}^3, \quad \tau([s:1]) = [s^3 : s^2 : s:1].$$

Then τ determines a group representation

$$\tau_* : \mathrm{PSL}_2(\mathbf{C}) \to \mathrm{PSL}_4(\mathbf{C})$$

such that $\tau \circ g = \tau_*(g) \circ \tau$. Explicitly, for $g = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{C}), \tau_*(g)$ is given by $\tau_*(g) = \pm \tilde{\tau}_*(g) \in PSL_4(\mathbb{C})$, where

$$\tilde{\tau}_{*}(g) = \begin{pmatrix} a^{3} & 3a^{2}b & 3ab^{2} & b^{3} \\ a^{2}c & a^{2}d + 2abc & 2abd + b^{2}c & b^{2}d \\ ac^{2} & 2acd + bc^{2} & ad^{2} + 2bcd & bd^{2} \\ c^{3} & 3c^{2}d & 3cd^{2} & d^{3} \end{pmatrix} \in \mathrm{SL}_{4}(\mathbf{C})$$

The group PGL₄(**C**) acts on the set of lines in **P**³, that is, on Gr(2, 4). Using Plücker coordinates, we can embed Gr(2, 4) into $\mathbf{P}^5 = \mathbf{P}(\wedge^2 \mathbf{C}^4)$. Since any $A \in \text{GL}_4(\mathbf{C})$ defines a linear automorphism on $\wedge^2 \mathbf{C}^4 \simeq \mathbf{C}^6$, we have the group homomorphism

$$\rho: \operatorname{GL}_4(\mathbb{C}) \to \operatorname{GL}_6(\mathbb{C}).$$

Let $e_0 = {}^t(1, 0, 0, 0), e_1 = {}^t(0, 1, 0, 0), e_2 = {}^t(0, 0, 1, 0), e_3 = {}^t(0, 0, 0, 1)$ and $e_j \wedge e_k$ the linear two-space spanned by $\{e_j, e_k\}$, where $e_j \wedge e_k = -e_k \wedge e_j$. In this subsection, in the following, we write $\tilde{g} = \rho \circ \tilde{\tau}_*(g) \in \text{GL}_6(\mathbb{C})$, which is well defined for $g = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PSL}_2(\mathbb{C})$. Then, with respect to the basis

 $\{e_0 \wedge e_1, e_0 \wedge e_2, e_0 \wedge e_3, e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3\},\$

in \mathbb{C}^6 , $\tilde{g} = \rho \circ \tilde{\tau}_*(g) \in \mathrm{GL}_6(\mathbb{C})$ is given by

<i>ğ</i> =	(a^4)	$2a^3b$	a^2b^2	$3a^2b^2$	$2ab^3$	b^4	
	$2a^3c$	$a^2(ad + 3bc)$	ab(ad + bc)	3ab(ad + bc)	$b^2(3ad + bc)$	$2b^3d$	
	$3a^2c^2$	3ac(ad + bc)	$a^2d^2 + abcd + b^2c^2$	9abcd	3bd(ad + bc)	$3b^2d^2$	
	a^2c^2	ac(ad + bc)	abcd	$a^2d^2 + abcd + b^2c^2$	bd(ad + bc)	b^2d^2	·
	$2ac^3$	$c^2(3ad + bc)$	cd(ad + bc)	3cd(ad + bc)	$d^2(ad + 3bc)$	$2bd^3$	
	$\int c^4$	$2c^3d$	$c^2 d^2$	$3c^{2}d^{2}$	$2cd^3$	d^4)	

Limit sets. In the following, in this subsection, we let $\Gamma \subset PSL_2(\mathbb{C})$ be a Kleinian group whose set of discontinuity $\Omega_{\mathbb{P}^1}$ contains $[1:0] \in \mathbb{P}^1$. Put $\Lambda_{\mathbb{P}^1} = \mathbb{P}^1 \setminus \Omega_{\mathbb{P}^1}$. We consider the group $\tilde{\Gamma} = \tau_*(\Gamma)$, which we regard as a subgroup of $PGL_4(\mathbb{C})$.

Let $\{\gamma_n\} \subset \Gamma$ be a normal sequence. Let

$$g_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \in \operatorname{SL}_2(\mathbb{C}) \quad \text{for all } n = 1, 2, \dots$$

be a sequence of representatives of $\{\gamma_n\}$ such that $\{c_n^{-1}g_n\}$ converges to a matrix of the form $h = \begin{pmatrix} \mu & -\lambda\mu \\ 1 & -\lambda \end{pmatrix} \in M_2(\mathbb{C}), \ \lambda, \mu \in \mathbb{C}$, since $\{a_n c_n^{-1}\}$ and $\{c_n^{-1}d_n\}$ are bounded (compare with Lemma 7.3). Put

$$G_n = c_n^{-4} \tilde{\tau}_*(g_n) \in \mathrm{GL}_6(\mathbf{C}).$$

Then

$$G := \lim_{n} G_{n} = \begin{pmatrix} \mu^{4} & -2\lambda\mu^{4} & \lambda^{2}\mu^{4} & 3\lambda^{2}\mu^{4} & -2\lambda^{3}\mu^{4} & \lambda^{4}\mu^{4} \\ 2\mu^{3} & -4\lambda\mu^{3} & 2\lambda^{2}\mu^{3} & 6\lambda^{2}\mu^{3} & -4\lambda^{3}\mu^{3} & 2\lambda^{4}\mu^{3} \\ 3\mu^{2} & -6\lambda\mu^{2} & 3\lambda^{2}\mu^{2} & 9\lambda^{2}\mu^{2} & -6\lambda^{3}\mu^{2} & 3\lambda^{4}\mu^{2} \\ \mu^{2} & -2\lambda\mu^{2} & \lambda^{2}\mu^{2} & 3\lambda^{2}\mu^{2} & -2\lambda^{3}\mu^{2} & \lambda^{4}\mu^{2} \\ 2\mu & -4\lambda\mu & 2\lambda^{2}\mu & 6\lambda^{2}\mu & -4\lambda^{3}\mu & 2\lambda^{4}\mu \\ 1 & -2\lambda & \lambda^{2} & 3\lambda^{2} & -2\lambda^{3} & \lambda^{4} \end{pmatrix}.$$

The limit G defines a projection to the limit image

$$\mathbf{P}^{5} \setminus H \to I := \{ [\mu^{4} : 2\mu^{3} : 3\mu^{2} : \mu^{2} : 2\mu : 1] \}.$$

The limit kernel *H* is the four-plane defined by

$$\{\zeta = [\zeta_j] \in \mathbf{P}^5 : \zeta_0 - 2\lambda\zeta_1 + \lambda^2\zeta_2 + 3\lambda^2\zeta_3 - 2\lambda^3\zeta_4 + \lambda^4\zeta_5 = 0\}.$$

Let ℓ_{μ} be the tangent line to the curve *C* at $[\mu : 1]$. Then $\hat{\ell}_{\mu} \in Gr(2, 4) \subset \mathbf{P}^5$ is given by

$$(3\mu^2 e_0 + 2\mu e_1 + e_2) \wedge (\mu^3 e_0 + \mu^2 e_1 + \mu e_2 + e_3)$$

= $\mu^4 e_0 \wedge e_1 + 2\mu^3 e_0 \wedge e_2 + 3\mu^2 e_0 \wedge e_3 + \mu^2 e_1 \wedge e_2 + 2\mu e_1 \wedge e_3 + e_2 \wedge e_3,$

which is nothing but the limit image $I = [\mu^4 : 2\mu^3 : 3\mu^2 : \mu^2 : 2\mu : 1] \in \mathbf{P}^5$. Hence ℓ_{μ} is the limit image of the sequence $\{\tau_*(\gamma_n)\}$. Here the limit kernel $H \cap \text{Gr}(2, 4)$ is the set of lines in \mathbf{P}^3 that intersect the tangent line to *C* at the limit point $\tau([\lambda : 1])$. Thus we have the following theorem.

THEOREM 8.6. Let $\Gamma \subset PSL_2(\mathbb{C})$ be a Kleinian group. Then

$$\tilde{\Gamma} = \tau_*(\Gamma) \subset \mathrm{PGL}_4(\mathbf{C})$$

is a group of type **L**. The limit set is given by

$$\Lambda(\tilde{\Gamma}) = \bigcup_{\lambda \in \Lambda_{\mathbf{P}^1}} |\ell_{\lambda}|,$$

where $|\ell_{\lambda}|$ is the support of the tangent line ℓ_{λ} to the twisted cubic curve at $\tau([\lambda : 1])$.

PROPOSITION 8.7. Let $\Gamma \subset PSL_2(\mathbb{C})$ be a Kleinian group whose set of discontinuity contains the point $[1:0] \in \mathbb{P}^1$. Then the series

$$\sum_{\tilde{g}\in \tilde{\Gamma}^*} \|C_g^{-1}\|^\delta$$

is convergent for any $\delta \ge 4$. Thus Γ satisfies (\clubsuit) and (\blacklozenge).

PROOF. By our choice of coordinates on \mathbf{P}^1 , we see that $c_g \neq 0$ for $g \neq 1$ and $\{a_g/c_g\}_g, \{b_g/c_g\}_g, \{d_g/c_g\}_g$ are uniformly bounded. Since

$$C_{g} = \begin{pmatrix} a_{g}c_{g}^{2} & 2a_{g}c_{g}d_{g} + b_{g}c_{g}^{2} \\ c_{g}^{3} & 3c_{g}^{2}d_{g} \end{pmatrix} = c_{g}^{3} \begin{pmatrix} a_{g}/c_{g} & 2a_{g}d_{g}/c_{g}^{2} + b_{g}/c_{g} \\ 1 & 3d_{g}/c_{g} \end{pmatrix},$$

we see that

$$||C_g^{-1}|| \le M |\det C_g|^{-1} |c_g|^3 = M |c_g|^{-1}$$

holds for some M > 0. It is well known that, for Kleinian groups, the series $\sum_{g \in \Gamma^*} |c_g|^{-4}$ is convergent [11, Theorem II.B.5]. Hence we have the proposition.

Compact quotients. As an application of Theorem 7.11, we obtain the following theorem.

THEOREM 8.8. If Γ is convex-cocompact¹, then $(\mathbf{P}^3 \setminus \Lambda(\tilde{\Gamma}))/\tilde{\Gamma}$ is compact.

PROOF. Let $\Gamma \subset SL_2(\mathbb{C})$ be a convex-cocompact Kleinian group. It is known that every limit point of a convex-cocompact group is a point of approximation [5, Definitions 4.43, 4.71 and 4.76]. We can assume, further, that Γ is torsion free without loss of generality. By Theorem 7.11, it is enough to show that the set \overline{F} defined by (7.3) is a compact subset contained in $\Omega(\tilde{\Gamma})$. If $\overline{\Delta}$ is contained in $\Omega(\tilde{\Gamma})$, then the quotient $\Omega(\tilde{\Gamma})/\tilde{\Gamma}$ becomes compact, since $\overline{F} \subset \overline{\Delta}$ and $\overline{\Delta}$ is compact. Thus it sufficient to show the following proposition.

PROPOSITION 8.9. Any limit line does not intersect $\overline{\Delta}$.

PROOF. Let ℓ_{λ} be any limit line, which is the tangent line to *C* at $\tau([\lambda : 1]), \lambda = [\lambda : 1] \in \Lambda_{\mathbf{P}^1}$. More explicitly, ℓ_{λ} is given by $z' = L_{\lambda}z''$, where $z = [z' : z''] \in \mathbf{P}^3$ and

$$L_{\lambda} = \begin{pmatrix} 3\lambda^2 & -2\lambda^3 \\ 2\lambda & -\lambda^2 \end{pmatrix}.$$

Recall that every limit point of Γ is a point of approximation. Hence, there is a sequence $\{g_m\}$ of distinct elements of Γ and a constant $\delta > 0$ such that

$$|g_m(\lambda) - g_m(\infty)| \ge \delta \tag{8.7}$$

for any *m*. Let

$$g_m = \begin{pmatrix} a_m & b_m \\ c_m & d_m \end{pmatrix} \in \mathrm{SL}_2(\mathbf{C}).$$

The inequality (8.7) is equivalent to

$$\left|\frac{a_m\lambda + b_m}{c_m\lambda + d_m} - \frac{a_m}{c_m}\right| \ge \delta.$$

$$\left|c_m(c_m\lambda + d_m)\right| \le \delta^{-1}.$$
(8.8)

This implies that

¹Geometrically finite and no parabolic elements [5, page 95].

 $\lim_{m \to \infty} |a_m \lambda + b_m| = 0$

Again, since $\infty = [1:0] \in \Omega(\Gamma)$, there is a positive constant *M* such that

and

Hence, also

$$\lim_{m \to \infty} |a_m (c_m \lambda + b_m)^2| = 0.$$
(8.11)

Put

$$\tilde{\tau}_*(g_m) = \begin{pmatrix} A_m & B_m \\ C_m & D_m \end{pmatrix}.$$

LEMMA 8.10. $\lim_{m\to\infty} ||C_m L_{\lambda} + D_m|| = 0.$

PROOF. We calculate the components of $C_m L_{\lambda} + D_m$. Put $C_m L_{\lambda} + D_m = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$. Then

$$\begin{aligned} \alpha_{11} &= a_m (c_m \lambda + d_m)^2 + 2(a_m \lambda + b_m) c_m (c_m \lambda + d_m) \\ \alpha_{12} &= (a_m \lambda + b_m) (c_m \lambda + d_m)^2 - a_m \lambda (c_m \lambda + d_m)^2 - 2(a_m \lambda + b_m) c_m \lambda (c_m \lambda + d_m) \\ \alpha_{21} &= 3c_m (c_m \lambda + d_m)^2 \\ \alpha_{22} &= (c_m \lambda + d_m)^3 - 3c_m \lambda (c_m \lambda + d_m)^2. \end{aligned}$$

Then

$$\lim_{m\to\infty}\alpha_{ij}=0$$

follows easily from (8.9), (8.10) and (8.11).

PROOF OF THE PROPOSITION (CONTINUED). Suppose that $\ell_{\lambda} \cap \overline{\Delta}$ contains a point $a = [a': a''] \in \mathbf{P}^3$, where $a' = L_{\lambda}a''$. Then,

$$||(C_g L_{\lambda} + D_g)a''|| \ge ||a''||$$

for any $g \in \Gamma$. Since $a'' \neq 0$, this contradicts Lemma 8.10.

REMARK 8.11. The condition that Γ should not contain parabolic elements is indispensable. Indeed, the group $\tilde{\Gamma}$ induced by the rank two abelian group $\Gamma = \{\tau_1, \tau_2\}, \tau_1(z) = z + 1, \tau_2(z) = z + i$, gives a counter example.

Since $\infty = [1:0] \in \Omega_{\mathbf{P}^1}$, we know that $\lim_{m\to\infty} |c_m| = \infty$. Hence, it follows from (8.8)

 $\lim_{m\to\infty} |c_m\lambda + d_m| = 0, \quad \lim_{m\to\infty} |c_m(c_m\lambda + d_m)^2| = 0.$

 $\left|\frac{a_m\lambda + b_m}{c_m\lambda + d_m}\right| \le M, \quad \left|\frac{a_m}{c_m}\right| \le M.$

that

[28]

(8.9)

(8.10)

8.2.2. *Kleinian groups acting on a quadric surface.* Let $S \in \mathbf{P}^3$ be the quartic surface $S : z_0 z_3 - z_1 z_2 = 0$, and let

$$q: \mathbf{P}^1 \times \mathbf{P}^1 \to S$$

be the Segre map $q([u_0 : u_1], [v_0 : v_1]) = [u_0v_0 : u_0v_1 : u_1v_0 : u_1v_1]$. We consider the case where a subgroup $\Gamma \subset PSL_2(\mathbb{C})$ acts trivially on the second component of $\mathbb{P}^1 \times \mathbb{P}^1$. This case was studied by Fujiki [2] and Guillot [3]. Here we shall reprove a theorem of Fujiki, as an application of Theorem 7.11.

Then the Segre map q defines a group representation

$$q_*: \Gamma \to \mathrm{PGL}_4(\mathbf{C}),$$

which is induced by the following commutative diagram.

$$\begin{array}{cccc} \mathbf{P}^1 \times \mathbf{P}^1 & \stackrel{q}{\longrightarrow} & \mathbf{P}^3 \\ g \times 1 \downarrow & & \downarrow q_*(g) \\ \mathbf{P}^1 \times \mathbf{P}^1 & \stackrel{q}{\longrightarrow} & \mathbf{P}^3 \end{array}$$

Explicitly, for $g = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{C}), \tilde{g} = q_*(g)$ is given by

$$\tilde{g} = \pm \begin{pmatrix} aI & bI \\ cI & dI \end{pmatrix} \in \mathrm{PGL}_4(\mathbb{C}), \tag{8.12}$$

where I denotes the identity matrix of size two.

Limit sets. Let $\Gamma \subset PSL_2(\mathbb{C})$ be a Kleinian group whose set of discontinuity $\Omega_{\mathbb{P}^1}$ contains $[1:0] \in \mathbb{P}^1$. Put $\Lambda_{\mathbb{P}^1} = \mathbb{P}^1 \setminus \Omega_{\mathbb{P}^1}$ and $\tilde{\Gamma} = q_*(\Gamma)$.

PROPOSITION 8.12. The limit set of $\tilde{\Gamma}$ is given by

$$\Lambda(\tilde{\Gamma}) = q(\Lambda_{\mathbf{P}^1} \times \mathbf{P}^1).$$

Thus $\tilde{\Gamma}$ *is of type* **L** *and satisfies* (*****) *and* (*****).

PROOF. As in Section 8.2.1, we embed Gr(2, 4) into $\mathbf{P}^5 = \mathbf{P}(\wedge^2 \mathbf{C}^4)$, and we consider the group homomorphism

$$\bar{\rho}$$
: PGL₄(**C**) \rightarrow PGL₆(**C**).

Let $g = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PSL}_2(\mathbb{C})$. With respect to the basis

$$\{e_0 \wedge e_1, e_0 \wedge e_2, e_0 \wedge e_3, e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3\}$$

of $\wedge^2 \mathbf{C}^4 = \mathbf{C}^6$, the matrix

$$G(a, b, c, d) := \begin{pmatrix} a^2 & 0 & ab & -ab & 0 & b^2 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ ac & 0 & ad & -bc & 0 & bd \\ -ac & 0 & -bc & ad & 0 & -bd \\ 0 & 0 & 0 & 0 & 1 & 0 \\ c^2 & 0 & cd & -cd & 0 & d^2 \end{pmatrix} \in \mathrm{SL}_4(\mathbb{C})$$

represents $\bar{\rho}(\tilde{g}) \in \text{PGL}_6(\mathbb{C})$. Let $\{\gamma_n\} \subset \Gamma$ be a normal sequence. Let

$$g_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \in \operatorname{SL}_2(\mathbb{C}) \quad \text{for all } n = 1, 2, \dots$$

be a sequence of representatives of $\{\gamma_n\}$. Since $[1:0] \in \Omega_{\mathbf{P}^1}$, $\{c_n^{-1}g_n\}$ converges to a matrix of the form $h = \begin{pmatrix} \mu & -\lambda\mu \\ 1 & -\lambda \end{pmatrix} \in M_2(\mathbb{C}), \lambda, \mu \in \mathbb{C}$. Letting $G_n = c_n^{-2}G(a_n, b_n, c_n, d_n)$, we calculate the limit: that is,

$$G := \lim_{n} G_{n} = \begin{pmatrix} \mu^{2} & 0 & -\lambda\mu^{2} & \lambda\mu^{2} & 0 & \lambda^{2}\mu^{2} \\ 0 & 0 & 0 & 0 & 0 \\ \mu & 0 & -\lambda\mu & \lambda\mu & 0 & \lambda^{2}\mu \\ -\mu & 0 & \lambda\mu & -\lambda\mu & 0 & -\lambda^{2}\mu \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -\lambda & \lambda & 0 & \lambda^{2} \end{pmatrix}$$

Thus G defines a projection to a single point,

$$\mathbf{P}^5 \setminus H \to I = \{ [\mu^2 : 0 : \mu : -\mu : 0 : 1] \},\$$

where *H* is the four-plane defined by

$$H = \{ \zeta \in \mathbf{P}^5 : \zeta_0 - \lambda \zeta_2 + \lambda \zeta_3 + \lambda^2 \zeta_5 = 0 \}.$$

Note that I is contained in Gr(2, 4) and corresponds to the line

$$(\mu e_0 + e_2) \land (\mu e_1 + e_3) = \{z' = \mu z''\}$$
(8.13)

in \mathbf{P}^3 . This line coincides with $q([\mu:1] \times \mathbf{P}^1)$. That $\tilde{\Gamma}$ satisfies (\bigstar) and (\bigstar) follows from (8.12) and the fact that $\sum_{g \in \Gamma^*} |c_g|^{-4} < +\infty$ in the Kleinian group theory [11, Theorem II.B.5].

Compact quotients. As an application of Theorem 7.11, we have the following theorem.

THEOREM 8.13 [2]. If Γ is convex-cocompact, then $(\mathbf{P}^3 \setminus \Lambda(\tilde{\Gamma}))/\tilde{\Gamma}$ is compact.

PROOF. The outline of the proof is the same as that of Theorem 8.8. As in that proof, it is sufficient to prove the following proposition. \Box

PROPOSITION 8.14. Any limit line does not intersect $\overline{\Delta}$.

PROOF. A limit line ℓ_{λ} is given by $z' = \lambda z''$ by (8.13), where $[\lambda : 1] \in \mathbf{P}^1$ is the limit point of Γ . Now suppose that there exits a limit line ℓ_{λ} such that $\ell_{\lambda} \cap \overline{\Delta}$ is nonempty. Take a point $[a' : a''] \in \ell_{\lambda} \cap \overline{\Delta}$. Then, by $a' = \lambda a''$, $\tilde{g} = \begin{pmatrix} a_g I & b_g I \\ c_g I & d_g I \end{pmatrix}$ and $\|C_g a' + D_g a''\| \ge \|a''\|$, we have $\|(c_g \lambda + d_g)a''\| \ge \|a''\|$ for any $g \in \Gamma$. Since $a'' \ne 0$, this contradicts (8.9). \Box

8.2.3. Kleinian groups acting on a cone over a conic. For the moment, we have only a very simple example of type L in this case. Many discrete subgroups acting on the cone can be constructed by the method used in [9, page 278]. It is plausible that some of them are of type L, but their canonical quotients will be noncompact.

Example 8.15. Let $\Gamma \subset SL_4(\mathbb{C})$ be an infinite cyclic group generated by

$$g = \begin{pmatrix} \alpha^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha^{-2} & 0 \\ p & q & r & 1 \end{pmatrix} \quad \text{for } |\alpha| > 1.$$

With respect to the basis

$$\{e_0 \wedge e_1, e_0 \wedge e_2, e_1 \wedge e_2, e_0 \wedge e_3, e_1 \wedge e_3, e_2 \wedge e_3\},\$$

we have

$$\rho(g^{n}) = \begin{pmatrix} \alpha^{2n} & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha^{-2n} & 0 & 0 & 0 \\ n\alpha^{2n}q & \frac{1-\alpha^{2n}}{\alpha^{-2}-1}r & 0 & \alpha^{2n} & 0 & 0 \\ -\frac{\alpha^{2n}-1}{\alpha^{2}-1}p & 0 & \frac{\alpha^{-2n}-1}{\alpha^{-2}-1}r & 0 & 1 & 0 \\ 0 & -\frac{1-\alpha^{-2n}}{\alpha^{2}-1}p & -n\alpha^{-2n}q & 0 & 0 & \alpha^{-2n} \end{pmatrix} \in \mathrm{PGL}_{6}(\mathbb{C}).$$

This implies that the limit image of the sequence $\{\rho(g^n)\}, n \to +\infty/-\infty$, is a point if and only if $q \neq 0$. If $q \neq 0$, there are exactly two limit lines, which are

$$\ell_1 = e_0 \wedge e_3$$
 and $\ell_2 = e_2 \wedge e_3$.

Thus Γ is of type **L** if and only if $q \neq 0$. The cone $S = \{z_0z_2 - z_1^2 = 0\}$ contains ℓ_1 and ℓ_2 , and they are invariant by Γ . Note that the quotient space $\Omega(\Gamma)/\Gamma = (\mathbf{P}^3 \setminus \{\ell_1 \cup \ell_2\})/\Gamma$ contains a noncompact surface $(S \setminus \{\ell_1 \cup \ell_2\})/\Gamma$ as a closed submanifold, which is a **C**-bundle over the elliptic curve $\mathbf{C}^*/\langle \alpha \rangle$. Therefore $\Omega(\Gamma)/\Gamma$ is not compact. The group satisfies (**4**) and (**4**) with respect to a new system [w] of coordinates, such as $w_0 = z_0 + z_1 - z_2 - z_3, w_1 = -z_0 + z_1 + z_2 - z_3, w_2 = z_0 - z_1 + z_2 + z_3, w_3 = z_3$.

References

- F. Campana, 'Algébricité et compacité dans l'espace des cycles d'un espace analytique complexe', Math. Ann. 251 (1980), 7–18.
- [2] A. Fujiki, 'Compact non-Kähler threefolds associated to hyperbolic 3-manifolds', Proceedings of Hayama Symposium on Complex Analysis in Several Complex Variables 2005, 1–4, December 18–21, Shonan Village, Japan.
- [3] A. Guillot, 'Sur les équations d'Halphen et les action de SL₂(C)', Publ. Math. Inst. Hautes Études Sci. (105) (2007), 221–294.

- [4] S. M. Ivashkovich, 'Extension of locally biholomorphic mappings of domains into a complex projective space', *Izv. Akad. Nauk SSSR Ser. Mat.* 47 (1983), 197–206.
- [5] M. Kapovich, 'Hyperbolic manifolds and discrete groups', *Modern Birkhäuser Classics* (Birkhäuser, Boston–Basel–Berlin, 2001).
- [6] Ma. Kato, 'On compact complex 3-folds with lines', Japanese J. Math. 11 (1985), 1–58.
- [7] Ma. Kato, 'Examples on an extension problem of holomorphic maps and a holomorphic 1-dimensional foliation', *Tokyo J. Math.* **13** (1990), 139–146.
- [8] Ma. Kato, 'Compact quotient manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of limit sets', *Tokyo J. Math.* 19 (1996), 99–119.
- [9] Ma. Kato, 'Existence of invariant planes in a complex projective 3-space under discrete projective transformation groups', *Tokyo J. Math.* 34 (2011), 261–285.
- [10] F. Lárusson, 'Compact quotients of large domains in compact projective space', Ann. Inst. Fourier Grenoble 48(1) (1998), 223–246.
- B. Maskit, *Kleinian Groups*, Grundlehren der Mathematischen Wissenschaften, 287 (Springer, Berlin-Heidelberg, 1987).
- [12] P. J. Myrberg, 'Untersuchungen über die Automorphen Funktionen Beliebig Vieler Variablen', Acta Math. 46 (1925), 215–336.
- [13] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Mathematics, 439 (Springer, Berlin–Heidelberg, 1975).

MASAHIDE KATO, Sophia University, Kioicho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan e-mail: masahide.kato@sophia.ac.jp