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THE GROUPS OF THE REGULAR STAR-POLY TOPES

With best wishesto H. S M. (Donald) Coxeter for his 90th birthday

PETER MCMULLEN

ABSTRACT. Theregular star-polyhedron {5, %} isisomorphic to the abstract poly-
hedron {5. 5|3}, where the last entry “3" in its symbol denotes the size of a hole,
given by the imposition of a certain extrarelation on the group of the hyperbolic hon-
eycomb {5, 5}. Here, analogous formulations are found for the groups of the regular
4-dimensional star-polytopes, and for those of the non-discrete regular 4-dimensional
honeycombs. In all cases, the extragroup relationsto be imposed on the corresponding
Coxeter groups are those arising from “deep holes’; thus the abstract description of
{5.3 3} is{5, 3¢, 5|3} for k = 1 or 2. The non-discrete quasi-regular honeycombsin
E3, on the other hand, are not determined in an analogous way.

1. Introduction. The regular 4-dimensional star-polytopes were discovered by
Schlafli and Hess in the last century (we refer the reader to [2] for historical details).
They all sharethe symmetry group of the regular convex polytope {3, 3, 5}, which isthe
Coxeter group [3, 3, 5], and so in one sense there is nothing more to be said about them.
However, Coxeter observed in [1] that the regular star-polyhedron {5, g} isisomorphic
to the abstract regular polyhedron {5, 5| 3}. Thisis obtained from the regular hyperbolic
honeycomb {5, 5} by a certain identification, which forces some three of its edges to
forma“hole” (we shall be more precise in Section 3).

In this paper, we investigate the regular 4-dimensional star-polytopes in the same
spirit. We shall show that, regarded as abstract regular polytopes (see, for example,
[9, 11, 13] for background material), they fall into two classes. Those which contain
{5, g} or its dual as a facet or vertex-figure inherit their group structure from the
lower-dimensional components; for example, {3, 5, g} is isomorphic to the universal
regular polytope {{3. 5},{5,5| 3}}. The two remaining examples, which are dual (and
combinatorially self-dual), are obtained by identificationsfrom the corresponding regular
hyperbolic honeycomb, which again forces some three of its edges to form a “deep
hole”; thus {5, 3, g} isisomorphic to an abstract regular polytope, which will be denoted
{5,3,5|3}.

A similar pattern is maintained for the non-discrete regular honeycombsin E4. That
is, al these honeycombsare universal amalgamations (in the senseof [16]) of their facets
and vertex-figuresin the expected way, except that {5, 3, 3, g} anditsdual areisomorphic
to an abstract regular 5-apeirotope which is denoted {5, 3, 3,5| 3}. The problem which
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arises here is that the groups are infinite, so that proving universality poses a certain
challenge.
A contrast is provided by the closely related non-discrete quasi-regular honeycombs
in E3. For example, the honeycomb
>3
55
2

occursasacut of {5, 3,3, 2}. But this honeycomb s not determined by the extrarelation

on
3
>3

which forces {5, 5} — {5.5|3} = {5, 2}, even though the same relation applied to the
corresponding cut of {5, 3, 3, 5} doescollapseit onto {5. 3, 3, 3}. In other words, the cut
here is not universal in the sense of [12, Section 3].

2. Abstract regular polytopes. We shall discuss regular polytopes here largely on
thegeometriclevel, and soweshall pay little attention to the underlying theory of abstract
regular polytopes. For this, werefer the reader to, for example, [10], and the forthcoming
monograph [13]. Except in Section 7, we shall work exclusively in euclidean spaces,
hence our polytopes will always be realized in the sense of [6, 8] (if we slightly extend
the definition to permit realizations in hyperbolic spaces as well). These polytopes may
be thought of as* classical”, because for the most part they were the object of the central
text [2].

For our purposes, an n-polytope P consistsof faces of eachdimension0, 1, ...,n—1;
we also talk about verticesfor O-faces, edgesfor 1-faces, and, for ak-polytope, its facets
and ridges will be faces of codimension 1 and 2, respectively. (Strictly speaking, we
should usethe term “rank” instead of “dimension”, but here the conceptswill coincide.)
We may think of apolytope as built up recursively: each face is composed of its facets,
and these fit two around each ridge. Two faces of P, one of which contains the other,
are called incident. Under inclusion, P isa partially ordered set; in fact, in all instances
here, it will be alattice, if we adjoin two improper faces, a unique minimum F_; and
maximum Fy,.

It may happen that P is infinite; we then often refer to P as an apeirotope. In this
case, P will sit naturally in an (n — 1)-dimensional space; it may or may not be discrete.
The terms polygon or apeirogon will also be used for a 2-polytope, and polyhedron or
apeirohedron for a 3-polytope.

For two faces F and G of P with F C G (here we allow improper faces), the family
G/F:={J € P | FCJC G} iscaled asection of P; it is the lattice of faces of
a polytope of dimension dimG — dimF — 1. The most important caseiswhen F = v
(= Fo) isavertex and G = F, is the maximal improper face; in this case, Fy /v is the
vertex-figureof P at v. Geometrically, we shall always be ableto think of avertex-figure
asfollows: the vertices of Fy, /v will be the other vertices w of edges of P which contain
v; the j-faces of F, /v will then be the vertex-figures, in the obvious recursive sense, of
the (j + 1)-faces of P which contain v.
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A flag of an n-polytope P isaset ® = {Fo,Fy. ..., Fn_1} of mutualy incident faces
(the convention is that F; has dimension j). In view of the recursive formulation above,
foreachj = 0,....n— 1, there is a unique flag which differs from & in its j-face; we
denote this flag by @/, and say that it is adjacent to ¢. The technical conditions for a
poset P to be a polytope are then that every chain Gjpy < --- < Gy of faces of P
be contained in aflag, that the adjacent flag ¢! to & be unique, and that P is strongly
flag-connected, meaning that, if ¢ and ¥ are any two flags, then they can be joined by
some sequence ® = &g, Dy, ..., P = ¥ of flags, each containing ¢ N¥, and such that @;
isadjacentto ®;_; foreachi=1...., k.

The symmetry group I'(P) consists of the isometries of the ambient space which take
P into itself (that is, which permute its faces of each dimension); again, we frequently
confuse this with its (abstract) automor phism group, since the action of the symmetry
group will necessarily be faithful; in any event, we often refer merely to the group of P.
Wethen call P regular if I'(P) istransitive on the family F (P) of flagsof P.

Letd :={Fo...., Fn_1} beafixed or baseflag of P ; itsfaces are also called the base
faces. It is easy to show (see, for example, [9, 10, 13]) that the group I'(P) of aregular
n-polytope P is generated by distinguished generators po. . . . . pn—1 (With respect to @),
where p; is the unique automorphism such that &/ = ¢p; forj = 0,.... n— 1. These

generators satisfy relations (pjp)? = e for 0 <j <k < n— 1, where

1 ifj =k,
(2.1) pjk={PkZ3- ifj=k—1,

2, ifj <k—2.
Further, I'(P) hastheinter section property (with respect to the distinguished generators),
namely, if 1.J C {0...., n— 1}, then

(2.2) ilienn(pli€d)=(pliclnd).

Thenumberspy := pxoik (k=1,..., n— 1) determine the (Schiafli) type { ps. . . - . Pn—1}
of P.

Observe that, in a natural way, the group of the base facet of P is {po, . ... pn-2),
while that of the vertex-figure at the base vertex is (p1, . . ., pn—1). (By the way, we shall
usually refer to the facet or the vertex-figure of aregular polytope, since all the facets
or vertex-figures are equivalent.) Further, the given conditions are easily seen to imply
that the group I'(P) is simply transitive on the flags of P, so that there is a one-to-one
correspondence? — 7y between flags and group elements, given by ¥ = ¢.

By astring C-group, we mean agroup with generators p; which satisfy (1) and (2). The
group of aregular polytopeisastring C-group. Conversely, given astring C-group, there
isan associated (abstract) regular polytope of which it is the automorphism group ([10]).
In verifying that a given group is a C-group, it is usually only the intersection property
which causesdifficulty. Notethat Coxeter groups are examplesof C-groups(see[10, 17]).
For abstract regular polytopes, we may have p; = 2 for some j; this leads to polytopes
which we can think of as degenerate. In the present context, the fact that the groups will
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be generated by hyperplane reflexions will ensure that the intersection property must
hold, and so they will automatically be C-groups.

Theidentification of regular polytopeswith string C-groups showsthat presentations
of groupsplay animportant réle. (For thetime being, we are discussing regular polytopes
ontheabstract level, but this context providestheappropriate language.) Whilein practice
we do usually work with the groups, it is very convenient to have some alternative
notation. Let P be aregular polytope, with group I" := I'(P) = {po, . . . , pn—1) as above,
wherethe p; arethe distinguished generatorsassociated with the baseflag ¢. Now for any
flagw,anyj=0...., n—landany v € I', we clearly have Wiy = @)l In particular,

(#7)! = &y = dpyy, and it follows that

Do pim = PO IO,

I corresponds to an adjacency sequencew = j(m) - - - j(2)j(1). Note that v~ then cor-
responds to the reverse sequence w := j(2)j(2) - - - j(m). More particularly, a relation
on I" corresponds to an adjacency cycle; such a cycle may be started at any point in
the sequence, which corresponds to conjugacy or a different choice of the base flag, or
reversed, since each p; is an involution. Thus arelation pj)pj) - - - pjm) = € inI" corre-
spondsto the adjacency cyclesj(m) - - - j(2)j(1), j(1)i(2) - - - j(m), j(2) - - - j(m)j(1), and so
on.

There is an obvious equivalence relation on adjacency sequences, corresponding to
conjugacy of group elements. In particular, equivalent sequences can be obtained by
inserting or deleting terms such as (jk)P; we may also allow equivalence modulo other
(previously) known adjacency cycles. Similarly, if w is an adjacency cycle, then so
is slws for any adjacency sequence s. However, since we work below with mixing
operations (that is, changing generators), for the reader’s convenience we shall keep to
group elements when manipulating relations.

Now suppose that Q is a quotient polytope of P, so that Q is also a regular n-
polytope, whose group I'(Q ) is aquotient I'(P) /X of I'(P)) by some normal subgroup
X. If X isthe normal closure of therelatorsin I'(P) associated with the adjacency cycles
Wi, ..., W, then we shall use the notation

(233 Q =P/{{w...., Win))-

For the most part, P will be the universal polytope { ps. .. ., pn—1} With agiven Schifli
symbol; we shall postpone until later examples of the notation. Observe, though, one
advantage of the notation—it avoids having to use circuml ocutions such as*“ the polytope
whose group is the Coxeter group [ p1, - - - » Pr-1] = {po. . - -, pn—1), With the additional
relations. . . ”; in other words, it isindependent of any notation for the underlying group.

Given regular n-polytopesP and Q such that the vertex-figure of P isisomorphic to
the facet of Q , we denote by (P, Q ) the class of al regular (n + 1)-polytopesR with

facet isomorphic to P and vertex-figureisomorphicto Q . If (P, Q ) # (), then any such

foranyj(),.... j(m e {o..... n—1}. Inother words, anelementy = gy pj) - - - pim) €
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R isaquotient of a universal member of (P, Q ); thisuniversal polytopeis denoted by
{P.Q } (see[10, 13, 15, 16]). In practical terms, universality means that no additional
relations are imposed on the resulting automorphism group of the polytope other than
those inherited from the groups of the facet and vertex-figure. The determination of
whether, for given P and Q , the universal {P.Q } exists, and if it does whether it is
finite, are central questionsin the theory of abstract regular polytopes.

We end the general discussion of regular polytopes and their groups with a useful
remark. LetI" = (po. . . ., pn—1) bethe group of aregular n-polytope P, and supposethat
v € I'. Then we can express? in the form

Y = appoa1po - * * Xm—1P0%m,

with o € I'p 1= {p1, ..., pn—1), the group of the vertex-figure of P at its base vertex
v:=Fq fori=0,..., m. With v, we can associate a path in P with m edges leading

fromvtovy. If m= 0, the path consists of v (= vag) alone. Form > 0, let (B}, ....E,,_;)

be an edge-path associated with agpoa1po - - - am—1. With v is then associated the path
(E1, - ... Em), given by

_ [ Eam (= Eppam), ifi=1,

=B poom ifi=2.. ..m,

where E := F; is the base edge of P. Of course, this path will not generally be unique,
since it depends on the particular expression for 7.

Conversely, an edge-path (Ey, . . . , Emn) from v correspondsto suchan elementy € I,
inwhich pg occursmtimes. If m > 0, thenthereisan oy € I'p such that E; = Eay,. The
shorter path (E7, . .. . E.,_,), given by

Ei/ = Ei+1aa1po

fori=1,..., m— 1, also starts at v, and we can repeat to obtain 7y as above, with afree
choice of ag.

In the context of group presentations, we deduce the following, whose condition is
called the circuit criterion.

PrROPOSITION 2.4. Let P be a regular polytope. Then the group I" = I'(P) of P
is determined by the group of its vertex-figure, and the relations on the distinguished
generatorsof I" induced by the edge-circuits of P which contain the initial vertex.

Proor. A relation onI” can be written in the form

XoPoX1P0 "~ - Am-1P0 = €,

with o € I'pfori =0,..., m — 1, which corresponds to an edge-circuit starting and
ending at v. Conversely, such an edge-circuit is equivalent under I'y to one beginning
with E, and this givesrise to arelation as above (now the element o will be determined
by the circuit). Thisisthe result. n
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3. Deep holes. We first consider the finite regular star-polytopes in E*. Our aim
is to give presentations for their symmetry groups in terms of the natural generators.
However, our starting point is Coxeter’s observation in [1] that

{5.3} =~ {5,5/3}.

We must begin by explaining and generalizing this notation.
For any n > 2, the Coxeter group [ py, . - -, pn—1] has the presentation

[Py Pral = {po..... pre1 | ()P =0 <j<k<n—1)).
where the relations of (2.1) hold, namely

1, ifj=Kk,
Pk = { P ifj=k—1,
2, ifj<k-2
A Coxeter group hasto satisfy theintersection property (2.2). We shall alwaysusethisno-
tation; in the sense of Section 2, the p; are the distinguished generatorsof [ py, .. . , pr—1].
We now define a new group [pi,...,pn1|h] by imposing on [pa, ..., pn-1] the
single extrarelation
(pop1- -+ pn-1pn2--- p1)" = €.
If this new group is indeed a C-group in the sense of Section 2 (and in our applica
tions, we may take this for granted), then we denote the associated regular polytope by
{p1,--..Pn—1|h}. In other words, in terms of the notation we introduced in Section 2,

We observe that the extra relation is preserved under duality, so that the dual polytope
iS{Pn-1.---+ p1| h}. Henceforth, we shall only consider one out of each dual pair of
polytopes.

If n = 3, the extra group relation has an appealing geometric interpretation. Edge-
pathsin the polyhedronP := { p, g| h} whichleave vertices by the next edge from which
they entered obviously trace out faces { p} of P. Edge-paths which leave by the second
edge similarly trace out a polygon {h}, which is called a hole. The polyhedron P is
completely determined by its Schi&fli type { p, g}, and its hole {h}.

For larger n, the geometry isusually lessintuitive, though by Proposition 2therelation
still gives the length h of a certain edge-circuit in the polytope, which we shall call a
deep hole. (In this case, the associated edge-circuit isfairly clear, sincethe relation gives
the period of the product of pg, which interchanges the two vertices of the base edge E,
with a certain conjugate of p,_1, which leavesfixed the base vertex v of E.)

Thefollowing resultisonetowhich we shall frequently appeal. If 3 and ¥ areelements
of a group, we shall write 3 = 7y to mean that 3 and v commute (that is, 37 = 73). We
also denote by ~ conjugacy in agroup.

LEMMA 3.1. Let I" be a group, and let p, o and 7 € I" be involutions such that
(po)® = e and p = 7. Then
pOTO ~ OT.
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PROCF. The proof is easy. We have

poOTO ~ OpPOT

popT
poTp

as claimed. ]

There is an important special case of holes, which is a corollary of Lemma (3.1), to
whose proof we shall need to refer later. Here and elsewhere, we denote by rk a string
r..., r of length k.

COROLLARY 3.2. The deep hole of an n-polytope of type {3"2, q} isa g-gon {q}.

PROOF. This result follows from applying Lemma (3.1) n — 2 times. We obtain

popPL " Pn—2Pn—1Pn-2" " P1 ~ Pn—2Pn-1,

which proves the corollary.

More generally, when p, = - -+ = p—2 = 3, so that the facet { p1, 3, ..., 3} issimple
when it isfinite, then we have the following picture of the deep hole. When two facets
F.F’ of the polytope P (say) meet on a common (n — 2)-face G containing a vertex v,
there are two edges of P through v which do not liein G, onein F, and the other in F’.
At the other end of the edgein F’ is another (n — 2)-face G/, and then afurther edgein
afacet F” which meets F’ in G'. We can continue in this way, and the deep holeis then
the resulting polygon. The general pictureis only alittle more complicated than this, but
we shall not encounter it.

We shall see below how deep holes occur in the regular star-polytopes and hon-
eycombs. However, let us first give one example in a different context. For s > 2, the
regular toroidal (n+1)-polytope {4, 32, 4} s o1y isobtained from the cubic honeycomb
{4,3"2 4}, whose vertices are all vectors with integer cartesian coordinatesin E", by
identification under the lattice generated by (s, 0"1) and its images under permutation
of coordinates. Comparison with [12, Theorem 3.2] shows that an alternative notation
for this polytopeis {4,3"2, 4|s}.

4. Regular star-polytopes. Aswe said in Section 3, we need only consider one of
each pair of dual polytopes. Further, the regular (or quasi-regular) star-polytopes and
honeycombsin E2 and E* occur in isomorphic pairs, obtained by interchanging 5 and g in
their Schlafli symbols, and so we may also confine our attention to one of each such pair.
(In fact, we shall implicitly verify thisisomorphism in the section.) Asaresult, the only
(finite) 4-dimensional polytopeswe need look at are {3, 5, 2}, {5. 3.5} and {5. 3. 3}.

Theregular star-polytopes are abstractly described by

THEOREM 4.1. The regular 4-dimensional star-polytopes satisfy the following iso-
mor phisms:
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(@ {3.5.3} = {{3.5}.{5.5|3}} = {3.5.5}/(((1232)%));
(b) {5.3.5} =~ {{5.5/3}.{5.5|3}} = {5.5.5} /(((0121)3, (1232)));
(c) {5.3.3} ~ {5.3,5|3}.

ProoF. All these polytopes have groups isomorphic to [3,3,5] = {po, p1, p2, p3),
with the convention introduced in Section 3. We therefore choose new generators for
[3, 3, 5], guided by the process of systematic vertex-figure replacement described in [5];
the dissectiontheorems of [4] arealso relevant in this context. In each case, we shall have
an invertible (mixing) operation (oo, p1, p2, p3) — (00, 01, 02, 03) in the sense of [10].

(@) Thefirst operationis

(po. p1. p2. p3) — (po. p1. p2p3p2. p3) =: (00. 01, 02, 03).

Most of the relations satisfied by the new generators are obvious (for example, they
are al involutions), and so we concentrate on those which are not. We first observe that
0203 = (p2p3)?, reflecting the changefrom 5 to 3 in the Schi&fli symbol; thus (203)° = e.
Further,

0102 = P102P3pP2 ~ P203,

by Lemma (3.1), since (p1p2)° = ¢.
Theinverse operation is

(O’o. 01,02, 0'3) — (00, 01.0203020302. 0'3) = (,00. P1s P24 p3).

It follows that the automorphism group I'({3.5. 3}) of {3,5. 3} is obtained from the
Coxeter group [3, 5. 5] by imposing the single extra relation arising from (p1p2)° = e.
Now

p1p2 = 010203020302
= 010302030203
= 030102030203

~ (01020302.
Here we have used (0203)° = ¢. That is,
{3.5.3} =~ {3.5.5}/(((1232)%)) = {{3.5},{5.5|3}}.

as claimed.
(b) The next operationis

(po: p1, p2: p3) — (po. p1p2p3P2P1: P3, p2) = (00, T1, 02, 3).

We observe that
0001 = PopP1P2P3P2P1 ~ P23,
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by two applications of Lemma (3.1) (compare Corollary (3.2)). Next,

0102 = P1P2P3P2P1P3
= p1pP2p3P203P1
~ (p2p3)’.

Asbefore, this reflects the change from 5 to g in the Schl&fli symbol. Finaly

0103 = 10203020102
= p1pP2p3P1P2P1
= p1pP2p1P3P2P1

P2p1P2P3P201

0301.

Theinverse operation is

(00. 01. 02, 03) — (00, 03020102010203. 03. 02) = (po, p1. P2, p3)-

It thus follows that I'({5. 3,5}) is obtained from [5.5.5] by imposing the two extra
relations arising from (pop1)® = € = (p1p2)3. Now

pop1 = 0003020102010203

0302000102010203
~ 000102071,
while
pip2 = 03020102010205
= 030201020102
= 030102010201
= 010302010201
~ 03020102
~ 01020302.
That is, {5. 3.5} ~ {5,5, 5}/(((0121)3. (1232)%)) = {5.5|3}, {5.5|3}}, as claimed.
Notice that we have used (c102)° = ¢ here.
(c) Thefinal operationis
(pos p1, P2+ p3) = (pos P1P2P3P2P1, P3P203, P2) = (00, 01, 02, 03).
We see that

0001 = POP1P2P3P2P1

~ P2P3;
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asin case (b). Next,

0002 = PopP3P2P3

P3P2P3P0

0200.

Then we have

0102 P1P2P3P201P3P2P3
P1P2P30P2P301P203
~ P1P2P3P1P2P30P2P3
P1P2P1P3P20P3P203
P2P1P2P3P203P203
™~ P1P2p3P2P3020302
P1P3P203
P3P1P2P3

~ P1p2-

We also have o103 = o301 as in case (b), and o203 = (p3p2)?> ~ (p2p3)?, so that
(0203)° = €.
Theinverse operation is

(00, 01, 02, 03) — (00. 010203020102030201. 03, 0203020302) = (p0. p1. P2 p3)-

It follows that I"({5. 3. 3}) is obtained from [5. 3. 5] by imposing the extra relations
arising from (pop1)® = € = (p1p2)®. Now the second is given by (010,)° = ¢; for thefirst,

PopP1 = 00010203020102030201
= 00010203010201030201
= 00010201030203010201
— 00020102030203020102
— 02000102030203020102
~ 0001020302030201
— 0001030203020301
= 0300010203020103

~ 0001020302071.

Thatis, {5.3. 3} =~ {5.3.5}/(((012321)*)) = {5.3,5| 3}, asclaimed. .
Let us emphasize that we have shown that {3,5, 2} and {5, 3,5} are the universal
polytopes of their respective types; in particular, these universal polytopes exist, and
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are finite. Of course, {5, 3, 2} cannot be universal of type {5, 3,5}, since the latter is
infinite. Finally, we observe that {5, 3, 5|3} is (combinatorially) self-dual, so that the
dual polytopes {5, 3, 2} and {2, 3,5} are isomorphic; this justifies our earlier assertion
that interchange of 5 and g in Schlafli symbols leads to isomorphic polytopes.

5. Three-dimensional honeycombs. In preparation for dealing with the non-dis-
crete regular honeycombsin Section 6, we now consider the non-discrete quasi-regular

honeycomb
— 3
Q = { %*5}

in E2, and its two related honeycombs

2 2

with the same group. (Combinatorialy, Q’ is actualy regular; it is of type
{{3.5}.{5.4}6} = {3.5.4}/(((123)%)), though not, as we shall see, isomorphic to it.
Asin, for example, [3], the notation { p. g}, =~ { p.q}/(((012)")) refersto apolyhedron
of type { p, q} determined solely by the lengths of its Petrie polygons.)

We merely remark here on the role played by these honeycombsin the construction
of quasi-periodic tilings of E3; compare[7].

The generating reflexions po, . . . , p3 of the symmetry group of Q are asfollows. Let

T = %(1 + +/5) be the golden section. For j = 0.... .3, the mirror of the reflexion fi

isthe plane Hj := {x € E* | (X, 4j) = o}, with u; a unit vector and o; € R, so that
Xp; = X+ 2(e5 — (x. u;))y; for x € E3. Herewe have og = 1, o = Ofor j = 1.2, 3, and

Uo = (1,0,0),
up = 3=t -7 -1,
W = (0.0,1).
uz = (0,1,0).

In other words, the group is that with Coxeter diagram

Thelabel “j” against a node denotes the reflexion p;.
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Thethree quasi-regular honeycombshavethe same verticesand edges, and are rel ated
to each other by replacement of (quasi-regular) vertex-figureswith the same verticesand
groups. In fact, the following operations yield the groups of the other two. First,

(00, ..., 03) — (00.0103010301020103010301020103010301, 03, 02) = (p0. - - . . p3).

We shall seein the course of proving Theorems (6.3) and (6.6) that the 4-dimensional
honeycomb {2.3,3.5} has Q as asection; similarly, {3,5, 2.3} has Q ’ as a section,
and {5,3,3, 2} hasQ ” asasection.

Using this description of the group, we see that we may take the vertices of the
icosidodecahedral vertex-figure of Q at its initial vertex o = (0,0, 0) to be the cyclic
permutations of (+2.0,0) and (£, £1. +771), giving 6 + 24 = 30 points in all. Since
thisvertex-figureis centrally symmetric, it easily followsthat the complete vertex-set of
Q isthe set A3 of the integer linear combinations of these 30 points.

LEMMA 5.1. Thevertex-set A3 of Q isan additive subset of E2 of rank 6.

PROOF. This can be seen directly. However, the following approach is more trans-
parent. Consider the double-size integer lattice 2Z° in E®, generated by the points 2g
forj=1,..., 6, where {ey. . ...} is the standard basis of E®. The 12 points +2g,
forj=1,..., 6, are thus the vertices of a regular 6-crosspolytope C. There is obvi-
ously a (scaled) orthogonal projection, mapping these 12 vectors onto the 12 vertices of
the regular icosahedron J of edge-length 2r—1, with vertices all cyclic permutations of
(2. 0, £2r71) (the scaling factor is actually 2%/27~1/251/4: compare[14]). The comple-
mentary projection take the vectors onto another icosahedron, and we then deduce that
the additive group generated by the 12 vertices of J has rank 6. (If it had smaller rank,
then it would lift to alattice of rank lessthan 6.)

Now the mid-points of the edges of J are the 30 points which generate A3. Since
these mid-points come from among the 60 mid-points & + g of the edges of C,
which generate the lattice usually known as D (its points are those of 7 with an even
sum), we seethat A3 has rank at most 6. When we observe that the other 30 images of
the mid-points of the edges of C, namely the cyclic permutations of (2771, 0, 0) and
(1,771, +772), also liein A (for instance, (2r~1,0,0) = (r1,7,1) — (=7 1,7, 1)),
we conclude that the rank is exactly 6, as claimed. ]
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The circuit criterion of Proposition (2.4) says that we can find a presentation for the
group of Q from one of its vertex-figure, together with relations arising from its edge-
circuits. (Thefact that the vertex-figureisquasi-regul ar, rather than regular, requiresonly
atrivial extension of the proposition.) Naturally, welook for basic circuits, corresponding
to the simplest relations which determine the group. A general relation in the group will
arisefrom concatenating basic circuits, by meansof symmetric differences. Inthe present
case, sincethe edges arejust the projections of those of the semi-regular honeycomb hé-
(in the notation of [2, p. 155]), it will suffice to determine the relations arising from the
equilateral triangular circuits, and those coming from the rhombs given by pairs of radii
(to vertices) of the icosidodecahedron, with angles /5, /3, 2 /5and 7/ 2.

A rhomb with angle 7 /3 is clearly formed by concatenating two triangles. We must
thus consider the other three kinds.

LEMMA 5.2. The relationsin I'(Q ) which arise from the rhombs with angles /5,
2r/5and /2 are equivalent.

PrROOF. What we show first is that two rhombic circuits with angles 27 /5 and 7/ 2
are equivalent, modulo triangles (the latter rhomb is, of course, a square). Consider the
following 9 pointso, a., b, ¢, d.. e of A3, whereo = (0, 0, 0) asusual, and

a. =(xr.1.771Y., b=(0.2.2r1)., c.=(*172%7).
dy = (£1.72,—172), e=(2.0,0).

Listing polygons by their vertex-sets, the quadrilateral circuits given by {o,a.,b,a_}
and {c:.c_d_d.} are rhombs with angles 27 /5 and /2, respectively, while we have
the 10 triangles {a.. ¢+, d+ }, {a_.c_.d_}, {a..b.d:}, {a_.b,d_}, {b,d. }, {o.a.. €},
{o0,a_,e}, {a:.ci, €}, {a_,c_, e} and {c..e}. The equivalence is most easily seen by
noticing that concatenating the two rhombs and the first five triangles yields the regular
pentagon with vertices o, a., ¢, c_.a_ (in cyclic order), while the last five triangles
concatenate to the same pentagon.

The equivalence of the square circuit with the rhomb of angle 7/5 can be seen
similarly; the easiest way is to observe that following the automorphism 7 « —7=1
of the ring Z[7] by interchange of the second and third coordinates in E* induces an
involutory automorphism of As. Thisgivesthe lemma. ]

(among others) the relations (p; pi)™* = €, with

(1 iti=k
|5 i (j.K) = (0.1) or (1.3),
(5:3) 'W‘iaiuL@=@a,
2. if (j.K) = (0.2), (0.3) or (2.3),

together with (pop1pap2)® = ¢, the last representing the triangular holes of the facets
{2.5} ~ {5.5|3}. Thetranslation ¥ which takestheinitial vertex o into the other vertex
(2,0, 0) (say) of the initial edge may be taken to be

Y = (p1p203)°p203 * po = (p1p2p3)* p1po.
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(Thefirst part of the product is the reflexion in the plane through o parallel to pg, and is
itself the product of the central reflexion (p1p2p3)° in 0 and the half-turn p,p3 about the
initial edge.)

The relation corresponding to a rhomb with angle 7/5 expresses the fact that the
translationsy and p17Yp1 commute, that is, that

(Vp1)? = (p17)?.
Simplifying the resulting relation (which we leave to the reader) then yields

(54) (10209 (p190%)” = =.

In conclusion, putting Lemma (5.2) together with (5.4), we see that we have proved

THEOREM 5.5. The group I'(Q ) of the non-discrete quasi-regular honeycomb

3
2-[s3
is the Coxeter group
=3
<pO ..... p3>— {55}
which satisfies (pjpx)™ = e with the numbers my given by (5.3), together with the

relations
2
(pop1p3p1)® = ((p1p2p3)*(p1po)’)” = e.

6. The four-dimensional honeycombs. In this section, we shall treat the non-
discrete regular honeycombs with fivefold symmetries in E4, and we shall show that,
somewhat surprisingly perhaps, these are all either universal of their type, or are again
determined by adeep hole.

Before we embark on the formalities, it is instructive to look at the problem from
an heuristic viewpoint. Consider a honeycomb formed from cells {5. 3, 3} with afixed
edge-length, embedded in a hyperbolic space H* of given negative curvature. That is,
wejust glue copies of the 120-cell facet against facet, ignoring the fact that the resulting
vertex-figure will usually be infinite, and the honeycomb non-discrete. For the universal
{5,3,3,5}, the cells have dihedral angle 27/5. As the curvature tends to 0, so the
dihedral angle of the facets {5, 3, 3} increases. Thus the honeycomb, while remaining
hyperbolic, will passthrough {5, 3, 3, 4} (with dihedral angle 7/2) and then {5. 3, 3. 3}
(with dihedral angle 27 / 3); for thelatter, aswe have seen, itsdeep holeswill be pentagons
{5}. At the limit, we obtain {5,3,3, 2} in E%; it is easy to check geometrically (and we
shall do this algebraically below) that the deep holes are now triangles {3}.

Moreover, in the last two cases, the holes in their turn determine the dihedral angles
of the facets, and so, in a sense, their type also. In fact, there will always be edge-paths
corresponding to deep holes, although they will generally not close. Nevertheless, the
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curvature of the space can be calculated from the angle of this polygonal deep hole
(which is planar).

Our task in thissectionisto show that this heuristic argument can be validated. Among
other things, this will imply that {5. 3, 3, g} ~ {5, 3,3,5|3}. Our proof will comprise
three stages. First, we show that {5,3,3,3} is a quotient of {5,3,3,5|3}. Next, we
establish presentations of the groups of related honeycombs which are equivalent to
{5.3.3.2} ~ {5.3,3,5|3}. Finally, we prove that one of these honeycombs does
indeed have the group presentation required.

Infact, weshall find it more convenient to work with the dual honeycomb{3. 3, 3, 5}.
This will enable us to use the previous results about vertex-figure replacement in the
family derived from {3, 3,5}, at least to some extent. Of course, the deep hole relation
is symmetric between a polytope and its dual.

Our first result is then

LEMMA 6.1. The honeycomb {3. 3, 3,5} is of type {5. 3. 3.5/ 3}.

ProOOF. To prove this, all we have to do is choose appropriate generators for the
group, and check that the hole relation holds. Each generator p; of the (geometric) group
(pos- .-+ pa) Of {3.3, 3,5} isthereflexion in some hyperplane Hj := {x € E* | (x,u;) =
aj},whereap =1,y =0forj=1...., 4, and

Uo = (1.0.0,0),
u = i(—r*-10-1),
uz = (0,1,0.0),

Uz = %(0 —1,—7, 7Y,

Ug = (O 0,1, O)

with 7 := %(1 + 4/5B) as before. These u; are chosen so that, with initial vertex o =
(0,0, 0, 0), thevertex-figure hasverticesall 120 pointsderived from(2,0,0,0), (1,1, 1, 1)
and (r. 1.7, 0) by applying even permutations and arbitrary changes of sign to their
coordinates.

An important feature to note for the future is that the 24 points so derived from
(2,0,0,0) and (1. 1, 1, 1) form the vertices of the 24-cell {3, 4, 3}. Actually, this occurs
in the guise of the polytope denoted by

(compare[2, Section 11.6]), whose group is a subgroup of [3, 3. 5].
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Since p1p2p3pap3p2p1 1Sthe conjugateof pg by p3p2p1, it followsthat it isthereflexion
in the hyperplane {x € E* | (x,u) = 0}, with

U = Ugp3p2p1 = %(—1. 0, —7'71.7').

Thus (U, u) = —3, and it follows at once that pop1p2p3papsp2p1 has period 3. "

Let A4 denote the vertex-set of {3,3,3,5}, that is, A4 is the set of integer linear
combinations of the 120 vertices of {3, 3, 5} described above. Our anaysiswill depend
crucialy on awell-known important fact about Aj.

LEMMA 6.2. Thevertex-set A4 of {3,3,3,5} isan additive set of rank 8.

PROCOF. Theideaof theproof issimilar to that of Lemma(5.1), and soweshall not give
many details. Thistime, the basic observation isthat the 240 vertices of the semi-regular
Gosset polytope 4,1 (see[2, 11.8]) project orthogonally onto two copies of the vertices
of {3, 3,5}, oneset being 7! aslargeasthe other (compare[7, 14]). Moreover, just asin
the proof of Lemma (5.1), each vertex in the “small” copy is an integer combination of
verticesinthe“big” one. Thecomplementary projection hasthe same property; naturally,
the 120 vertices which go into the “big” {3, 3. 5} in one projection go into the “small”
{3, 3,5} inthe other. These 240 pointsare all permutations of (4-2, 2, 0°), and all points
((il)g) with an even number of minussigns. They generatethe lattice often called Eg; it
hasthe vertices of the semi-regular honeycomb 5, ;. The assertion about the rank follows
immediately. ]

Before we proceed further, we shall list the ten (non-discrete) regular honeycombs
derived from {3, 3, 3, 5}. Infact, they all havethe samevertex-set (and, indeed, the same
edges), and among the relationships between them are those obtained from the process
of vertex-figure replacement (see [5]); that is, we change the vertex-figure of a given
regular polytope (whose symmetry group is generated by reflexionsin hyperplanes) for
another regular polytope with the same vertices, while keeping the same edges.

We arrange the new vertex-figures after the pattern of [5, Table 2]. This gives

{3.3.3.5}
{3353} {3353
4o ;
{3,5.3.3} {5.3.3,5}
{5.3.5, 3}
{3.5.3.3} {5.3.3.5}
{5.3.3.5}

Nla1

The honeycombsin the same column have the same 2-facesas well; in addition, in each
of the two columns of four, the first two honeycombs have the same 3-faces, as have the
last two.

To determine the groups of these honeycombs, it will be convenient to base our
analysis on {3, 3,5, 3} instead. Our next step therefore is to find presentations of the
groups of certain of the other honeycombs, which are equivalent to {%’.3, 3,5} ~
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{5, 3,3,5|3}. The notation of (2.3) which we introduced in Section 2 will prove usful
here.

THEOREM 6.3. The following isomor phisms are equivalent:
(@) {2.3.3.5} ~{5,3,3,5|3};

(b) {2.3.5.2} ~ {5.3,5.5}/(((012321)%, (2343)%));

() {3.5.3.5} ~ {5.5.5.5}/(((0121)%, (1232)3, (2343)*)).
(d) {3.2.5.3} =~ {3.5,5,3}/({(1232)%));

ProOOF. Before we start the details of the proof, let us observe the advantage of our
notation over the standard one for universal polytopes. Theorem (6.3)(c) is equivalent to

{5.5.5.5) {{{5,5|3}. {5.5/3}}. {{5.5/3}. {5.5|3}}}.

while Theorem (6.3)(d) is equivalent to

{3.2,53) ~ {{{3. 5}, {5.5|3}}. {{5.5/3}. {5, 3}}}.

which is nearly as bad. These expressions are clumsy and difficult immediately to
comprehend. (Of course, we deliberately chose the worst two examples, although (b) is
not much better.)

What we must do is trace the operations which yield the group generators for one
of these honeycombs in terms of another, and the corresponding presentations. (For
practical reasons, we work with the groups, since we are employing mixing operations.)
The only case which involves anything going beyond what we did in Section 4 is
{3. 2.5, 3}—naturally, since this is the one in which we are most interested.

Let ustreat first the easier cases of the equivalence of (a), (b) and (c). We havealready
seen the appropriate operations; they are those in the proof of Theorem (4.1), with the
indicesincreased by 1, and a new generator pg which remains unchanged. In each case,
we begin with (a).

(b) Theoperation hereis

(o, p1 P2, p3+ pa) — (pos p1, P25 P3P4P3: p4) = (00, 01, 02, 03, 04).
Itisinverted by
(00, 01, 02, 03, 04) +— (00, 01, 02, 0304030403, 04) = (0, P1, P25 P35 P4)-

The verification of the equivalence largely follows Theorem (4.1)(a). Indeed, we may
just add 1 to the appropriate indices, for the relations which do not involve pg = oo.
Moreover, p; = oj forj = 1.2 also.

The only relation not so far explored is that for the deep hole. Here, we have

PoP1P2P3P4P3P2P1 = 0001020302071 .
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Thus the deep hole in the facet of {5, 3.5,5}/(((012321)3, (2343)%)) is equivalent to
that of {5.3,3,5|3}.
(c) Now the operationis
(po: p1. P2, p3. pa) F— (po. p1. P2p3pap3p2, pa, p3) =: (00, 01, 02, 03, 04).

Itsinverseis
(00. 01. 02,03, 04) +— (00, 01, 04030203020304. 04, 03) = (po, 1, P2. P3- P4)-

Again, the equivalence of the various relations which do not involve pg = o¢ follow as
in Theorem (4.1)(b). We also have p1 = o1, and so once again we are left with the deep
holerelation. Finaly, then,

POPLP2P3P4P3P2PL = 0001 * 04030203020304 * 040304 - 04030203020304 * 01

= 0001040302030203020302030401

000104020401
~ 00010207,
which is the hole relation for the 3-face of {5,5. 5.5} /(((0121)3, (1232)3, (2343)3)).

(d) For the equivalence of (&) and (d), we actually have the same operation on
(p1,-- -, pa) 8sin case (b), except that we must then follow it by duality, and conjugate

to make the initial vertex of the new vertex-figure the same as that of the original. The
intermediate operation (case (b) followed by duality) gives

(P15 P2, 03 pa) ¥ (pas p3pap3, p2, p1) = (11,72, T3, 74).
Conjugating these elements; by p3p2p1 andadjoining pg = oo finally givesthe operation

(0. p1, P2, p3. pa) F— (po. P1P2P3P4P3P2P1, Pas P3: p2) =: (00, 01, 02, 03, 04).

(We could have produced the operation like arabbit out of ahat, but this approach seems
more instructive.)
Theinverse operation is now

(00, 01. 02,03, 04) — (00, 040302010201020304, 04, 03,02) = (po, p1. 2. P3. P4)-

The equivalence between the relations for (oo, . ... 04) and those for (po. ..., p4)
is easily checked. Note that (coo1)® = ¢ is equivalent to the deep hole relation for
{pos-- - p4). Further, observethat o102 ~ (p3pa)? = (0302)?, reflecting the change from
5to 2 in the Schi&fli symbol. .

Now we must return to {3, 3,3, 5}.

LEMMA 6.4. Themixing operation on the group [5. 3,3, 5] = (po. . . - , pa) given by

yields the group

&
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PrOOF. Geometrically, thisis clear; we are taking the cut
3
5.5 c {5,3,3,5}
determined by the central section

{2} C {3.3.,5},

which lies in the mirror p4. To see what is happening algebraically, we begin by noting
that we can write o3 in the form

03 = (020304)5 * P2P4,

the first term being the central involution in the group {p2, p3, p4) = [3,5], so that,
first, the order of the elements p,, p3 and p4 in the bracket is immaterial, and, second,
p; = (p2p3pa)® for j = 2, 3,4, where as before we use “=" to mean “commutes with”.
(Of course, we also have py = p4.)

The subgroup of the statement of the lemmais that with diagram

2

3

As before, the label “j” against a node denotes the involution oj. It is straightforward
to verify that (oo, 01, 02, 03) satisfies most of the implied relations; indeed, only those
involving o3 need to be checked. First, o3 isaninvolution, from the above remarks about
it. Second, o3 = 0o = po, SiNCE03 € (P2, p3, pa). NexXt, o3 = o, again an easy deduction
from the remarks. Finally, freely using pi = pj if |i —j| > 1 and pj_1pjpj—1 = pjpj-10;
forj =2, 3, wehave

0103 = P10304P203P204P3P40203020403
~ P1pP3P2P3P4P304030203
~ P1P204P3P4P3P4P2
~ P1P2p3P4P302
~ P3p4,
asin Lemma (3.2). Observe that we had to use (p3p4)® = ¢ in the course of the proof. =
We now wish to consider the effect of imposing hole relations.

LEMMA 6.5. Inthe subgroup (oo, 01, 02, 03) < {po, - - -, p4) of Lemma (6.4),

00010301 ~ PoP1P2P3P4P30201-
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ProoF. We have

00010301 = P0P1P3P4020302P40304020302040301
™~ PoP1P2P3P2P4P3P402P30201

P0P1P3P203P4P3P4P3P20301

~ P0P1P2P4P3P4P3P4P201

~ P0P1P203PAP3P201;

asrequired. Again, we have used (p3p4)® = ¢ in the course of the proof. ]
From Lemma (6.5), it follows that the effect of imposing the relation (coo10301)° =

e on the subgroup (oo, .... 03), is that of imposing (pop1p2p3pap3p2p1)® = € on

{po. - - -, pa). Inturn, the effect on the corresponding apeirotopesis to obtain the cut

[gg} c {3.3.3,5}.
with which we began this discussion. It should be observed that our choicesof generating
reflexions of thetwo groupsare such that the cut is given by the section by the hyperplane
{(€1.....€4) €E*| &4 = 0}, with the last coordinate then dropped.

However, it isimportant to recall Theorem (5.5), which says that the group of the cut
is not obtained merely by imposing the given relation; in other words, the cut

{52} c {5.3.3,5)

is not universal with respect to the relation (coo10301)° = .
Thediscussionis now completed by proving Theorem (6.3)(d), namely

THEOREM 6.6. {3,2.5.3} =~ {3.5.5,3}/(((1232)%)).

PrROOF. We already know from Lemma (6.1) and Theorem (6.3) that {3, %’ 5,3}is
of typeQ :={3.5,5.3}/(((1232))) (that is, it isaquotient of thelatter). First, we have
{3.5.3} ~ {5,5.3}/(((0121)%)), and hence (with ashift of 1in theindices) the vertex-
figure of Q will have the same vertices and edges as {g. 5,3} (there is an ambiguity
about the 2-faces, sincethereisno combinatorial way of distinguishing between {g. 5,3}
and {5, %’ 3}). However, the central featureisthat the triangular holes determined by the
adjacency cycle (1232)3 (or by (p1p2p3p2)® = € inits group {po, . . . , p4)) are the same
for both polytopes.

We now come to the crux of the argument: every edge-circuit in the graph of
{3.2.5.3} can be built up from triangles, which are either 2-faces or holes in its
vertex-figure. In fact, we already noted that among the 120 verticesof {3, 3, 5} arethe 24
of {3, 4,3}, and actually its edgesare among those of {3, 5.3} =~ {5,5, 3} /(((0121)%)).
Thus the vertices and edges of the honeycomb {3,3.4,3} occur among those of
{3.2.5.3}. More specifically, of the four 2-faces of the initial 3-face {3.3}, those
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which contain the initial vertex o are faces of {3. 3,5, 3}, while the fourth is a hole of
the vertex-figure.

We saw in Lemma (6.2) that the vertex-set of {3.3.5.3} forms an additive set of
rank 8. From this, it follows that the basic edge-circuitsin the edge-graph of {3, g, 5,3}
are all obtained by concatenating those in triangles, or rhombs with angle 7/5, 7/3,
2 /5 or 7/ 2, these being the angles between diameters of {3, 2.5, 3}.

Now each of these rhombsis represented in the section

5

Thekey observation is that we already know from Theorem (5.5) what the group of the
sectionlookslike; itisjust obtained fromthat of Q by permuting po, p2 and ps cyclically.
More to the point, Lemma (5.2) tells us that rhombs of angle 7 /3 come from triangles,
while the other three kinds of rhomb are equivalent modulo triangles.

In view of this, the proof is easily completed. A rhomb of angle /2 is a diametral
square of a facet {3, 3,4} of the honeycomb {3, 3, 4, 3} whose vertices, edges and 2-
faces occur among those of {3, g ,5,3}. It is therefore formed by concatenating four
trianglesin adiametral octahedral section {3, 4} of {3, 3. 4}. "

7. Hyperbolichoneycombs. For completeness, we briefly discussthe discrete reg-
ular star-honeycombs in the hyperbolic spaces 13 and H*. A natural restriction is that
such honeycombs should have finite vertices; however, we should not insist that the
facets also be finite.

If the vertex-figure of a regular hyperbolic honeycomb is a star-polytope (in which
case it belongs to one of the families of 3- or 4-polytopes considered in Section 4),
then we may apply the process of vertex-figure replacement of [5] in exactly the same
way, to obtain a new regular honeycomb whose vertex-figures are convex. Indeed, the
only difference in the proof isthat now the Schiafli determinant (which is negative) will
increase strictly.

With asuitable regular honeycomb as starting point, the process can also be reversed;
a convex regular vertex-figure is replaced by any regular star-polytope with the same
vertices. Moreover, if the replacement has the same edges as the original vertex-figure,
then the new regular honeycomb will have the same vertices, edges and 2-faces as the
starting honeycomb. Where the argument departs from that of [5] is that the new facets
may not be finite, and so we cannot dualize and repeat the process.

Indeed, this last is the only procedure which will actually yield any new regular
honeycombs. If the new vertex-figure does not have the same edges as the old one, then
in most instances, the new honeycomb will have apeirogonal (infinite) 2-faces. Except
for a couple of examplesfor illustration, we shall ignore such cases.

In 13, we can begin to apply the process of vertex-figure replacement to { p, 3, 5} for
p = 4.5.6. Weobtain {p.5.3} =~ {{p.5}.{5.5|3}} = {p.5.5}/(((1232)*)), which
isuniversal of itstype, with auniversal facet. The proof of this assertion exactly follows

https://doi.org/10.4153/CJM-1998-023-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-023-7

THE GROUPS OF THE REGULAR STAR-POLY TOPES 447

that of Theorem (4.1)(a), which neverinvolved po. However, if wego further, and attempt
to replace {3.5} by {3.5} or {3.3}, then we obtain apeirogonal 2-faces. Indeed, the
mixing operations which yield these apeirotopes are just asin Theorem (4.1)(b,c). They
show that the facets are of type {co, 5| p} for {cc. 3, 5}. For the other case, the same
discussion will show that the resulting relation again gives a deep hole corresponding
to the original 2-face, so that the apeirotope is {00, 3,5|p}. (Note that the argument
never mentioned the period of ogo1; by the way, this indicates that the first entry “5” in
{5, 3,5| 3} isredundant!)

The only other possible example in H3 to which we might attempt to apply vertex-
figure replacement is {3, 5, 3}. Comparison with the discussion of Theorem (6.3)(d)
shows that, once again, the deep hole determines the apeirotope, and we obtain
{o0. 3.3} =~ {00,5.3|3}.

We now move on to H*, where there are many more examples. Here, we start with
{p.3.3.5} for p = 3,4,5. Wefirst obtain { p,3,5.2}, { p.5. 3.5} and { p, 5. 3, 3}, all
of whose group presentations are determined purely by the vertex-figures. For p = 4
or 5, the facets are always infinite; {p, 3,5} is the universal hyperbolic honeycomb,
and {p.5. 3} = {p.5.5}/({(1232))) asin the examples in H>. In addition, the facet
of {3,5,3,2} ~ {3.5.3.5}/(((123432)*)) is the universal hyperbolic honeycomb
{3,5,3}.

Except when p = 3, if we replace the vertex-figure {3, 3,5} by any of the other
six regular star-polytopes with the same vertices, then the resulting apeirotopes have
apeirogonal 2-faces; we shall therefore not consider them further. When p = 3, replacing
{3.3.5} by {3.5.3} gives {5.2.5.3}, the dual of {3.5,2.5}, and replacing it by
{5. 2.3} (with the same edges as {3, 5, 3}) gives an apeirotope {5, 5, 3. 3}, with facets
of type {5.5,5}/(((1232)%)). Employing any of the other four polytopes with the same
verticesas {3, 3,5} gives apeirogonal 2-faces.

Only in case p = 3 do we get apeirotopes with finite facets, where we can dualize,
and try to interate vertex-figure replacement; these are {3, 3.5, 2} and {3.5. 3. 5}. In
{3.5.3,3}, wemay only replace the vertex-figure by {3, 3. 3}, and the 2-faces become
infinite. In {5, g, 5, 3}, the vertex-figure can be replaced by any of the other nineregular
star-polytopes with the same vertices as {3, 3,5}; however, we have just seen that
this polytope is already obtainable directly from {3, 3, 3,5}, and so this family is now
complete.

Since there are no more regular honeycombsin H* to which the method of replacing
vertex-figures can be applied, this completes the discussion.
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