
Mathematical Structures in Computer Science (2024), 34, pp. 128–146
doi:10.1017/S0960129523000373

PAPER

Learning quantum finite automata with queries
Daowen Qiu1,2

1Institute of Quantum Computing and Computer Theory, School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou 510006, China and 2The Guangdong Key Laboratory of Information Security
Technology, Sun Yat-sen University, Guangzhou 510006, China
Email: issqdw@mail.sysu.edu.cn

(Received 28 December 2021; revised 8 August 2023; accepted 28 October 2023; first published online 30 November 2023)

Abstract
Learning finite automata (termed as model learning) has become an important field in machine learning
and has been useful realistic applications. Quantum finite automata (QFA) are simple models of quantum
computers with finite memory. Due to their simplicity, QFA have well physical realizability, but one-way
QFA still have essential advantages over classical finite automata with regard to state complexity (two-
way QFA are more powerful than classical finite automata in computation ability as well). As a different
problem in quantum learning theory and quantummachine learning, in this paper, our purpose is to initiate
the study of learning QFA with queries (naturally it may be termed as quantum model learning), and the
main results are regarding learning two basic one-way QFA (1QFA): (1) we propose a learning algorithm
for measure-once 1QFA (MO-1QFA) with query complexity of polynomial time and (2) we propose a
learning algorithm for measure-many 1QFA (MM-1QFA) with query complexity of polynomial time, as
well.

Keywords: quantum computing; quantum finite automata; learning from queries; quantum model learning; SD oracles

1. Introduction
Learning finite automata has become an important field inmachine learning (Kearns andVazirani,
1994) and has been applied to wide-ranging realistic problems (Higuera, 2005; Vaandrager, 2017),
for example, smartcards, network protocols, legacy software, robotics and control systems, pattern
recognition, computational linguistics, computational biology, data compression, data mining,
etc. In Vaandrager (2017), learning finite automata is termed as model learning. In fact, model
learning and model checking as well as and model-based testing have intrinsic connections (see
the pioneering contribution of Peled et al. (2002) and Higuera (2010)).

Learning finite automata was first considered by Moore (1956) and an exponential-time query
algorithmwas proposed. In particular, Angluin (1987) proposed the so-calledmembership queries
(MQ) and equivalence queries (EQ), a ground-breaking method for learning the models of finite
automata. For learning deterministic finite automata (DFA), according to Angluin’s algorithm, the
learner initially only knows the inputs (i.e. alphabet) of the model to be learned (sayM), and the
aim of the learner is to learn the model by means of two types of queries, that is, MQ and EQ.
MQ means that the learner asks what the result (accepting or rejecting) of output is in response
to an input sequence, and the oracle answers with accepting or rejecting, while EQ signifies the
learner whether a hypothesized machine model (say H) is the same as the learned machine, and
the oracle answers yes if this is the case. Otherwise “no” is replied and an input string is provided
as a counterexample to distinguishH andM.

© The Author(s), 2023. Published by Cambridge University Press.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373
https://orcid.org/0000-0003-1275-7599
mailto:issqdw@mail.sysu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129523000373&domain=pdf
https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 129

The complexity of queries of Angluin’s algorithm (Angluin, 1987) is polynomial for learning
DFA andMealy machines. Angluin (1988) proved that DFA cannot be learned in polynomial time
by MQ (or EQ) only. Since Angluin’s algorithm was proposed by Angluin (1987), learning other
models of finite automata has been investigated. Tzeng (1992) studied learning probabilistic finite
automata (PFA) and Markov chains via SD oracle, where SD oracle can answer state distribution,
i.e., probability distribution of states for each input string, so it is more powerful than MQ. For
learning DFA via SD oracle, a state is replied for each input string, and the query complexity of
learning DFA via SD oracle is polynomial (Tzeng, 1992).

Then Bergadano and Varricchio (1996) used MQ and EQ to learn appropriately PFA, and a
probably approximately correct learning algorithm (i.e. PAC algorithm) was presented. Learning
nondeterministic finite automata (NFA) was studied by Bollig (2009). In recent years, Angluin et al.
(2015) initiated the research of learning alternating automata, and Berndt et al. (2017) further
solved the learning problem of residual alternating automata.

A natural inquiry is that SD oracle seems too strong. However, it was showed by Tzeng (1992)
that SD oracle is actually not too strong for learning DFA and PFA if the query complexity is
required to be polynomial, because learning a consistency problem related to DFA and PFA via SD
oracle is still NP-complete (Tzeng, 1992). In this paper, we use an AD oracle for learning quantum
finite automata (QFA) in polynomial time, that is, AD oracle can answer a state of superposition
for each input string, i.e., amplitude distribution of states. Similarly it follows that using AD oracle
to learn a consistency problem related to reversible finite automata (RFA) and MO-1QFA is NP-
complete.

Quantum machine learning (QML) was early considered by Bshouty and Jackson (1999) with
learning from quantum examples, and then quantum learning theory (Arunachalam and deWolf,
2017) as an important theoretical subject of QML has been deeply developed. Quantum learning
theory (Arunachalam and de Wolf, 2017) includes models of quantum exact learning, quantum
PAC learning, and quantum agnostic learning; these models are combinations of corresponding
classical learning models with quantum computing (in a way, quantum query algorithms). We
further review quantum learning theory and QML more specifically.

We first recall quantum learning theory, which studies the theoretical aspects of QML. As
pointed out above, Bshouty and Jackson (1999) showed that all PAC-learnable function classes
are learnable in the quantum models, and notably, Servedio and Gortler (2004) studied quan-
tum versions of Angluin’s model of exact learning from MQ and Valiant’s PAC model of learning
from random examples. Then, Aaronson (2007) investigated learning quantum states, and Zhang
(2010) further investigated the quantum PAC learning model. Gavinsky (2012) initialed a new
quantum learning model called predictive quantum, which is the quantum analogue of PAC, and
afterwards, Belovs (2015) investigated the junta learning problem by designing quantum algo-
rithms. Quantum deep learning was studied by Wiebe (2016), and Cheng et al. (2016) provided a
framework to analyze learning matrices in the Schatten class. A detailed survey concerning quan-
tum learning theory was presented by Arunachalam and de Wolf (2017), and Arunachalam and
de Wolf (2018) further showed that classical and quantum sample complexities are equal up to
constant factors for every concept class.

Now we simply recall the development of quantum machine learning (QML). Harrow et al.
(2009) proposed a quantum algorithm for solving systems of linear equations, which may be
thought of the start of studying quantum machine learning. Then, Wiebe (2012) proposed a
quantum linear regression algorithm by virtue of HHL algorithm. Lloyd et al. (2014) proposed
a quantum version of principal component analysis dimension reduction algorithm. Also, quan-
tummatrix inversion was employed in a supervised discriminative learning algorithm (Rebentrost
et al., 2014). Schuld et al. (2015) presented a comprehensive perspective on quantum machine
learning, and Cong and Duan (2016) proposed a quantum data dimension reduction algorithm.
Biamonte et al. (2017) focused on utilizing a quantum computer to analyze classical or quan-
tum data encoded as quantum states, and Kerenidis and Prakash (2017) proposed a quantum

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

130 D. Qiu

algorithm for recommendation systems. Lloyd and Weedbrook (2018) changed a classical gen-
erative adversarial network to obtain a quantum generative adversarial network, and Mitarai
et al. (2018) constructed a quantum neural network model. Zhao et al. (2019) designed quantum
Bayesian neural networks, and Benedetti (2019) provided an overview of these models’ compo-
nents and investigated their application. Recently, an application of machine learning techniques
to quantum devices was found by Marquardt (2021). Huang et al. (2022) confirmed that QML
can more effectively learn the operating rules of the physical world than any classical machine
learning method, and then, prediction of the evolution of quantum systems has been achieved
successfully in Rodriguez et al. (2022). More recently, Meyer et al. (2023) explored how sym-
metries in learning problems can be exploited to create quantum learning models, and Krenn
et al. (2023) discussed the application of machine learning and artificial intelligence in analyzing
quantum measurements.

However, learning QFA is still a pending problem to be studied, and this is the main goal of
this paper. QFA can be thought of as a theoretical model of quantum computers in which the
memory is finite and described by a finite-dimensional state space (Ambainis and Yakaryilmaz,
2021; Bhatia and Kumar, 2019; Gruska, 1999; Qiu et al., 2012). An excellent and comprehensive
survey on QFA was presented by Ambainis and Yakaryilmaz (2021). Moreover, QFA have been
studied significantly in physical experiment (Mereghetti et al., 2020; Plachta et al., 2022; Tian,
2019).

One-way QFA (1QFA) were firstly proposed and studied by Moore and Crutchfield (2000),
Kondacs and Watrous (1997), and then Ambainis and Freivalds (1998), Brodsky and Pippenger
(2002), and other authors (e.g., the references in Ambainis and Yakaryilmaz (2021), Qiu et al.
(2012), and Bhatia and Kumar (2019)), where “1” means “one-way,” that is, the tape-head moves
only from the left side to the right side. The decision problems regarding the equivalence of 1QFA
and the minimization of states of 1QFA have been studied in Qiu et al. (2012), Mateus (2012), Qiu
et al. (2011), and Li and Qiu (2006, 2008).

More specifically, measure-once one-way QFA (MO-1QFA) were initiated by Moore and
Crutchfield (2000) and measure-many one-way QFA (MM-1QFA) were studied first by Kondacs
andWatrous (1997). In MO-1QFA, there is only a measurement for computing each input string,
performing after reading the last symbol; in contrast, in MM-1QFA, measurement is performed
after reading each symbol, instead of only the last symbol. Then other 1QFA were also proposed
and studied by Ambainis et al., Nayak, Hirvensalo, Yakaryilmaz and Say, Paschen, Ciamarra,
Bertoni et al., Qiu and Mateus et al. as well other authors (e.g., the references in Ambainis and
Yakaryilmaz (2021)), including: Latvian QFA (Ambainis et al., 2006), QFA with control language
(Bertoni et al., 2003), 1QFA with ancilla qubits (1QFA-A) (Paschen, 2000), one-way quantum
finite automata together with classical states (1QFAC) (Qiu et al., 2015), and other 1QFA such as
Nayak-1QFA (Na-1QFA), General-1QFA (G-1QFA), and fully 1QFA (Ci-1QFA), where G-1QFA,
1QFA-A, Ci-1QFA, 1QFA-CL, and 1QFAC can recognize all regular languages with bounded error.
For more details, we can refer to Ambainis and Yakaryilmaz (2021), Qiu et al. (2012), and Bhatia
and Kumar (2019).

MO-1QFA have advantages over crisp finite automata in state complexity for recognizing
some languages (Bhatia and Kumar, 2019; Qiu et al., 2012). Mereghetti et al. (2020) realized
an MO-1QFA with optic implementation and the state complexity of this MO-1QFA has expo-
nential advantages over DFA and NFA as well as PFA (Paz, 1971). MM-1QFA have stronger
computing power than MO-1QFA (Brodsky and Pippenger, 2002), but both MO-1QFA andMM-
1QFA accept with bounded error only proper subsets of regular languages. Indeed, Brodsky and
Pippenger (2002) proved that the languages accepted byMO-1QFAwith bounded error are exactly
reversible languages that are accepted by RFA. RFA have three different definitions and were
named as group automata, BM-reversible automata, and AF-reversible automata (see Qiu (2007)),
respectively. In particular, these three definitions were proved to be equivalent in Qiu (2007).

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 131

The remainder of this paper is organized as follows. In Section 2, in the interest of readability,
we first introduce basics in quantum computing, then one-way QFA are recalled and we focus on
reviewing MO-1QFA and MM-1QFA. The main contributions are in Sections 3 and 4. In Section
3, we first show the appropriate oracle to be used, that is,AA is not strong enough for learning RFA
and MO-1QFA with polynomial time, and a more powerful oracle (named as AD oracle) is thus
employed. With AD oracle, we design an algorithm for learningMO-1QFA with polynomial time,
and the correctness and complexity of algorithm are proved and analyzed in detail. Afterwards,
in Section 4 we continue to design an algorithm for learning MM-1QFA with polynomial time.
Finally, the main results are summarized in Section 5, and further problems are mentioned for
studying.

2. Preliminaries on Quantum Computing and QFA
For the sake of readability, in this section we outline basic notations and principles in quan-
tum computing and review the definitions of MO-1QFA, MM-1QFA, and RFA. For more details,
we can refer to Nielsen and Chuang (2000) and Qiu et al. (2012), Say and Yakaryılmaz (2014),
Ambainis and Yakaryilmaz (2021), and Bhatia and Kumar (2019).

2.1 Basics in quantum computing
Let C denote the set of all complex numbers, R the set of all real numbers, and C

n×m the set
of n×m matrices having entries in C. Given two matrices A ∈Cn×m and B ∈Cp×q, their tensor
product is the np×mqmatrix, defined as

A⊗ B=

⎡
⎢⎢⎣
A11B . . . A1mB
...

. . .
...

An1B . . . AnmB

⎤
⎥⎥⎦ .

(A⊗ B)(C⊗D)=AC⊗ BD holds if the multiplication of matrices is satisfied.
If MM† =M†M= I, then matrix M ∈Cn×n is unitary, where † denotes conjugate-transpose

operation. M is said to be Hermitian if M=M†. For n-dimensional row vector x= (x1, . . . , xn),
its norm ||x|| is defined as ||x|| = (∑n

i=1 xix∗i
) 1
2 , where symbol ∗ denotes conjugate operation.

Unitary operations preserve the norm, i.e., ||xM|| = ||x|| for each x ∈C1×n and any unitary matrix
M ∈Cn×n.

According to the basic principles of quantum mechanics (Nielsen and Chuang, 2000), a state
of quantum system can be described by a unit vector in a Hilbert space. More specifically, let
B= {q1, . . . , qn} associated with a quantum system denote a basic state set, where every basic state
qi can be represented by an n-dimensional row vector 〈qi| = (0 . . . 1 . . . 0) having only 1 at the ith
entry (where 〈·| is Dirac notation, i.e., bra-ket notation). At any time, the state of this system is a
superposition of these basic states and can be represented by a row vector 〈φ| =∑n

i=1 ci〈qi| with
ci ∈C and

∑n
i=1 |ci|2 = 1; |φ〉 represents the conjugate-transpose of 〈φ|. So, the quantum system

is described by Hilbert space HQ spanned by the base {|qi〉 : i= 1, 2, . . . , n}, i.e. HQ = span{|qi〉 :
i= 1, 2, . . . , n}.

The state evolution of quantum system complies with unitarity. Suppose the current state of
system is |φ〉. If it is acted on by some unitary matrix (or unitary operator)M1, then |φ〉 is changed
to the new current stateM1|φ〉; if the second unitarymatrix, sayM2, is acted onM1|φ〉, thenM1|φ〉
is changed to M2M1|φ〉. So, after a series of unitary matrices M1,M2, . . . ,Mk are performed in
sequence, the system’s state becomesMkMk−1 · · ·M1|φ〉.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

132 D. Qiu

To get some information from the quantum system, we need to make a measurement on its
current state. Here we consider projective measurement (i.e. von Neumann measurement). A pro-
jective measurement is described by an observable that is a Hermitian matrix O= c1P1 + · · · +
csPs, where ci is its eigenvalue and, Pi is the projector onto the eigenspace corresponding to ci.
In this case, the projective measurement of O has result set {ci} and projector set {Pi}. For exam-
ple, given state |ψ〉 is made by the measurement O, then the probability of obtaining result ci is
‖Pi|ψ〉‖2 and the state |ψ〉 collapses to Pi|ψ〉

‖Pi|ψ〉‖ .

2.2 Review of one-way QFA and RFA
For non-empty set �, by �∗ we mean the set of all finite length strings over �, and �n denotes
the set of all strings over � with length n. For u ∈�∗, |u| is the length of u; for example, if u=
x1x2 . . . xm ∈�∗ where xi ∈�, then |u| =m. For set S, |S| denotes the cardinality of S.

2.2.1 MO-1QFA
We recall the definition of MO-1QFA. An MO-1QFA with n states and input alphabet � is a
five-tuple

M= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr) (1)

where

• Q= {|q1〉, . . . , |qn〉} consist of an orthonormal base that spans a Hilbert space HQ (|qi〉 is
identified with a column vector with the ith entry 1 and the others 0); at any time, the state
ofM is a superposition of these basic states;

• |ψ0〉 ∈H is the initial state;
• for any σ ∈�, U(σ) ∈Cn×n is a unitary matrix;
• Qa,Qr ⊆Q with Qa ∪Qr =Q and Qa ∩Qr =∅ are the accepting and rejecting states,
respectively, and it describes an observable by using the projectors P(a)=∑

|qi〉∈Qa |qi〉〈qi|
and P(r)=∑

|qi〉∈Qr |qi〉〈qi|, with the result set {a, r} of which “a” and “r” denote “accepting”
and “rejecting”, respectively. Here Q consists of accepting and rejecting sets.

Given an MO-1QFA M and an input word s= x1 . . . xn ∈�∗, then starting from |ψ0〉,
U(x1), . . . ,U(xn) are applied in succession, and at the end of the word, ameasurement {P(a), P(r)}
is performed with the result that M collapses into accepting states or rejecting states with
corresponding probability. Hence, the probability LM(x1 . . . xn) ofM accepting w is defined as:

LM(x1 . . . xn)= ‖P(a)Us|ψ0〉‖2 (2)

where we denote Us =UxnUxn−1 · · ·Ux1 .

2.2.2 RFA
Now we recollect RFA. As mentioned above, there are three equivalent definitions for RFA (Qiu,
2007), that is, group automata, BM-reversible automata, and AF-reversible automata. Here we
describe group automata. First we review DFA. A DFA G= (S, s0,�, δ, Sa), where S is a finite state
set, s0 ∈ S is its initial state, Sa ⊆ S is its accepting state set, � is an input alphabet, and δ is a
transformation function, i.e., a mapping δ : S×�→ S.

An RFA (group automaton) G= (S, s0,�, δ, Sa) is DFA and satisfies that for any q ∈ S and any
σ ∈�, there is unique p ∈ S such that δ(p, σ)= q.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 133

The languages accepted by MO-1QFA with bounded error are exactly the languages accepted
by RFA (Brodsky and Pippenger, 2002). In fact, RFA are the special cases of MO-1QFA, and this
is showed by the following proposition.

Proposition 1. (1) For any MO-1QFA M= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr) with |ψ0〉 ∈Q, if all
entries in U(σ) for each σ ∈� are either 0 or 1, then M is actually a group automaton. (2) If
G= (S, s0,�, δ, Sa) is a group automaton, then G is actually an MO-1QFA.

Proof. (1) Suppose the base states Q= {|qi〉 : i= 1, 2, . . . , n}, where |qi〉 is an n-dimensional col-
umn vector with the ith entry 1 and the others 0. Let |ψ0〉 = |qi0〉 for some i0 ∈ {1, 2, . . . , n}. It is
clear that U(σ) (for each σ ∈�) is a permutation matrix and therefore U(σ) is also a bijective
mapping from Q to Q. So,M is a group automaton.

(2) IfG= (S, s0,�, δ, Sa) is a group automaton with |S| = n, then we denote S= {q1, q2, . . . , qn}
and s0 is some qi ∈ S. According to the definition of group automata, for each σ ∈�, δ(·, σ) is a
bijective mapping from S to S. So, we can identify qi with an n-dimensional column vector with
the ith entry 1 and the others 0. Then for each σ ∈�, δ(·, σ) induces a unitary matrixU(σ) acting
on the n-dimensional Hilbert space spanned by the base states S. Finally, Sa ⊆ S and Sr = S \ Sa
are accepting and rejecting sets of states, respectively. As a result, G is actually equivalent to an
MO-1QFA.

2.2.3 MM-1QFA
We review the definition of MM-1QFA. Formally, given an input alphabet � and an end-
maker $ /∈�, an MM-QFA with n states over the working alphabet � =� ∪ {$} is a six-tuple
M= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr ,Qg), where

• Q, |ψ0〉, andU(σ) (σ ∈ �) are defined as in the case of MO-1QFA;Qa,Qr ,Qg are disjoint to
each other and represent the accepting, rejecting, and going states, respectively.

• The measurement is described by the projectors P(a), P(r), and P(g), with the results
in {a, r, g} of which “a,” “r,” and “g” denote “accepting,” “rejecting,” and “going on,”
respectively.

Any input word w to MM-1QFA is in the form: w ∈�∗$, with symbol $ denoting the end of a
word. Given an input word x1 . . . xn$ where x1 . . . xn ∈�n, MM-1QFAM performs the following
computation:

1. Starting from |ψ0〉, U(x1) is applied, and then we get a new state |φ1〉 =U(x1)|ψ0〉. In
succession, a measurement of O is performed on |φ1〉, and then the measurement result
i (i ∈ {a, g, r}) is yielded as well as a new state |φi1〉 = P(i)|φ1〉√

pi1
is obtained, with corresponding

probability pi1 = ||P(i)|φ1〉||2.
2. In the above step, if |φg1〉 is obtained, then starting from |φg1〉, U(x2) is applied and a

measurement {P(a), P(r), P(g)} is performed. The evolution rule is the same as the above
step.

3. The process continues as far as the measurement result “g” is yielded. As soon as the
measurement result is “a” (“r”), the computation halts and the input word is accepted
(rejected).

Thus, the probability LM(x1 . . . xn) ofM accepting w is defined as:

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

134 D. Qiu

LM(x1 . . . xn) (3)

=
n+1∑
k=1
||P(a)U(xk)

k−1∏
i=1

(
P(g)U(xi)

)|ψ0〉||2, (4)

or equivalently,

LM(x1 . . . xn) (5)

=
n∑

k=0
||P(a)U(xk+1)

k∏
i=1

(
P(g)U(xi)

)|ψ0〉||2, (6)

where, for simplicity, we can denote $ by xn+1 if no confusion results.

3. Learning MO-1QFA
First we recall a definition concerning model learning with an oracle in polynomial time.

Definition 1. (Tzeng, 1992) Let R be a class to be learned and OR be an oracle for R. Then R
is said to be polynomially learnable using the oracle OR if there is a learning algorithm L and a
two-variable polynomial p such that for every target r ∈R of size n to be learned, L runs in time
p(n,m) at any point and outputs a hypothesis that is equivalent to r, where m is the maximum
length of data returned by OR so far in the run.

In order to learn a model with polynomial time via an oracle, we hope this oracle is as weaker as
possible. For learning MO-1QFA, suppose an oracle can only answer the amplitudes of accepting
states for each input string, then can we learn MO-1QFA successfully with polynomial time via
such an oracle? We name such an oracle as AA oracle. For clarifying this point, we try to use AA
oracle to learning DFA. In this case, AA oracle can answer if it is either an accepting state or a
rejecting state for each input string. Equivalently, AA oracle is exactly MQ for learning DFA as the
target model. Therefore, learning DFA via AA oracle is not polynomial by virtue of the following
Angluin’s result (Angluin, 1988).

Theorem 1. (Angluin, 1988) DFA are not polynomially learnable using the MQ oracle only.

In fact, in 2007 a stronger result was proved in Tîrnăucă and Knuutila (2007) that 0-reversible
automata (i.e., a 0-reversible automaton is defined as a RFA with only one accepting state
(Angluin, 1982)) are not learnable by using MQ only. That can be described by the following
theorem.

Theorem 2. (Tîrnăucă and Knuutila, 2007) Any RFA with only one accepting state is not learnable
by using MQ only.

Therefore, we have the following proposition.

Proposition 2. DFA and RFA as well as MO-1QFA are not learnable using AA oracle only.

Proof. Due to the above Theorem 2, we know that any RFA is not learnable by using MQ only.
Since RFA are special cases of DFA and MO-1QFA, we obtain that neither DFA nor MO-1QFA is
learnable by using MQ only.

For learning DFA and RFA, AA oracle is exactly equal to MQ oracle, so we conclude that DFA
and MO-1QFA are not learnable using AA oracle only.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 135

So, we consider a stronger oracle, named asAD oracle that can answer all amplitudes (instead of
the amplitudes of accepting states only) of the superposition state for each input string. For exam-
ple, for quantum state |ψ〉 =∑n

i=1 αi|qi〉 where
∑n

i=1 |αi|2 = 1, AA oracle can only answer the
amplitudes of accepting states in {|q1〉, |q2〉, . . . , |qn〉}, but AD oracle can answer the amplitudes
for all states in {|q1〉, |q2〉, . . . , |qn〉}. Using AD oracle, we can prove that MO-1QFA and MM-
1QFA are polynomially learnable. Therefore, for learning DFA or RFA, AD oracle can answer
a concrete state for each input string, where the concrete state is the output state of the target
automaton to be learned.

First we can easily prove that RFA are linearly learnable via AD oracle, and this is the following
proposition.

Proposition 3. Let RFA G= (S, s0,�, δ, Sa) be the target to be learned. Then G is linearly learnable
via using AD oracle with query complexity at most |S||�|.
Proof. First, AD oracle can answer the initial state s0 via inputting empty string. Then by taking
s0 as a vertex, we use pruning algorithm of decision tree to obtain all states in G while accepting
states are marked as well. It is easy to know that the query complexity is O(|S||�|).

Our main concern is whether AD oracle is too strong, that is to say, whether AD oracle pos-
sesses too much information for our learning tasks. To clarify this point partially, we employ a
consistency problem that, in a way, demonstrates AD oracle is really not too strong for our model
learning if the time complexity is polynomial. So, we first recall an outcome from Tzeng (1992).

Theorem 3. (Tzeng, 1992) For any alphabet � and finite set S= {q1, q2, . . . , qn}, the following
problem is NP-complete: Given a set D with D⊆�∗ × S, determine whether there is a DFA G=
(S1, s0,�, δ, Sa) such that for any (x, q) ∈D, δ(s0, x)= q, where p ∈ S1 if and only if (x, p) ∈D for
some x ∈�∗.

Remark 1. In above theorem, each element in D consists of a string in �∗ and a state in S, so D
can be identified with the information carried by AD oracle in order to learn a DFA. That is to say,
even if an AD oracle holds so much information like D contained in a DFA in this way, it is still
not easy (NP-complete) to learn a consistent DFA. To a certain extent, AD oracle is not too strong
to learn a DFA. Since constructing RFA is not easier than constructing DFA and RFA are special
MO-1QFA, we use AD oracle for learning MO-1QFA and MM-1QFA. However, we still do not
know what is the weakest oracle to learn MO-1QFA and MM-1QFA with polynomial-time query
complexity.

LetM= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr) be the target MO-1QFA to be learned, where, as the case
of learning PFA (Tzeng, 1992), the learner is supposed to have the information of Q,Qa,Qr , but
the other parameters are to be learned by mean of querying the oracle for achieving an equivalent
MO-1QFA (more concretely, for each σ ∈�, unitarymatrixV(σ) corresponding toU(σ) needs to
be determined, but it is possible that V(σ)
=U(σ)). For any x ∈�∗, AD(x) can answer an ampli-
tude distribution that is exactly equivalent to a state of superposition corresponding to the input
string x, more exactly, AD(x) can answer the same state as U(σk)U(σk−1) · · ·U(σ1)|ψ0〉 where
x= σ1σ2 · · · σk. From now on, we denote U(x)=U(σk)U(σk−1) · · ·U(σ1) for x= σ1σ2 · · · σk.

We outline the basic idea and method for designing the learning algorithm of MO-1QFA M.
First, the initial state can be learned fromAD oracle by querying empty string ε. Then by usingAD
oracle we continue to search for a base of the Hilbert space spanned by {v∗ =U(x)|ψ0〉 : x ∈�∗}.
This procedure will be terminated since the dimension of the space is at most |Q|. In fact, we can
prove this can be finished in polynomial time. Finally, by virtue of the learned base and solving
groups of linear equations we can conclude V(σ) for each σ ∈�. We prove these results in detail
following the algorithm and now present Algorithm 1 for learning MO-1QFA as follows.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

136 D. Qiu

Algorithm 1 Algorithm for learning MO-1QFAM= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr)
1: |ψ∗0 〉←AD(ε);
2: Set B to be the empty set;
3: Set Nod←{node(ε)};
4: while Nod is not empty do
5: begin Take an element node(x) from Nod;
6: v∗(x)←AD(x);
7: if v∗(x) /∈ span(B) then
8: begin Add node(xσ) to Nod for all σ ∈�;
9: B← B ∪ {v∗(x)} end;
10: end if
11: end while
12: end;
13: Let V(σ)= [xij(σ)] for any σ ∈�, 1≤ i, j≤ n;
14: Define a linear system:
15: for any v∗(x) ∈ B and any σ ∈�, V(σ)v∗(x)= v∗(xσ)=AD(xσ),
16: for 1≤ i1, i2 ≤ n, if i1
= i2, then

∑n
j=1 xi1j(σ)xi2j(σ)= 0; otherwise, it is 1,

17: Find a suitable solution for xij(σ)’s,
18: if there is a solution then
19: returnM∗ = (Q, |ψ∗0 〉, {V(σ)}σ∈� ,Qa,Qr)
20: else
21: return (not exist);
22: end if

Next we prove the correctness of Algorithm 1 and then analyze its complexity. First we prove
that Step 1 to Step 12 in Algorithm 1 can produce a set of vectors B consisting of a base of space
spanned by {v∗(x)|x ∈�∗}, where v∗(x)=AD(x) is actually the vector replied by oracle AD for
input string x, that is, v∗(x)=AD(x)=U(σk)U(σk−1) . . .U(σ1)|ψ0〉, for x= σ1σ2 . . . σk.
Proposition 4. In Algorithm 1 for learning MO-1QFA, the final set of vectors B consists of a base
of Hilbert space span{v∗(x)|x ∈�∗} that is spanned by {v∗(x)|x ∈�∗}.
Proof. From the algorithm procedure we can assume that B= {v∗(x1), v∗(x2), . . . , v∗(xm)} for
some m, where it is clear that some xi equals to ε, and for any x ∈�∗, there are xj and y ∈�∗
such that x= xjy. The rest is to show that v∗(x) can be linearly represented by the vectors in
B for any x ∈�∗. Let x= xjy for some xj and y ∈�∗. By induction on the length |y| of y. If
|y| = 0, i.e., y= ε, then it is clear for x= xj. If |y| = 1, then due to the procedure of algorithm,
v∗(xjy) is linearly dependent on B. Suppose that it holds for |y| = k≥ 0. Then we need to ver-
ify it holds for |y| = k+ 1. Denote y= zσ with |z| = k. Then with induction hypothesis we have
v∗(xjz)=∑

k ckv∗(xk). Therefore, we have

v∗(x)= v∗(xjzσ)
=U(σ)v∗(xjz)

=U(σ)
∑
k

ckv∗(xk)

=
∑
k

ckv∗(xkσ). (7)

Since v∗(xkσ) is linearly dependent on B for k= 1, 2, . . . ,m, the proof is completed.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 137

The purpose of Algorithm 1 is to learn the target MO-1QFA M=
(Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr), so we need to verify M∗ = (Q, |ψ∗0 〉, {V(σ)}σ∈� ,Qa,Qr) obtained
is equivalent to M. For this, it suffices to check V(x)|ψ∗0 〉 =U(x)|ψ0〉 for any x ∈�∗, where
V(x)=V(σs)V(σs−1) . . .V(σ1) and U(x)=U(σs)U(σs−1) . . .U(σ1) for x= σ1σ2 . . . σs.
Theorem 4. In Algorithm 1 for learning MO-1QFA, for any x ∈�∗,

V(x)|ψ∗0 〉 =U(x)|ψ0〉. (8)

Proof. For x= ε, V(ε)=U(ε)= I, and |ψ∗0 〉 =AD(ε)= |ψ0〉, so it holds.
For any σ ∈� and for any v∗(x) ∈ B, according to Algorithm 1, we have V(σ)v∗(x)= v∗(xσ)=

AD(xσ). In particular, taking x= ε, then we have V(σ)|ψ∗0 〉 = v∗(σ)=AD(σ)=U(x)|ψ0〉.
Suppose it holds for |x| = k. The rest is to prove that it holds for |x| = k+ 1. Denote

y= xσ where |x| = k and σ ∈�. Due to Proposition 4, v∗(x) can be linearly represented by
B= {v∗(x1), v∗(x2), . . . , v∗(xm)}, i.e., v∗(x)=∑

k ckv∗(xk) for some ck ∈C. With the induction
hypothesis, V(x)|ψ∗0 〉 =U(x)|ψ0〉 holds. Then by means of Algorithm 1, we have

V(y)|ψ∗0 〉 =V(xσ)|ψ∗0 〉
=V(σ)V(x)|ψ∗0 〉
=V(σ)U(x)|ψ0〉
=V(σ)v∗(x)

=V(σ)
∑
k

ckv∗(xk)

=
∑
k

ckV(σ)v∗(xk)

=
∑
k

ckv∗(xkσ). (9)

On the other hand, since v∗(z)=AD(z)=U(z)|ψ0〉 for any z ∈�∗, we have
∑
k

ckv∗(xkσ)=
∑
k

ckU(xkσ)|ψ0〉

=
∑
k

ckU(σ)U(xk)|ψ0〉

=
∑
k

ckU(σ)v∗(xk)

=U(σ)
∑
k

ckv∗(xk)

=U(σ)v∗(x)
=U(xσ)|ψ0〉
=U(y)|ψ0〉. (10)

So, the proof is completed.

From Theorem 4, it follows that Algorithm 1 returns an equivalent MO-1QFA to the target
MO-1QFA M= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr) to be learned. Next we analyze the computational
complexity of Algorithm 1.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

138 D. Qiu

Proposition 5. Let the target MO-1QFA to be learned have n’s bases states. The the computational
complexity of Algorithm 1 is O(n5|�|).
Proof. We consider it from two parts.

(I) The first part of Algorithm 1 to get B: The complexity to determine the linear independence
of some n-dimensional vectors isO(n3) (Faddeev and Faddeev, 1963), and there are at most n time
to check this, so the first part of Algorithm 1 to get B needs time O(n4).

(II) The second part of finding the feasible solutions for V(σ) for each σ ∈�: For any σ ∈�,
Step 15 defines |B|’s matrix equations and these equations are clearly equivalent to a group of
linear equations, but are subject to the restriction conditions in Step 16. So, this part is a problem
of linear programming and we can refer to Boyd and Vandenberghe (2004) and Karmarkar (1984)
to get the time complexity is O(n5|�|).

Therefore, by combining (I) and (II) we have the complexity of Algorithm 1 is O(n5|�|).

To illustrate Algorithm 1 for learning MO-1QFA, we give an example as follows.

Example 1. Suppose that M= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr) is an MO-1QFA to be learned by

Algorithm 1, where Q= {q0, q1}, Qa = {q1}, Qr = {q0}, � = {a}, U(a)=
⎡
⎣ 1√

2
1√
2

1√
2
− 1√

2

⎤
⎦, states q0

and q1 correspond to the two quantum basis states |q0〉 =
[
1
0

]
and |q1〉 =

[
0
1

]
, and |ψ0〉 = |q0〉.

DenoteM∗ = (Q, |ψ0〉∗, {V(σ)}σ∈� ,Qa,Qr) as theMO-1QFA learned fromAlgorithm 1, and the
procedure for obtainingM∗ from Algorithm 1 is given below.

Step 1 of Algorithm 1 yields

|ψ0〉∗ =AD(ε)
=U(ε)|ψ0〉
=I|ψ0〉
=|q0〉.

(11)

The 1st iteration run of the while loop body in Algorithm 1 is given below, with the
computation of each set.

Step 6 of Algorithm 1 yields

v∗(ε)=AD(ε)
=U(ε)|ψ0〉
=I|ψ0〉
=|q0〉.

(12)

Step 8 of Algorithm 1 yields

Nod= {node(a)}. (13)

Step 9 of Algorithm 1 yields

B= {|q0〉}. (14)

The 2nd iteration run of the while loop body in Algorithm 1 is given below, with the
computation of each set.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 139

Step 6 of Algorithm 1 yields

v∗(a)=AD(a)
=U(a)|ψ0〉
=U(a)|q0〉
=|q0〉 + |q1〉√

2
.

(15)

Step 8 of Algorithm 1 yields

Nod= {node(aa)}. (16)

Step 9 of Algorithm 1 yields

B=
{
|q0〉, |q0〉 + |q1〉√

2

}
. (17)

The 3rd iteration run of the while loop body in Algorithm 1 is given below, with the
computation of each set.

Step 6 of Algorithm 1 yields

v∗(aa)=AD(aa)
=U(aa)|ψ0〉
=U(a)U(a)|q0〉
=|q0〉.

(18)

Since v∗(x) belongs to span(B), the statements in the branch statement are not executed at this
point. The set Nod is the empty set at this point, so Algorithm 1 exits from the while loop body.

Finally, let V(a)=
[
x11(a) x12(a)
x21(a) x22(a)

]
, and according to steps 15 and 16 of Algorithm 1, we get

V(a)v∗(ε)=V(a)|q0〉
=v∗(a)
=AD(a)

=|q0〉 + |q1〉√
2

.

(19)

V(a)v∗(a)=V(a)
(|q0〉 + |q1〉√

2

)
=v∗(aa)
=AD(aa)
=|q0〉.

(20)

From Eqs. (19) and (20), the following system of equations is obtained⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
x11(a) x12(a)
x21(a) x22(a)

] [
1
0

]
=

[1√
2
1√
2

]
,[

x11(a) x12(a)
x21(a) x22(a)

] [1√
2
1√
2

]
=

[
1
0

]
.

(21)

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

140 D. Qiu

Solving the system of Eq. (21) gives

V(a)=
[
x11(a) x12(a)
x21(a) x22(a)

]

=
⎡
⎣ 1√

2
1√
2

1√
2
− 1√

2

⎤
⎦ .

(22)

As a result, we can obtain M∗ = (Q, |ψ0〉∗, {V(σ)}σ∈� ,Qa,Qr), where Q= {q0, q1}, |ψ0〉∗ =

|q0〉, Qa = {q1}, Qr = {q0},� = {a}, and V(a)=
⎡
⎣ 1√

2
1√
2

1√
2
− 1√

2

⎤
⎦.

Therefore, the MO-1QFA M∗, which is equivalent to MO-1QFA M, can be obtained from
Algorithm 1.

4. Learning MM-1QFA
In this section, we study learning MM-1QFA via AD oracle. Let M= (Q, |ψ0〉, {U(σ)}σ∈� ,
Qa,Qr ,Qg) be the target QFA to be learned, where � =� ∪ {$}, and $ /∈� is an end-maker. As
usual,Q,Qa,Qr ,Qg are supposed to be known, and the goal is to achieve unitarymatricesV(σ) for
each σ ∈ � in order to get an equivalent MM-1QFAM∗ = (Q, |ψ∗0 〉, {V(σ)}σ∈� ,Qa,Qr ,Qg). AD
oracle can answer an amplitude distribution AD(x) for any x ∈ �∗. MM-1QFA performs measur-
ing after reading each input symbol, and then only the non-halting (i.e. going on) states continue
to implement computing for next step, and the amplitude distribution for the superposition state
after performing each unitary matrix needs to be learned from oracle.

Therefore, for any x= σ1σ2 . . . σk ∈ �∗, since MM-1QFA M outputs the following state (un-
normalized form) as the current state:

U(σk)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉, (23)

we require AD oracle can answer AD(x)=U(σk)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉. In particular,
AD(ε)= |ψ0〉.

Before presenting the algorithm of learning MM-1QFA, we describe the main ideas and
procedure.

First the initial state can be learned from AD oracle via querying empty string ε.
Then by using AD oracle we are going to search for a base B of the Hilbert space spanned by

{v∗(x) : x ∈�∗} where for any x= σ1σ2 . . . σk ∈�∗,
v∗(x)=AD(x)=U(σk)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉. (24)

This procedure will be terminated due to the finite dimension of the space (at most |Q|), and this
can be completed with polynomial time.

Finally, by combining the base B and with groups of linear equations we can obtain V(σ)
for each σ ∈�. These results can be verified in detail after Algorithm 2, and we now present
Algorithm 2 for learning MM-1QFA in the following.

Next we first demonstrate that the algorithm can find out a base B for Hilbert space
span{v∗(x)|x ∈�∗}.
Proposition 6. In Algorithm 2 for learning MM-1QFA, the final set of vectors B consists of a base of
Hilbert space span{v∗(x)|x ∈�∗}, where v∗(x) is actually the vector replied by oracle AD for input
string x, that is v∗(x)=AD(x)=U(σk)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉, for x= σ1σ2 . . . σk ∈�∗.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 141

Algorithm 2 Algorithm for learning MM-1QFAM= (Q, |ψ0〉, {U(σ)}σ∈� ,Qa,Qr ,Qg)
1: |ψ∗0 〉←AD(ε); v∗($)←AD($);
2: Set B to be the empty sets;
3: Set Nod←{node(ε)};
4: while Nods not empty do
5: begin Take an element node(x) from Nod;
6: v∗(x)←AD(x);
7: if v∗(x) /∈ span(B) then
8: begin Add node(xσ) to Nod for all σ ∈�;
9: B← B ∪ {v∗(x)} end;
10: end if
11: end while
12: end;
13: Let V(σ)= [xij(σ)] for any σ ∈� ∪ {$}, 1≤ i, j≤ n;
14: Define linear systems:
15: for any v∗(x) ∈ B and any σ ∈� ∪ {$}, V(σ)Pnv∗(x)= v∗(xσ)=AD(xσ);
16: for 1≤ i1, i2 ≤ n, if i1
= i2, then

∑n
j=1 xi1j(σ)xi2j(σ)= 0; otherwise, it is 1,

17: Find a suitable solution for xij(σ)’s, and denote V= {V(σ) : σ ∈� ∪ {$}};
18: if there is a solution then
19: returnM∗ = (Q, |ψ∗0 〉, {V(σ)}σ∈�∪{$},Qa,Qr ,Qg)
20: else
21: return (not exist);
22: end if

Proof. Suppose that B= {v∗(x1), v∗(x2), . . . , v∗(xm)}, where it is clear that some xi equals to ε.
So, for any x ∈�∗, there are xj and y ∈�∗ such that x= xjy. It suffices to show that v∗(x) can be
linearly represented by the vectors in B. By induction on the length |y| of y. If |y| = 0, i.e., y= ε,
then it is obvious for x= xj. In addition, for |y| = 1, v∗(xjy) is linearly dependent on B in terms of
the algorithm’s operation. Suppose that it holds for |y| = k≥ 0. Then we need to verify it holds for
|y| = k+ 1. Denote y= zσ with |z| = k. Then by induction hypothesis v∗(xjz)=∑

k ckv∗(xk) for
some ck ∈C with k= 1, 2, . . . ,m. Therefore, we have

v∗(x)= v∗(xjzσ)
=U(σ)Pnv∗(xjz)

=U(σ)Pn
∑
k

ckv∗(xk)

=
∑
k

ckU(σ)Pnv∗(xk)

=
∑
k

ckv∗(xkσ). (25)

Since v∗(xkσ) is linearly dependent on B for k= 1, 2, . . . ,m, v∗(x) can be linearly represented
by the vectors in B and the proof is completed.

Then we need to verify that the MM-1QFA M∗ obtained in Algorithm 2 is equivalent to the
target MM-1QFA M. This can be achieved by checking V($)Pn|ψ∗0 〉 =U($)Pn|ψ0〉 and for any
x= σ1σ2 . . . σk ∈�∗,

V(σk)PnV(σk−1)Pn . . .V(σ1)Pn|ψ∗0 〉 =U(σk)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉. (26)

So we are going to prove the following theorem.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

142 D. Qiu

Theorem 5. In Algorithm 2 for learning MM-1QFA, we have

V($)Pn|ψ∗0 〉 =U($)Pn|ψ0〉; (27)

and for any x= σ1σ2 . . . σk ∈�∗, Eq. (26) holds, where |x| ≥ 1.

Proof. Note v∗(ε) ∈ B, by means of Step 15 in Algorithm 2 and taking σ = $, we have

V($)Pnv∗(ε)= v∗($)=AD($)=U($)Pn|ψ0〉. (28)

Since v∗(ε)=AD(ε)= |ψ0〉, and from Algorithm 2 we know AD(ε)= |ψ∗0 〉, Eq. (27) holds.
Next we prove that Eq. (26) holds for any x= σ1σ2 . . . σk ∈�∗. We do it by induction method

on the length of |x|.
If |x| = 1, say x= σ ∈�, then with Step 15 in Algorithm 2 and taking v∗(ε), we have

V(σ)Pnv∗(ε)= v∗(σ)=AD(σ)=U(σ)Pn|ψ0〉, so, Eq. (26) holds for |x| = 1 due to v∗(ε)= |ψ0〉.
Assume that Eq. (26) holds for any |x| = k≥ 1. The rest is to prove that Eq. (26) holds for

any |x| = k+ 1. Let x= yσ with y= σ1σ2 . . . σk. Suppose v∗(y)=
∑

i civ∗(xi) for some ck ∈C. For
each i, by means of Step 15 in Algorithm 2, we have

V(σ)Pnv∗(xi)= v∗(xiσ)=AD(xiσ)=U(σ)PnAD(xi), (29)

and therefore

V(σ)Pn
∑
i

civ∗(xi)=U(σ)Pn
∑
i

ciAD(xi). (30)

Since v∗(xi)=AD(xi), we further have

V(σ)Pnv∗(y)=U(σ)Pnv∗(y). (31)

By using v∗(y)=U(σk)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉, and the above induction hypothesis (i.e.,
Eq. (26) holds), we have

V(σk+1)PnV(σk)PnV(σk−1)Pn . . .V(σ1)Pn|ψ∗0 〉 =U(σk+1)PnU(σk−1)Pn . . .U(σ1)Pn|ψ0〉. (32)

Consequently, the proof is completed.

To conclude the section, we give the computational complexity of Algorithm 2.

Proposition 7. Let the target MM-1QFA to be learned have n’s bases states. Then the computational
complexity of Algorithm 2 is O(n5|�|).
Proof. It is actually similar to the proof of Proposition 5.

Remark 2. Weighted finite automata (WFA) (e.g., see Balle andMohri (2015)) are finite automata
whose transitions and states are augmented with some weights, elements of a semiring, and aWFA
also induces a function over strings. Learning WFA has been significantly studied and the details
can be referred to Balle and Mohri (2015) and the references therein. The algorithms for learning
WFA are closely related to Hankel matrices. More specifically, for a field S and a finite alphabet
�, then the rank of the Hankel matrix Hf associated with a function f :�∗ → S is finite if and
only if there exists a WFA A representing f with rank (Hf) states and no WFA representing f
admits fewer states. Though MQ and EQ are used in in the algorithms of learning WFA, the way
to induce functions by WFA is different from the definitions of accepting probabilities in QFA,
and particularly it is not known whether the Hankel matrices can be used to study QFA (as we are
aware, there are no results concerning the Hankel matrices associated with QFA). Therefore, it is
still an open problem of whether the algorithms of learning WFA can be used to study learning
QFA.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 143

5. Concluding Remarks
QFA are simple models of quantum computing with finite memory, but QFA have significant
advantages over classical finite automata concerning state complexity (Ambainis and Yakaryilmaz,
2021; Bhatia and Kumar, 2019; Say and Yakaryılmaz, 2014), and QFA can be realized physically
to a considerable extent (Mereghetti et al., 2020). As a new topic in quantum learning theory and
quantum machine learning, learning QFA via queries has been studied in this paper. As classical
model learning (Vaandrager, 2017), we can term it as quantum model learning.

The main results we have obtained are that we have proposed two polynomial-query learn-
ing algorithms for measure-once one-way QFA (MO-1QFA) and measure-many one-way QFA
(MM-1QFA), respectively. The oracle to be used is an AD oracle that can answer an amplitude
distribution, and we have analyzed that a weaker oracle being only able to answer accepting or
rejecting for any inputting string may be not enough for learning QFA with polynomial time.

Here a question is how to compare AD oracle with MQ oracle and EQ oracle? In general,
MQ oracle and EQ oracle are together used in classical models learning with deterministic or
nondeterministic transformation of states; AD oracle can return a superposition state for an input
string in QFA, as SD oracle in Tzeng (1992) can return a distribution of state for an input string in
PFA, so for learningDFA,AD oracle and SD oracle can return a state for each input string, not only
accepting state as MQ oracle can do. Of course, the problem of whether both MQ oracle and EQ
oracle together can be used to study QFA learning is still not clear. Furthermore, if AD oracle can
return the weight of general weighted automata for each input string, then the problem of whether
AD oracle can be used to study general weighted automata learning is worthy of consideration
carefully.

However, we still do not know whether there is a weaker oracleQ than AD oracle but by using
Q one can learnMO-1QFA orMM-1QFAwith polynomial time. Furthermore, what is the weakest
oracle to learn MO-1QFA and MM-1QFA with polynomial query complexity? These are interest-
ing and challenging problems to be solved. Of course, for learning RFA, similar to learning DFA
(Angluin, 1987), we can get an algorithm of polynomial time by using MQ together with EQ.

Another interesting problem is how to realize these query oracles physically, including SD ora-
cle, AD oracle, and even MQ as well as EQ. In quantum query algorithms, for any given Boolean
function f , it is supposed that a quantum query operator called an oracle, denoted by Of , can out-
put the value of f (x) with any input x. As for the construction of quantum circuits forOf , there are
two cases: (1) If a Boolean function f is in the form of disjunctive normal form and suppose that
the truth table of f is known, then an algorithm for constructing quantum circuit to realizeOf was
proposed in Avron et al. (2021). However, this method relies on the truth table of the function,
which means that it is difficult to apply, since the truth table of the function is likely not known in
practice. (2) If a Boolean function f is a conjunctive normal form, then a polynomial-time algo-
rithm was designed in (Qiu et al., 2022) for constructing a quantum circuit to realize Of , without
any further condition on f .

As mentioned above, besides MO-1QFA andMM-1QFA, there are other one-way QFA, includ-
ing Latvian QFA (Ambainis et al., 2006), QFA with control language (Bertoni et al., 2003), 1QFA
with ancilla qubits (1QFA-A) (Paschen, 2000), one-way quantum finite automata together with
classical states (1QFAC) (Qiu et al., 2015), and other 1QFA such as Nayak-1QFA (Na-1QFA),
General-1QFA (G-1QFA), and fully 1QFA (Ci-1QFA). So, one of the further problems worthy of
consideration is to investigate learning these QFA via queries.

Finally, we would like to analyze partial possible methods for considering these problems. In
the present paper, we have usedAD oracle as queries and quantum algorithms for determining the
equivalence between 1QFA to be learned for learning bothMO-1QFA andMM-1QFA. So, an algo-
rithm for determining the equivalence between 1QFA to be learned is necessary in our method. In
general, as we studied in Li and Qiu (2008), for designing an algorithm to determine the equiva-
lence between 1QFA, we first transfer the 1QFA to a classical linear mathematical model, and then

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

144 D. Qiu

obtain the result by using the known algorithm for determining the equivalence between classical
linear mathematical models. As pointed out in Ambainis and Yakaryilmaz (2021), the equivalence
between 1QFA can be determined, though the equivalence problems for some of 1QFA still have
not been studied carefully. Of course, some 1QFA also involve more parameters to be learned, for
example, 1QFAC have classical states to be determined.

Acknowledgements. The authors are grateful to the two anonymous referees for invaluable suggestions and comments
that greatly helped us improve the quality of this paper. This work was supported in part by the National Natural Science
Foundation of China (Nos. 61876195, 61572532) and the Natural Science Foundation of Guangdong Province of China (No.
2017B030311011).

References
Aaronson, S. (2007). The learnability of quantum states. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences 463 (2088) 3089–3114.
Angluin, D. (1982). Queries and concept learning. Journal of the ACM 29 (3) 741–765.
Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation 75 (2) 87–106.
Angluin, D. (1988). Queries and concept learning.Machine Learning 2 (4) 319–342.
Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M. and Therien, D. (2006). Algebraic results on quantum

automata. Theory of Computing Systems 39 (1) 165–188.
Avron, J., Casper, O. and Rozen, I. (2021). Quantum advantage and noise reduction in distribute quantum computing.

Physical Review A 104 052404.
Angluin, D., Eisenstat, S. and Fisman, D. 2015. Learning regular languages via alternating automata. In: Proceeding of the 24th

International Joint Conference on Artificial Intelligence, IJCAI 2015, AAAI Press, 3308–3314.
Ambainis, A. and Freivalds, R. (1998). One-way quantum finite automata: Strengths, weaknesses and generalizations. In:

Proceeding of the 39th Foundations of Computer Science, FOCS 1998, IEEE Computer Society Press, 332–341.
Arunachalam, S. and de Wolf, R. (2017). A survey of quantum learning theory. ACM SIGACT News 48 (2) 41–67. Also,

arXiv:1701.06806v3.
Arunachalam, S. and de Wolf, R. (2018). Optimal quantum sample complexity of learning algorithms. Journal of Machine

Learning Research 19 1–36.
Ambainis, A. and Yakaryilmaz, A. (2021). Automata and quantum computing. In: J.-E. Pin (ed.) Handbook of Automata

Theory (II), 1457–1493. arXiv:1507.01988.
Belovs, A. (2015). Quantum algorithms for learning symmetric juntas via the adversary bound. Computational Complexity 24

(2) 255–293.
Bollig, B., Habermehl, P., Kern, C. and Leucker, M. (2009). Angluin-style learning of NFA. In: Proceeding of the 21st

International Joint Conference on Artificial Intelligence, IJCAI-09, AAAI Press, 1004–1009.
Bshouty, N. H. and Jackson, J. C. (1999). Learning DNF over the uniform distribution using a quantum example oracle. SIAM

Journal on Computing 28 (3) 1136–1153. Earlier version in COLT’95.
Bhatia, A. S. and Kumar, A. (2019). Quantum Finite Automata: Survey, Status and Research Directions, arXiv:1901.07992v1.
Berndt, S., Liśkiewicz, M., Lutter, M. and Reischuk, R. (2017). Learning residual alternating automata. In: Proceeding of the

31st AAAI Conference on Artificial Intelligence, AAAI-17, AAAI Press, 1749–1755.
Benedetti, M., Lloyd, E., Sack, S. and Fiorentini, M. (2019). Parameterized quantum circuits as machine learning models.

Quantum Science and Technology 4 (4), 043001.
Balle, B. and Mohri, M. (2015). Learning weighted automata. In: A. Maletti (ed.) Algebraic Informatics. CAI 2015, LNCS, vol.

9270, Springer, 1–21.
Bertoni, A., Mereghetti, C. and Palano, B. (2003). Quantum computing: 1-way quantum automata. In: Proceeding of the 7th

International Conference on Developments in Language Theory, DLT 2003, Springer, 1–20.
Brodsky, A. and Pippenger, N. (2002). Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31

(5) 1456–1478.
Bergadano, F. and Varricchio, S. (1996). Learning behaviors of automata from multiplicity and equivalence queries. SIAM

Journal on Computing 25 (6) 1268–1280.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press.
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. and Lloyd, S. (2017). Quantum machine learning. Nature 549

(7671) 195–202.
Cong, I. and Duan, L. (2016). Quantum discriminant analysis for dimensionality reduction and classification. New Journal of

Physics 18 (7) 073011.
Cheng, H.C., Hsieh,M. H. and Yeh, P. C. (2016). The learnability of unknown quantummeasurements.Quantum Information

& Computation 16 (7&8) 615–656.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

Mathematical Structures in Computer Science 145

Faddeev, D. K. and Faddeev, V. N. (1963). Computational Methods of Linear Algebra, Freeman.
Gavinsky, D. ((2012)). Quantum predictive learning and communication complexity with single input.Quantum Information

& Computation 12 (7&8) 575–588.
Gruska, J. (1999). Quantum Computing, McGraw-Hill.
de la Higuera, C. (2005). A bibliographical study of grammatical inference. Pattern Recognition, 38 (9) 1332–1348.
de la Higuera, C. (2010). Grammatical Inference: Learning Automata and Grammars, Cambridge University Press.
Huang, H. Y., Broughton, M. and Cotler, J. (2022). Quantum advantage in learning from experiments. Science 376 (6598)

1182–1186.
Harrow, A.W., Hassidim, A. and Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters

103 (5) 150502.
Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica 4 373–395.
Kerenidis, I. and Prakash, A. (2017). Quantum recommendation systems. Innovations in Theoretical Computer Science

Conference 49 1–21.
Krenn, M., Landgraf, J., Foesel, T. and Marquardt, F. (2023). Artificial intelligence and machine learning for quantum

technologies. Physical Review A 107 (1) 010101.
Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning Theory, MIT Press.
Kondacs, A. and Watrous, J. (1997). On the power of quantum finite state automata. In: Proceedings of the 38th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 97, IEEE Computer Society Press, 66–75.
Lloyd, S., Mohseni, M. and Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics 10 (9) 108–113.
Li, L. and Qiu, D. W. (2006). Determination of equivalence between quantum sequential machines. Theoretical Computer

Science 358 65–74.
Li, L. and Qiu, D. W. (2008). Determining the equivalence for one-way quantum finite automata. Theoretical Computer

Science 403 42–51.
Lloyd, S. and Weedbrook, C. (2018). Quantum generative adversarial learning. Physical Review Letters 121 (4) 040502.
Marquardt, F. (2021). Machine learning and quantum devices. SciPost Physics Lecture Notes 029.
Moore, E. (1956). Gedanken-experiments on sequential machines. Automata Studies, Annals of Mathematics Studies 34

129–153.
Moore, C. and Crutchfield, J. P. (2000). Quantum automata and quantum grammars. Theoretical Computer Science 237

275–230.
Meyer, J. J., Mularski, M., Gil-Fuster, E., Mele, A. A., Arzani, F., Wilms, A. and Eisert, J. (2023). Exploiting symmetry in

variational quantum machine learning. PRX Quantum 4 (1) 010328.
Mitarai, K., Negoro, M., Kitagawa, M. and Fujii, K. (2018). Quantum circuit learning. Physical Review A 98 (3) 032309.
Mereghetti, C., Palano, B., Cialdi, S. et al. (2020). Photonic realization of a quantumfinite automaton. Physical Review Research

2 Art. no. 013089.
Mereghetti, C., Palano, B., Cialdi, S., Vento, V., Paris, M. G. A. and Olivares, S. (2020). Photonic realization of a quantum

finite automaton. Physical Review Research 2 013089 (15 pages).
Mateus, P., Qiu, D. W. and Li, L. (2012). On the complexity of minimizing probabilistic and quantum automata. Information

and Computation 218 36–53.
Nielsen, M. and Chuang, I. (2000). Quantum Computation and Quantum Information, Cambridge University Press.
Paschen, K. (2000). Quantum Finite Automata using Ancilla Qubits, University of Karlsruhe, Technical report.
Paz, A. (1971). Introduction to Probabilistic Automata, Academic Press.
Plachta, S. Z. D., Hiekkamäki, M., Yakaryilmaz, A. and Fickler, R. (2022). Quantum advantage using high-dimensional twisted

photons as quantum finite automata. Quantum-Austria 6 752.
Peled, D., Vardi, M. and Yannakakis, M. (2002). Black box checking. Journal of Automata Languages & Combinatorics 7 (2)

225–246.
Qiu, D. W. (2007). Automata theory based on quantum logic: Reversibilities and pushdown automata. Theoretical Computer

Science 386 (1–2) 38–56.
Qiu, D. W., Li, L., Mateus, P. and Gruska, J. (2012). Quantum Finite Automata. In: J. Wang (ed.) Finite State-Based Models

and Applications, CRC Handbook, 113–144.
Qiu, D. W., Li, L., Mateus, P. and Sernadas, A. (2015). Exponentially more concise quantum recognition of non-RMM

languages. Journal of Computer and System Sciences 81 (2) 359–375.
Qiu, D. W., Luo, L. and Xiao, L. (2022). Distributed Grover’s Algorithm, arXiv:2204.10487v4.
Qiu, D. W., Li, L., Zou, X., Mateus, P. and Gruska, J. (2011). Multi-letter quantum finite automata: Decidability of the

equivalence and minimization of states. Acta Informatica 48 271–290.
Qiu, D. W. and Yu, S. (2009). Hierarchy and equivalence of multi-letter quantum finite automata. Theoretical Computer

Science 410 3006–3017.
Rebentrost, P., Mohseni, M. and Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review

Letters 113 (13) 130503.
Rodriguez, L. E. H., Ullah, A., Espinosa, K. J. R., Dral, P. O. and Kananenka, A. A. (2022). A comparative study of different

machine learning methods for dissipative quantum dynamics.Machine Learning: Science and Technology 3 (4) 045016.

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373

146 D. Qiu

Schuld, M., Sinayskiy, I. and Petruccione, F. (2015). An introduction to quantummachine learning. Contemporary Physics 56
(2) 172–185.

Say, A. C. and Yakaryılmaz, A. (2014). Quantum finite automata: A modern introduction. In: Computing with New Resources,
Springer, 208–222.

Servedio, R. and Gortler, S. (2004). Equivalences and separations between quantum and classical learnability. SIAM Journal
on Computing 33 (5) 1067–1092.

Tzeng, W. G. (1992). Learning probabilistic automata and Markov chains via queries.Machine Learning 8 (2) 151–166.
Tian, Y., Feng, T., Luo, M., Zheng, S. and Zhou, X. (2019). Experimental demonstration of quantum finite automaton. NPJ

Quantum Information 5 (1) 1–5.
Tîrnăucă, C. and Knuutila, T. (2007). Polynomial time algorithms for learning k-reversible languages and pattern languages

with correction queries. In: M. Hutter, R. Servedio, and E. Takimoto (eds.) Algorithmic Learning Theory: 18th International
Conference, ALT’ 2007, Lecture Notes in Artificial Intelligence, vol. 4754, Springer-Verlag, 272–284.

Vaandrager, F. (2017). Model learning. Communications of the ACM 60 (2) 86–95.
Wiebe, N., Braun, D. and Lloyd, S. (2012). Quantum algorithm for data fitting. Physical Review Letters 109 (5) 050505.
Wiebe, N., Kapoor, A. and Svore, K. (2016). Quantum deep learning. Quantum Information & Computation 16 (7) 541–587.
Zhang, C. (2010). An improved lower bound on query complexity for quantum PAC learning. Information Processing Letters

111 (1) 40–45.
Zhao, Z. Pozas-Kerstjens, A., Rebentrost, P. andWittek, P. (2019). Bayesian deep learning on a quantum computer.Quantum

Machine Intelligence 1 41–51.

Cite this article:Qiu D (2024). Learning quantum finite automata with queries.Mathematical Structures in Computer Science
34, 128–146. https://doi.org/10.1017/S0960129523000373

https://doi.org/10.1017/S0960129523000373 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000373
https://doi.org/10.1017/S0960129523000373

	Learning quantum finite automata with queries
	Introduction
	Preliminaries on Quantum Computing and QFA
	Basics in quantum computing
	Review of one-way QFA and RFA
	MO-1QFA
	RFA
	MM-1QFA

	Learning MO-1QFA
	Learning MM-1QFA
	Concluding Remarks

