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ON STRONG NORLUND SUMMABILITY FIELDS

BRIAN KUTTNER AND BRIAN THORPE

1. Introduction. Let p denote the sequence {p,} and set p(z) = Zp,2"
wherever this series converges. (Where no limits are stated, sums are throughout
to be taken fromz = Q0 ton = 00.) We use a similar notation with other letters
in place of p. Given two sequences p, ¢, the convolution p*q is defined by

(p*q)n = VZ=:O DPu—rQ ;

it is familiar, and easily verified, that the operation of convolution is commu-
tative and associative. We write P, = (p*1), (where 1 denotes the sequence {1}),
and take P_; to mean 0. If, for all # = 0, P, # 0, then we define the Norlund
mean (N, p) of the sequence s as a,, where

n

_ (P;j)n (n = 0)

and ¢_1 = 0. If ¢, = X\ as » — 00, then s is said to be limitable (&, p) to the
number X\. We say s is absolutely limitable (N, p) or limitable |N, p| if ¢ is of
bounded variation, i.e.,

1) > low — On1] < 0

We write x = a(y) to mean that x = by for some sequence b of bounded
variation ; thus (1) can also be written ¢ = a(1). We shall denote by o(N, p) the
set of all sequences limitable (I, p) to zero, and by a(V, p) those which are
limitable |N, p|.

It follows from Toeplitz’'s theorem [2, Theorem 2] that necessary and
sufficient conditions for the regularity of (V, p) are that

and that
) 3 Ipd = 0(Pu).

Necessary and sufficient conditions in order that (&, p) should be absolutely
regular (that is, that s = a(1) should imply that ¢ = a(1), and that {s,}, {0y}
should have the same limit) were given by Mears [5]. The conditions are (2)
together with

@) >
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We write throughout
n
Sp= D Gy
=0

Then, following Borwein and Cass [1], we describe the sequence s as strongly
summable (V, p) with index A > 0 to u, and write s, — u[N, ph, if

3 I, — il = o),

where w = pxa; it is assumed that, for all #, p, # 0. As was pointed out in [3],
this definition is of use only when |P,| — 00 asn — 0.

We recall that if (V, p) is regular, or absolutely regular, then p(2) is regular in
|z] < 1 (see, for example, [2, p. 65]). Generalising some earlier results of
Peyerimhoff [7], Miesner [6] obtained relations between the sets o(V, p) and
o(N, g), and between the sets a(N, p) and a(dV, ¢q), where ¢(z) = p(2)7(2), and
where 7(2) satisfies appropriate restrictions. Miesner’s theorems are as follows.

TuroreM A. Let 7(2) = X r,2" be absolutely convergent for |z| < 1, with

7(z) # 0 for 2 =0 and |z| = 1, and having inside the unit circle the roots
a1, Qg .« .., ap With multiplicities v1, ve, . . ., vi(yv: > 0). Let p(2) = X p.2" bea
function regular for |z| < 1, and suppose that the root a; of r(z) is a root of p(z)
with multiplictty \; =2 0z = 1, ..., k). Define q(3) = r(2)p(2).
(1) If p satisfies conditions (2) and (3), then s € o(N, q) if and only if

k Nityi—1
(5> Sp = tn + Z ai_n Z CijAnjy

i=1 J=\i

with t € o(N, p), 4,7 = ntJ and c¢;; constants.
n

(ii) If p satisfies the conditions (2), (3), and (4), then s € a(NV, q) if and only
if (5) holds with t € a(N, p).

THEOREM B. Let
7(z) = p(2)k(2) = p(2) I;I1 (z — B)™

with B, = 1, B: 5% 1, \; a positive integer, and where the Taylor series of p(z) 1s
absolutely convergent and different from zero for |z| < 1. Let p(z) be a function
regular in |z| < 1,and put g(z) = r(2)p(2).

(2) If p satisfies conditions (2) and (3), then s € o(N, q) if and only if

(6) s = <iI1 Tﬁ,.“)t,

where t € o(N, p) and the operator T is defined by

(7 (Tet)n = — ;} L8,
and (T'gTg)t = T (Tpt) = Tp(Tpl).
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(il) If p satisfies the conditions (2), (3), and (4), then s € a(N, q) +f and only
if (6) holds with t € a(N, p).

As Miesner remarks, the case in which 7(z) has some zeros on [z| = 1 and
some zeros in |z| < 1 may be dealt with by combining Theorems A and B.

The main object of the present paper is to obtain analogues of Theorems A
and B for strong Nérlund summability with index 1. However, we wish first to
point out that Theorem B can be simplified and generalised, since it is the
analogue of this modified version which will be given.

2. Statement of the theorems. We have stated Theorem B with (6) in
the form given by Miesner, but using the notation for convolution previously
introduced, (6) can be simplified. Let

Ua) = 22 ha" = (k(2))™!

and observe that the expression on the right in (7) is just the convolution of ¢
with the sequence { —B~'"}. Since

(z—p) 1= =2 p1"" for 3| <1,

itis clear that ! is the convolution of the sequences { —8,71"} ;—1,..., taken with
the appropriate multiplicities. Thus we can write (6) more simply as

8) s = I«t.
In this form the result can be improved.

TurorREM 1. Let r(z) = p(2)k(3), where 3 |p,| < 0, p(2) 5% 0 for |z] < 1.
Suppose that Y |k,| < 0o, that ky 5% 0 (so that I(z) = (k(2))~! is regular in some
neighbourhood of the origin), and that k(1) £ 0. Let p(z) be regular in |z| < 1,
and put q(z) = p(2)r(z).

1) If p satisfies (2) and (3), then s € o(N, q) if and only if (8) holds with
t € o(N, p).

(i) If p satisfies (2), (3) and (4), then s € a(N, q) of and only if (8) holds with
t € a(N, p).

We remark that the hypotheses on k(2) are satisfied in particular when &(2) is
a product of a finite number of terms of the form (1 — a.2)* with |a,| = 1,
a; # 1, Z(\;) > 0. Thus Theorem 1 includes the extension of Theorem B to
the case in which the zeros of k(z) on |z] = 1 may be of fractional order. Of
course, since the regularity (or absolute regularity) of (IV, p) implies that p(z)
is regular in |z| < 1, the case of zeros of fractional order inside |z| < 1 cannot
arise and so Theorem A cannot be extended in this way. While the hypotheses
of Theorem 1 do not exclude the possibility that k(z) might have zeros in
|z| < 1, this case is better dealt with by Theorem A.

THEOREM 2. Let v(2) = 3 r,2" be absolutely convergent for |z| < 1 withr(z) = 0
for |z| = 1 orz = 0, and having inside the unit circle the roots o, as, . . . , oy With
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multiplicities v, ve, - .., v (> 0). Let (N, p) be regular and suppose that the root

a; of 7(2) 1s a root of p(z) with multiplicity \; = 0 (i = 1,2, ..., k) and that
® > o=l =0(B) (0= 0).

Define q(z) = p(2)r(2). Then s,— 0[N, qliif and only if (5) holds witht,— 0[N, pli.

We remark that, if (9) is not assumed, the conclusion of the theorem may be
false even in simple cases. As an example, take

P(Z)=1_{Zz; r(z) = 1+ 2.
Thus

_{1 (n even)
"= N2 (1 odd).

Now r(—3%) = 0, so that, if s, = (—2)", then (5) holds with #, = 0. But it is
false that {s,} is summable [V, ¢]; to 0. For, writing w(2) = @(2)q(z), we have

a@) = (=56 = s we) =3

2

Thus w, = (—1)", so that

3l = o(l:).

TuEOREM 3. Let r(2) salisfy the same conditions as in Theorem 1. Let p(z)
satisfy (2) and (3), and let q(z) = p(2)r(z). Then s, — 0 [N, ql1 ¢f and only if (8)
holds with t, — 0 [N, pli.

We remark that the hypotheses of Theorem 3 does not imply that | P,| — oo
asn — 0. However, as already indicated, it is only the case in which |P,| —
which is of interest.

3. Proof of Theorem 1. If we write m(z) = p(2)k(z), then ¢(2) = m(z)p(2).
By [6, Lemma 2], (IV, p) regular (absolutely regular) implies that (N, m) is
regular (absolutely regular). By a further application of this lemma we deduce
that (V, q) is regular in Case (i) and absolutely regular in Case (ii). But, by a
theorem of Wiener and Levy (see, e.g., [8, Volume 1, p. 246]), quoted in [6] as
Lemma 3, it follows that the Taylor series of (p(z))!is also absolutely convergent
in |z| = 1. It therefore follows from [6, Corollary 1] that summability (V, g) is
equivalent to summability (V, m) (in Case (i)) and (V, ¢) is absolutely equi-
valent to (IV, m) in Case (ii).

Thusfor (i) we have toshow s € o(N, m) if and only if (8) holds with ¢ € o(V, p).
Now s € o(N, m) means by definition that (msxs), = o(|M,]|), and similarly,
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t € o(N, p) means (p*t), = o(|P,|). But translating equation (9) of [6] into our
notation, o(|M,]) is the same as o(|P,|). Further,
mxs = (pxk)*s = pxt,

since the hypothesis s = [ is equivalent to ¢ = kx*s. Hence (i) is proved.
For (ii) we argue in a similar way, but use equation (13) of [6] in place of
equation (9).

4. Proof of Theorem 2. We first prove some lemmas. The first of these is
not, in fact, required for the proof of Theorem 2, but is given because it helps to
indicate the scope of that theorem. It follows from it that, if | P,| — 0 asn — o0
(the important case), then (9) is necessarily satisfied whenever (V, ) is regular
and absolutely regular. For the assumption that p = a(P) is weaker than (4),
since it is equivalent to the assertion that (4) holds in the special case & = 1.

Lemma 1. Suppose that (N, p) is regular, |P,| — oo, and that p = a(P).
Then (9) holds.

Proof. Let p,, = 6,P,, so that

0n=a(1); Pn—1=Pn_pn=Pn(1-0n) (nél)
Hence
pn—l = Pnon—l(l - on) (n > O)a
and
Pn — Dn1 = Pn{on - 07:—1(1 - Bn)} = Pn(on — Op1) + Dnbn—1.

Since (I, p) is regular and |P,| — o0, we clearly have

yX: |P,(6, — 6,1)| = o(|Py]) and ; 16,/ 16,-1] = o(|IP0)),

and hence (9) holds.

LeEMMA 2. Suppose that Y. |r,| < o, 7(0) = 0, r(1) = 0. Suppose that p
satisfies (2) and (3), and let g(2) = r(2)p(2). Then q satisfies (2) and (3), and
Qn = Pu(r(1) + o(1)).
If, further, (9) holds, then

(10) 2 g = gl = 0|0
Proof. The first part of the lemma is given by [6, Lemma 2(i)]. For the second
part, since

gy — gy-1 = ;) (Pv—k - Pv——k—l)rky
we have

S Il Z fpes = prac

k=

3 g = g

1A

I
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LeEMMA 3. Suppose that p(z) is regular in |z| < 1. Let |a| < 1, a 5 0, and
write

9(e) = (1 - f)p@.
If q satisfies (10), then p satisfies (9).

Proof. Since p(2) is regular in |z| < 1, we must have g(a) = 0. Hence

n 00
P,=a" Z Q= —a" Z Qvayr
v=0 v=n+1
and thus
Py _ 5 Qv
Q p=1 Qn

Choose 7 > 0 so that |«|(1 4+ ) < 1. Since (10) implies that Q.1 ~ Q, we see
that, provided # is sufficiently large,

(11) IQn+uI é (1 + n)"linv

for all u = 1. Also, for fixed g, Qn4,/Qn — 1 as # — © ; and it therefore follows
by dominated convergence that

Py NN w_ @
Qn—) ﬂ;la_ 1 -«

asn — 0. Hence o(| P,|) and o(|Q,|) are equivalent. Also, since g(e) = 0,

n

bn— o1 =" ; (g — @—1)e”

= —a" Z (@ — ¢-1)’

v=n+1

= - ;1 (Gnsr — Qn+V—l)ay-
Thus

IIA

(12) #Z=0 Ipu - Pﬂ—ll ;1 Io‘lv E) lgu+v - q“+y_1|.

Given € > 0, the inner sum in (12) does not exceed

n+v

ZO Igl-‘ - QM—ll < elQn+Vlv
p=

for all sufficiently large #n + », and hence for all » = 0 if # is sufficiently large.
Again using (11), we see that for sufficiently large #, (12) does not exceed

(13) A0l X lal” (L )
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Since the sum in (13) is constant, we see that

> 10— poal = 010:)

= O(IPn[)y
and hence the result.

LEMMA 4. Suppose that p satisfies (2), (3), and (9), and that p(2) has a zero of
order N 2 0 for z = a, where |a| < 1.Let q(z) = (1 — z/a)p(2). Then s,—0 [N, gl
if and only if, for some constant c,

(14) Sp =ty + cA e,
where t, — 0 [N, pl1.
Proof. Write

A
ple) = (1 - f) hz),

so that k(2) is regular |z| < 1, and h(e) 5 0. Suppose first that s, — 0 [N, ¢];.
Define t, by (14) (where c is to be chosen later), and write

Then

()b (z) = P(z)<a(z) = (f(_l ;5@)

_q(® c(l—2)
“1—%/a <“(Z> = z/a)“‘)

_w(z) —c(l = 2)h(z)
- 1—2z2/a !

where we write w(z) = g(2)a(z). Thus we are given that

3 fel = o(l.).

Hence w(z) is regular in |3| < 1 (even though a(2) may not be). We now choose

__ w(a)
‘T 0= ahla)
We also write
d(z) = 3 d,2" = w(z) — c(1 — 2)h(2).

Thus d(a) = 0; also
(15) dy = wy — c(hy — hyp_1).
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Hence
d(Z)
pEDE) = 725
= i <E> Z dyay
n=0 (&9 v=0
= — Z (E) Z do’
n=0 \& y=n+1
Thus we have to show that
(16) > Z A’ | = 0(|P,)).
S e

Now, by repeated application of Lemmas 2 and 3 (9) is equivalent to

(17) ”ZZ:O |hy — hya| = o(|HL|);

also, noticing that o(|H,|) = o(|P,]) = 0(|Q.]), it follows from (15) that

n

v=0
We now apply the argument to obtain (13) in Lemma 3 to get

0
Z dyyued
fros

n

2

[es)

2, e Z |yl

IIA

I

o(|P)),
and hence (16).

Now suppose that ¢, — 0 [N, pli. We know (for example, by [4, Theorem 1])
that (IV, p) implies (V, ¢) ; hence, by [1, Theorem 1], [V, p]; implies [V, ¢l ; thus
t, — 0 [NV, g]i. Thus it remains only to show that

Ara™ — 0[N, gl
But

9@)A —3) _
(1 Z/ ))wl—l

so that this assertion is equivalent to

= (1 —2)h(2),

32 lhe = sl = 010D

But we have already seen that o(|Q,|) is equivalent to o(|H,|), and this is
therefore given by (17).

LeEMMA 5. Suppose that p satisfies (2) and (3). Suppose that Y |r,| < ©, and
thatr(z) = 0 for |z| < 1. Let q(z) = r(2)p(2). Then [N, pli, [N, gli are equivalent.
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This follows at once from the theorem of Wiener and Lévy already mentioned,
together with [1, Proposition 2 and Corollary 1].

LEMMA 6. Suppose that Y, |r,| < 00, and that r(3) has zeros of order grealer
than or equal to v,(y; > 0) at the points a;(z = 1,2, ... k), where 0 < |ay| < 1.
Let

r(z) = f[ (1 — f)wrl(z).

i=1

Then the expansion of r1(z) as a power series converges absolutely for |z| < 1.
This is [6, Lemma 4].
Proof of Theorem 2. Let

P*E) = p(z) I'ill <1 - 5)7

It follows by repeated applications of Lemma 4 (the regularity of the relevant
methods being ensured by Lemma 2) thats, — 0 [V, p*]; if and only if (5) holds
with ¢, — 0 [NV, p]i. But we deduce from Lemmas 5 and 6 that [N, p*]; and
[N, gl; are equivalent, and the theorem follows.

5. Proof of theorem 3. We use the same notation as in the proof of Theorem
1. By Lemma 5, [N, ¢l; and [N, m], are equivalent, and hence s, — 0 [V, g},
is equivalent to the assertion that

(18) yi_o |(m*a),| = o(|M,]).

But, defining ¢ by (8), and writing

we have
mxa = (pxk)xa = pxb.
Also, by Lemma 2, o(|M,|) = o(|P,]), so that (18) is equivalent to

n

2 [@#0),] = o(IPu]).

v=0

But this is the definition of the assertion that ¢, — 0 [V, p]i. Hence the result.

REFERENCES

1. D. Borwein and F. P. Cass, Strong Nirlund summability, Math. Z. 103 (1968), 94-111.

2. G. H. Hardy, Divergent series (Oxford University Press, London, 1949).

3. B. Kuttner and B. Thorpe, On the strong Norlund summability of a Cauchy product series,
Math. Z. 111 (1969), 69-86.

https://doi.org/10.4153/CJM-1972-032-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-032-4

NORLUND SUMMABILITY 399

4. B. Kwee, Some theorems on Norlund summability, Proc. London Math. Soc. 14, (1964),
353-368.

5. F. M. Mears, Absolute regularity and the Niorlund mean, Ann. of Math. 38 (1937), 594-601.

6. W. Miesner, The convergence fields of Norlund means, Proc. London Math. Soc. 15 (1965),
495-507.

7. A. Peyerimhoff, On convergence fields of Norlund means, Proc. Amer. Math. Soc. 7 (1956),
335-347.

8. A. Zygmund, Trigometric series (Cambridge University Press, London, 1959).

University of Birmingham,
Birmingham, England;
University of Western Ontario,
London, Ontarto

https://doi.org/10.4153/CJM-1972-032-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-032-4

