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Reconfiguration events in turbulent mixed convection, i.e. the superposition of thermal
and forced flow contributions, at the two different Richardson numbers Ri = 1.5 and
Ri = 3.7 and similar Rayleigh numbers of Ra ≈ 108 are investigated with tomographic
particle image velocimetry in combination with local temperature measurements. For
both cases, the three-dimensional velocity fields reflect diagonally aligned large-scale
circulations (LSC) switching their alignment by rotating their axes around a pivot located
at the centre of the LSC, while the temperatures perform a translation movement of
the structures in agreement with earlier temperature-based investigations. For the high
Ri case, the switching process of the observed spontaneous reconfigurations is induced
by a reversing thermal flow contribution while the forced flow contribution is constant.
Furthermore, it is shown that a secondary roll structure, which drives the reconfiguration
process in Rayleigh–Bénard convection, also exists in mixed convection. However, in the
latter, the flow reversals are triggered by different structures which accumulate and release
their kinetic energy according to a proper orthogonal decomposition analysis. In contrast,
for the low Ri case, the structure formation during continuous reconfigurations is governed
by a Taylor- or Görtler-type instability. This means that the forced convection substantially
affects the reconfiguration mechanism of these structures. Therefore, the reconfigurations
cannot be described by a simple superposition of structures associated with the two flow
contributions as for the high Ri.

Key words: buoyancy-driven instability, convection in cavities, turbulent convection

1. Introduction

1.1. Flow reconfigurations in thermal convection
Thermal convection affects a wide spectrum of flows reaching from geophysical to
engineering matters. Typically, these flows are characterised by large-scale circulations
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(LSC) and their dynamical behaviour represents a current research topic. Our aim is
to show to which extent model concepts for pure thermal convection apply to cases of
mixed convection where thermal convection is superimposed by forced convection. Such
model concepts exist for Rayleigh–Bénard convection (RBC) for a variety of regimes and
geometries:

Villermaux (1995) developed a model explaining oscillating instabilities in
two-dimensional square samples as a coupling between the bottom and top boundary
layers: as plumes emitted from one boundary layer impinge on the other boundary
layer, they cause an instability, leading to a new emission of a plume with the opposite
temperature deviation and flow direction. In cases of resonance, this process manifests
itself in the form of temperature oscillations. Experimental studies in three-dimensional
cylindrical samples agree with the model concept of Villermaux. These studies comprise
in particular time correlations of local temperature and velocity measurements (Qiu et al.
2004) as well as cross-sectional velocity fields (Sun, Xia & Tong 2005).

So far, this model only determines an intermittent heat transport as a cause of
temperature oscillations, whereas the direction of the mean wind is considered to be
consistent. In another approach, torsional (Funfschilling & Ahlers 2004; Funfschilling,
Brown & Ahlers 2008) and sloshing (Xi et al. 2009) modes of the LSC are identified as
cause of the temperature oscillations in cylindrical samples. By combining both modes,
temperature and velocity oscillations can be described as waves of the LSC’s location.
This concept replaces the model of a resonating plume emission (Brown & Ahlers 2009;
Xi et al. 2009).

Besides oscillations, reversals present another type of flow instabilities. They
fundamentally affect the orientation of the LSC. Further, they occur non-periodically and
on longer time scales than the oscillations (Cioni, Ciliberto & Sommeria 1997; Niemela
et al. 2001; Sreenivasan, Bershadskii & Niemela 2002). All three referenced studies
were carried out in cylindrical samples equipped with a sensor array to provide local
temperature information which also allows one to draw conclusions on the global velocity
field. As this geometry prefers no particular LSC orientation, the following is assumed
regarding the cause of these events: when one large plume or several smaller plumes eject
a large amount of heat from the boundary layer, its complete buoyancy potential can be
consumed. Subsequently, the direction of an impinging fluid package can redetermine the
direction in which the boundary layer ejects new plumes (Niemela et al. 2001).

In addition to the previous local considerations, the LSC dynamics can also be described
globally. Sreenivasan et al. (2002) present the concept of a flow in a cylindrical sample
with two stable states distinguished by different rotation directions of the LSC. Its
instability is caused by an imbalance between buoyancy and friction. In other words,
reorientations of the LSC result from turbulent fluctuations overcoming a flow-stabilising
potential barrier.

Yet, this concept is based on the assumption that two discrete states exist, while
cylindrical samples allow for continuous changes of the LSC orientation. Brown &
Ahlers (2006) consider this option to classify the LSC reconfiguration events in rotations
and cessations. Their statistical investigations reveal that both types of events occur in
a Poisson-distributed manner. Consequently, the events are considered as spontaneous
and independent from earlier occurrences. Despite the similar statistics of both types,
their mechanisms are reported to be different: rotations describe events, in which the
LSC conserves its momentum but the rotation axis reorients in a continuous process. In
contrast, the LSC breaks down completely and re-emerges in a direction independent from
its previous direction during cessations. The breakdown of the LSC during a cessation
event is confirmed by Xi & Xia (2007). They show the absence of the LSC based on
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the decoherence of a 2-D velocity field measured by particle image velocimetry (PIV).
Further, Xie, Wei & Xia (2013) show that both rotations and cessations also occur in fluids
with high Prandtl numbers, but the associated azimuthal velocity of the LSC is orders of
magnitude lower than in the studies with lower Prandtl numbers.

Although the distinction between events like cessations or reversals, which heavily affect
the LSC, and oscillations, which only have a weak effect on the LSC orientation, seems
strict, some flows exhibit instabilities which blur this classification: for instance, Resagk
et al. (2006) and Brown & Ahlers (2009) show measurements of LSC oscillations with
substantial azimuthal amplitudes of up to 120◦, which highlight the potential influence of
oscillation-type instabilities.

More recent studies reduced the degrees of freedom for the LSC’s orientation by
using a rectangular (quasi) two-dimensional sample (Sugiyama et al. 2010; Podvin
& Sergent 2015; Castillo-Castellanos, Sergent & Rossi 2016; Podvin & Sergent 2017;
Castillo-Castellanos et al. 2019; Chen et al. 2019). These studies include both numerical
and experimental investigations aimed at gaining an insight into the mechanisms of the
reversal events. The results of this sample type highlight the role of secondary corner
circulations: they drive the reversal process as they grow in size and in terms of kinetic
energy. This process continues until the secondary corner circulations are big enough
to cut off the diagonal LSC and form a new LSC rotating in the opposite direction
(Sugiyama et al. 2010). Further understanding of this process was generated by means
of proper orthogonal decompositions (POD) (Podvin & Sergent 2015, 2017) and a global
energy and momentum development analysis (Castillo-Castellanos et al. 2016). Their main
findings include the detection of a precursor mode connecting the onset of a reversal
to a sign change in the time development coefficient of the mode which connects the
boundary layer with the bulk flow. Castillo-Castellanos et al. (2019) confirm that the
reversals occur as a part of a successive process which may, however, take different
paths within the POD phase space. Experimental investigations by Chen et al. (2019)
further point out that the fluctuation strength of the LSC itself is the main determining
factor of the reconfiguration rate, while the corner circulations are still a symptom of the
process.

The studies of Huang et al. (2015) and Zhang et al. (2020) reveal how sensitively
these (quasi) two-dimensional flows react to changes in the boundary conditions. Huang
et al. (2015) compare RBC in samples with a constant temperature and heat flux at the
bottom plate, while maintaining a constant temperature at the top plate. Contrary to their
expectations, more reversals occurred for the constant temperature boundary condition at
both plates than for the set-up with the constant heat flux boundary condition at the bottom
plate. This case also exhibited a stronger LSC and weaker temperature fluctuations, which
is why the authors postulate that the reversals are driven by a force which restores the
broken symmetry of an unidirectional LSC over the course of time. Moreover, Zhang
et al. (2020) examined the flow in a sample featuring control regions with a constant
temperature on otherwise adiabatic sidewalls and demonstrate that their position allows
one to either enhance or suppress the occurrence of reversals. The latter can be explained
by a weakening of plumes as the control regions remove additional heat from the plumes
or cause a separation from the sidewall.

To specifically exclude the influence of the secondary corner circulations on flow
reversals, a thin cylindrical sample with a horizontal centre axis was investigated by Wang
et al. (2018). Even without the corner circulations, flow reversals were observed. In this
case, a heat accumulation followed by a massive plume emission interrupts the LSC’s
stable flow structure. Chen, Wang & Xi (2020) also pursue the idea of eliminating the
influence of corner vortices. By adding chamfer inserts to a quasi-two-dimensional sample,
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they describe a reversal type induced by the instability of the main vortex that also occurs
in unmodified samples but with a lower frequency.

Considering a range of small aspect ratios of rectangular samples, Huang & Xia
(2016) show the reversal behaviour in the transition from quasi-two-dimensional to
three-dimensional flow. They find that reversals occur more frequently in samples with
smaller aspect ratios, in which the plumes are forced to travel through the bulk region and
thus disturb the LSC more often due to the geometrical confinement.

When it comes to three-dimensional cubic samples, investigations of the dynamics of
the LSC were conducted numerically (Foroozani et al. 2017) and experimentally (Bai, Ji &
Brown 2016). Both studies reveal that the LSC changes its alignment along the diagonals
of the sample. This process is characterised by the rotation of the LSC’s orientation
during a short transient period. While rotations of 180◦ occurred, no cessations including
a breakdown of the LSC were detected. Vasiliev et al. (2019) discuss the role of actual
azimuthal flow during these events. They find that events with significant azimuthal
angular moment exist but they are not necessarily associated with the reorientations of
the LSC. Hence, they propose a model based on the superposition of two perpendicular
angular momenta parallel to the sample walls. The model allows one to describe the
process as a reversal of one of these angular momentum components and without
azimuthal flow components. The findings of Soucasse et al. (2019) are in agreement
with this idea as the there applied POD yielded modes representing the proposed
superimposing circulations. Further, the dynamics of higher modes again suggests a
destabilising behaviour of the corner circulations.

This overview on the different LSC reconfiguration processes reveals that their driving
mechanism can be different for different boundary conditions. Another example for this is
the frequency of the occurrence of reconfigurations, which shows different dependencies
on the Rayleigh number in the above-mentioned studies: increasing Rayleigh numbers are
associated with increasing (Araujo, Grossmann & Lohse 2005), decreasing (Ni, Huang &
Xia 2015; Wang et al. 2018; Chen et al. 2019, 2020), non-monotonic (Brown & Ahlers
2006) or independent (Xi & Xia 2007) behaviour of the occurrence frequencies.

1.2. Mixed convection flows in rectangular samples
To study the effects of the superposition of thermal and forced convection, we conducted
experiments in an RBC-like rectangular sample with added in- and outlet vents, see § 2.1.
This corresponds to the trend of investigating flows with closer connections to engineering
problems (Xia 2013). As displayed in figure 1(c), Kühn et al. (2012) report that this flow
arranges itself in a zigzag-like structure. This means the single longitudinal convection roll
(figure 1b), which exists in pure forced convection (Schmeling et al. 2011), realigns in the
shape of multiple diagonal segments or LSCs caused by the additional buoyancy forces.
Furthermore, these LSCs can be observed as counter-rotating circulations in a vertical
longitudinal section (Westhoff et al. 2010). They then have a similar appearance as the
multiple LSCs of pure RBC in the same geometry, see figure 1(a) (Kaczorowski & Wagner
2009; Podvin & Sergent 2012).

An analogy to this break up of a longitudinal roll can be found in turbulent mixed
convection channel flow (Pirozzoli et al. 2017; Blass et al. 2020). There, the heat
transporting convection rolls align longitudinally to the main flow direction but start to
meander at Ri ≈ 100. This observed instability is similar to the wavy instability, which
Clever & Busse (1991) explain and Pabiou, Mergui & Bénard (2005) prove for laminar
flows by means of experiments.
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Left

sidewall Right

sidewall

LSC/convection

roll segment

(a)

(c)

(b)

FIGURE 1. Comparison of the conceptual flow structures of pure RBC (a), pure forced
convection (b) and mixed convection (c) in a rectangular sample. The flow structures are
visualised by generic streamlines (green, purple, black). The respective forcing is indicated by
the heated (red) and cooled (blue) faces (a,c) as well as by flow arrows at the in- and outlet at
the rear wall (b,c). For mixed convection (c), the flow structure aligns in the shape of a zigzag
with multiple convection roll segments or LSCs according to Kühn et al. (2012). The displayed
formation comprises four LSCs spanning between the sidewalls.

However, regarding turbulent mixed convection in the here considered cuboidal
convection sample, Westhoff et al. (2010) measured a low frequency oscillation of the
fluid temperature at the outlet of the sample and also show that the roll core positions
in different cross-sections vary over time. In the following, Schmeling, Bosbach &
Wagner (2013) identify different types of flow instabilities by means of temperature
measurements using a sensor array positioned in the sample. The resulting temperature
fields exhibit hot and cold spots representing sections of the up- and down-welling flow
of the zigzag roll structure. Based on the temperature time series of single probes, two
types of dynamical behaviour are distinguished: continuous temperature oscillations (C)
and spontaneous (S) events occurring stochastically on longer time scales. For both types,
the temperature signals indicate that the hot and cold spots move through the sample along
the longitudinal direction. Projecting these motions on the zigzag roll structure implies a
travelling of the roll segments. Accordingly, roll segments emerge and break down at the
opposing sidewalls in this model conception. A specific event of type S was observed
by Westhoff (2012, pp. 54–70) performing long-time two-dimensional, two-component
PIV measurements in the central longitudinal section of the sample. The subsequent POD
shows changes between four-roll and three-roll states, respectively, associated with the
first and second modes of the decomposition. These findings are in agreement with the
proposed process of Schmeling et al. (2013).

Since the causes of both dynamical behaviours have not yet been identified in existing
research, the understanding of these processes will also benefit from the intended transfer
of RBC model concepts. Consequently, we conducted tomographic PIV measurements
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with simultaneous temperature measurements of both C- and S-type events to contribute
to the understanding of the process. The results were examined with respect to parallels to
instabilities found in RBC. In particular, PODs were conducted on the basis of the velocity
fields obtained during the reconfiguration events. This analysis allows us to discuss the
influence of the resulting coherent structures in the style of the approach of Podvin &
Sergent (2015).

2. Experimental set-up

2.1. Mixed convection sample
We investigated the flow in an enclosure with the dimensions L = 2500 mm and H =
W = 500 mm defining the aspect ratios ΓXY = 5 and ΓYZ = 1. A sketch of the sample
is presented in figure 2 which also comprises the experimental instrumentation, see
§ 2.2. The temperature boundary conditions of the sample were defined by a blackened
aluminium bottom plate (THP) heated by tempered water and a top plate (TCP) of the
same material passively cooled to room temperature. The lateral faces were double-walled
by 10 mm thick polycarbonate to minimise heat exchange with the surroundings while
allowing optical access. A 25 mm high inlet vent (A) was positioned along the top edge
of the rear wall, and a 15 mm high outlet (B) at the bottom edge. This set-up allowed
us to study mixed convection, as both buoyancy and inertial forces can be induced in the
fluid sample. The direction of the forced flow is indicated by the arrows inside the ducts
in figure 2.

The prevalent flow state in the sample depends on the dimensionless parameters
representing the thermal forcing Ra = g β ΔT H3/(ν α), the inertial forcing Re = vin H/ν
and the relation between momentum and heat transport, namely the Prandtl number Pr =
ν/α. With air as working fluid, Pr ≈ 0.7 was assumed to stay constant for the investigated
parameter range. The other dimensionless parameters were varied by changing the
temperature difference between the top and bottom plates ΔT = THP − TCP and the mean
inflow velocity vin . In particular, we adjusted ΔT through THP as the top plate was passively
cooled. Moreover, the volume flow rate V̇ of the air entering the sample via the opening of
the inlet Ain determines the mean inflow velocity vin = V̇/Ain . Except for the sample height
H and gravitational acceleration g, all other quantities determining the dimensionless
numbers were material parameters: they comprise the thermal expansion coefficient β,
the kinematic viscosity ν and the thermal diffusivity α.

In order to generate a sufficiently developed velocity profile at the inlet, the inlet channel
had a length equalling 30 times its height. The first 100 mm were equipped with aluminium
honeycomb material with an inner diameter of 3 mm in order to homogenise the flow.
Further details of the sample were described by Kühn et al. (2011) regarding the realisation
of the apparatus, and by Schmeling et al. (2013) regarding the characterisation of the
experiment’s boundary conditions.

Schmeling et al. (2013) also presented a set of parameter configurations which allows
estimations in terms of the parameter spaces in which C- and S-type reconfiguration events
can be expected. Therefore, the Richardson number Ri = Ra/Pr · Re2, which defines the
relation of thermal to forced convection, is used as main distinction between the event
types.

The Re–Ri parameter space based on Schmeling et al. (2013) is composed of areas
with stable states (blue) as well as of states exhibiting reconfigurations of S- (red) and
C-type (green), see figure 3. In order to generate different types of reconfiguration events,
we applied the parameter sets RiS = 3.7, RaS = 1.4 × 108, ReS = 0.7 × 104 and RiC =
1.5, RaC = 1.6 × 108, ReC = 1.2 × 104, which lie in the respective ranges.
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D
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FIGURE 2. (a) Mixed convection sample with the used measurement set-up. A - inlet vent.
B - outlet vent. C - LED light source. D - PIV camera system. The resulting PIV domain is
highlighted in green. The positions of the temperature sensors near the rear wall are marked by
black dots. (b) Photograph of the mixed convection sample.

It should be noted that the Archimedes number Ar was used as synonym for Ri in the
publication of Schmeling et al. (2013).

2.2. Measurement arrangement
The measurement system was composed of a tomographic PIV set-up intended to
investigate the evolution of flow structures and a temperature sensor array allowing a fast
classification of the present flow state.

While Schmeling et al. (2013) used a temperature sensor array spread throughout
the bulk sample for their investigations, we opted for a rear wall-bound arrangement
to ensure optical accessibility of the PIV domain. Furthermore, wall-bound temperature
measurements are a standard procedure for similar investigations in RBC (Brown & Ahlers
2006; Funfschilling et al. 2008; Bai et al. 2016). Typically, the probes are circumferentially
arranged at different heights. However, we reduced the sensor array exclusively to one
line at the rear wall of the sample. This arrangement still provided sufficient information
about the flow state as the forced flow fixes the up-welling fluid section to the rear wall
for the investigated parameter range. The array comprised 17 Pt100 resistive temperature
sensors of precision class AA (IEC 2008). They were positioned at a height of H/4 and
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7

6

Schmeling (2013) - stable

Schmeling (2013) - continuous

Schmeling (2013) - spontaneous

Present case C
Present case S

5

4
Ri

3

2

1

0.75 1.00 1.25

Re (104)

1.50 1.75 2.00

FIGURE 3. Parameter space with the classification determined by Schmeling et al. (2013):
stable states as well as continuous and spontaneous reconfigurations are indicated by blue, green
and red dots, respectively. Additionally, the cases studied in this work are marked by diamonds:
the red diamond marks case S (Ri = 3.7, Ra = 1.4 × 108, Re = 0.7 × 104) and the green one
marks case C (Ri = 1.5, Ra = 1.6 × 108, Re = 1.2 × 104).

in a distance of W/50 to the rear wall, in accordance with Wessels et al. (2019). Their
arrangement is indicated by the black dots in figure 2. The sensor resistances were acquired
by a scanning multimeter resulting in a measurement period of Δt ≈ 8.7 s for each single
sensor. This frequency is of the order of the turnover frequency of the main convection
roll. As the reconfiguration events occur on time scales at least one order of magnitude
larger, this acquisition frequency was sufficient.

The measured temperature distribution is physically related to the global flow structure
as Y-displacements of the convection roll are accompanied by changes in the temperature
field. Therefore, changes of the rear-wall temperature distribution correspond to variations
of the longitudinal distribution of LSCs (Niehaus et al. 2020).

Due to this interdependence, the temperature measurements also indicate the beginning
of a flow reconfiguration event. Thus, we used them to trigger the PIV when a spontaneous
reconfiguration occurred. This was necessary as the seeding precipitation during PIV
would have affected the boundary conditions for longer ring buffer-based measurements.
Details on the implementation of the trigger condition are described by Mommert et al.
(2019).

In terms of the tomographic PIV set-up, we decided to measure the flow in the vicinity
of the left sidewall in order to capture the expected structure formation process, which is
part of the reconfiguration process described by Schmeling et al. (2013).

The corresponding PIV set-up is presented in figure 2. It shows the arrangement of the
LED illumination (C), the camera system (D) and the measurement domain highlighted
in green. To achieve particle images with sufficient contrast for PIV in a domain of this
size, we chose the approach of LED-illuminated helium-filled soap bubbles similar to
Kühn et al. (2012). Further information on the PIV system and its configuration for the
measured cases can be found in table 1.
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Case S Case C
Field of view X = 0 . . . 600 mm

Y = 0 . . . 500 mm
Z = 0 . . . 500 mm

Interrogation volume 40 mm × 40 mm × 40 mm
Observation distance Ycamera ≈ −1800 mm
Recording medium 4 × pco.edge 5.5 CMOS camera
Recording lens 4× Zeiss Planar T∗ 50 mm f /1.4
Illumination 15 × 15 white light LED array
Seeding material Helium filled soap bubbles
Working aperture f /4.8 f /5.6
Pulse delay τS = 12 ms τC = 10 ms
Imaging frequency 0.91 Hz 3.65 Hz
Measurement start Temperature triggered Arbitrary

TABLE 1. Recording parameters for tomographic PIV.

To ensure the required projection accuracy for the tomographic reconstruction of
the acquired frames, we applied a volume self-calibration (Wieneke 2008) for each
measured case in addition to the standard procedure of defining a mapping polynomial
by capturing targets with known positions. Subsequently, tomographic reconstructions
were performed using the simultaneous multiplicative algebraic reconstruction technique
(Mishra, Muralidhar & Munshi 1999). The velocity vectors were then determined by a
three-dimensional cross-correlations. Except for minor changes, the algorithm of Kühn
et al. (2011) was used for these procedures. Outlier velocity vectors were replaced after
identifying them in two steps: First, all vectors with an unphysically high magnitude
‖u‖ ≥ 1.6vin or low PIV correlation coefficient r3D < 0.2 were marked. Second, further
vectors of the remaining unmarked vectors were marked by means of the universal outlier
detection (Westerweel & Scarano 2005). Afterwards, all marked vectors were replaced by
an interpolation between valid neighbouring vectors as methods like POD require gapless
data. The number of outliers replaced in this way amounted to approximately 10 % with
the outliers being randomly distributed in the measurement volume.

3. Proper orthogonal decomposition

The characteristics of the different reconfiguration types were investigated by
performing a POD analysis in order to determine the flow’s coherent structures and their
manifestation over the course of time in § 4.

For the POD, each velocity vector field is reshaped into a single-state column vector
ut = [uX,(1,1,1), uY,(1,1,1), uZ,(1,1,1), . . . , uZ,(I,J,K)]. In this context, I,J and K are the number
of grid points along the coordinate axes of the PIV domain.

Subsequently, the method of snapshots (Sirovich 1987) is applied to achieve the
decomposition of these vectors into k hierarchical modes φk and the respective time
coefficients ak,t as shown in (3.1)

ut =
∑

k

ak,t φk. (3.1)
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Therefore, the series of N discrete measurements in form of ut are merged into the state
matrix U

U =
⎡
⎣ | | |

u1 u2 . . . uN
| | |

⎤
⎦ . (3.2)

Next, the auto-correlation matrix C is calculated

C = U�U. (3.3)

Solving the eigenvalue problem of (3.4) yields time coefficient vectors ak =
[ak,1, ak,2, . . . , ak,N] and mode-related eigenvalues λk

Cak = λkak. (3.4)

As each element of the auto-correlation matrix C is a product of two velocity
components, the eigenvalues λk represent a measure of the kinetic energy contained in
a mode. Spatial representations φk of the latter can then be computed by

φk = Uak. (3.5)

For the interpretation of the modes, it is important to consider that translatory moving
coherent structures are not extracted into single modes by the POD method. Instead,
this method distributes the moving structure to a set of modes, similar to a Fourier
decomposition, in order to reproduce the movements (Brunton & Kutz 2019, pp. 396–397).
Such a Fourier-like representation is related to a slow decay of the eigenvalues. As
Schmeling et al. (2013) conjecture a translation of flow structures, the PODs have to be
interpreted with particular care with regard to this issue.

Furthermore, it should be noted that the present PODs were based on the uncentred state
matrices U . This is of particular interest, as the first mode of an uncentred POD can be
similar to the averaged field. That way, the POD also quantifies the energy contained in
that structure.

4. Results and discussion

4.1. Rear-wall temperature distribution
The first part of the analysis focuses on the temperature data to establish a relation
to previous studies and to gain first information about the time development of the
reconfiguration processes including their consistency.

In order to identify the LSCs based on local temperatures, the evolution of the spatial
interpolation between the rear-wall sensors is displayed in figure 4 for the considered cases
S and C. It displays the respective time-averaged temperature distributions on the left side:
while the two hot spots (L/4, 3L/4) of the stable periods become visible for case S , the
distribution of case C shows no clear structures as this case did not exhibit stable periods.

The evolutions of the associated temperature deviations on the right of figure 4 reveal
a number of hot spots (HS) mainly moving from the left to the right X-positions for both
cases. During the reconfiguration events of case S , the deviations become more intense,
as the structure of the stable periods is already imprinted on its mean distribution.

The main distinctive features of the cases are the time scales of the hot spots’ dynamics
and the number of implied LSCs. To quantify the latter, we consider the following: each
hot spot is associated with up-welling warm fluid, whereas the compensating colder flow
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FIGURE 4. Time-averaged temperature distributions for the rear-wall sensor array (left) and
the time evolutions of the deviations from the mean value (right) shown for both cases S (a)
and C (b).

regions are located on the hot spot’s sides and expressed as cold patches in figure 4. For
an initial guess, the wavenumber w, here defined by the number of LSCs, was calculated
by the distances ΔX between a hot and a cold spot (CS) or two hot or cold spots:

w ≈ L
ΔXHS−CS

≈ 2L
ΔXHS−HS

≈ 2L
ΔXCS−CS

. (4.1)

On this basis, we estimated wS = 4 and wC = 8 for the respective cases. These numbers
correspond to the findings of Westhoff (2012, pp. 54–59), who also found these two
wavenumbers associated with high and low Ri in a study of turbulent mixed convection
cases with cases with similar Ra.

In order to gain temporal information on this matter, the number of LSCs was
determined over the course of time by applying a cosine-based curve fit (4.2) to the
instantaneous temperature distributions Tt(X). The fit parameters were determined by
minimising the sum the residuals’ squares with Newton’s method. As the temporal
resolution was sufficient to continuously resolve transformation processes, the established
fit parameters of the previous instant were used as starting conditions for the succeeding
time step. Since the reconfiguration process is characterised by decaying and emerging
LSCs (Schmeling et al. 2013), we focused on the cosine summands next to the suggested
wavenumbers wS = 4 and wC = 8. Besides the number of LSCs, further information about
the states is contained in the sign of An . Thereby, a positive sign corresponds to a hot spot
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FIGURE 5. Temporal development of the absolute values of the cosine fit amplitudes |An|
implying the number of LSCs in the sample for case S.
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FIGURE 6. Temporal development of the cosine fit amplitudes An implying the number of
LSCs in the sample for case C.

at the left sidewall.

fT(X) =
w+1∑

n=w−1

(
An cos

(
nπX

L

))
+ T0. (4.2)

For both cases, the amplitudes An are plotted in figures 5 and 6, respectively. Regarding
case S , the absolute amplitudes show that a reconfiguration event consists of multiple
changes between 4 and 3 LSC states, while |A5| never dominates. However, during the
multiple hour long periods of stability, |A3| and |A5| are steadily rising. Similar rises can
be observed for |A3| during the short 4 LSC periods of the reconfiguration events.

This shows that case S is characterised by a continuous reconfiguration process although
it exhibits distinct events. The existence of a quasi-stable period between the events
indicates that there is a preferred flow state with four LSCs.

Figure 7 allows us to describe the process in more detail as it depicts the phase space
of the signed amplitudes An . It visualises the quasi-stable periods of the preferred state
as an accumulation of data points representing a 4 LSC state with A4 < 0. This means
that the cold areas appear at the sides of the sample for most of the time, which was also
found to be the stable configuration for a wide Ra-range in numerical simulations of RBC
(Kaczorowski & Wagner 2009).

As the depiction covers three events which cannot be distinguished, it shows that they
proceed as a consistent process: the preferred 4 LSC state is followed by a 3 LSC state
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FIGURE 7. Phase space of the fit amplitudes An of case S allowing us to determine the exact
orientation by the means of the amplitudes’ sign.

with a cold left side (A3 < 0). The flow then passes through a 4 LSC state with warm
sides before the circle is closed by traversing a 3 LSC state with a warm left side. Such
a switching between states with different retention times was also observed by Xie, Ding
& Xia (2018) in an annular RBC sample. In contrast to their study, the two main states
in the present investigation exhibit the same wavenumber and only their transition is
predominated by a state of a lower wavenumber.

During the whole process, A5 plays only a minor role. This is in good agreement with
the observations of Schmeling et al. (2013), which describe the same cycle process with
an LSC decay on the right side followed by the formation of a new LSC on the left side.
Regarding the origin of these events, the slow rise of |A3| and |A5| during the quasi-stable
phase also corresponds to the idea of a heat or momentum accumulation mechanism.
That could further mean that the distinct spontaneous events equal the passing of an
accumulation threshold accompanied by the release of the earlier accumulations similar to
Sugiyama et al. (2010) or Wang et al. (2018).

Regarding case C, the An evolution shown in figure 6 reflects the continuous dynamics
with a mean period of tC ≈ 215 s. Our initial wavenumber guess is confirmed as the
coefficient A8 displays the highest amplitudes. Therefore, we define 8 LSCs as the
underlying baseline for this case and use A8 as an indicator for its dynamics. In contrast
to case S , the maximum amplitudes of An are only half as large. This means that random
turbulent fluctuations have a stronger influence and the reconfiguration process appears
more chaotic. However, the following systematics are revealed: the intervals of sign change
with positive gradient of A8 display a positive A9 as prevalent amplitude parameter. During
a change of sign with negative gradient of A8, a positive A7 is prevalent.

This can be interpreted as follows: an 8 LSC state with cold sides transforms into an 8
LSC state with warm sides via the generation of a new counter-rotating LSC on the left
side followed by the decay of the rightmost LSC. During the opposite transformation, the
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FIGURE 8. Phase space of the cosine fit amplitudes An for case C. The displayed dots are
moving averages of An over 3 data points.

decay on the right side takes place first and is succeeded by the formation of a new LSC on
the left side. Further, the observations also reveal a bias of case C towards positive values of
An , while for case S the differently signed extents of A3 and A4 were almost symmetric but
varied in duration. The fact that this manifestation of the bias does not create quasi-stable
states indicates that these reconfigurations are driven by different forces. Hence, the share
of forced convection remains as the main driver for the reconfigurations case C. This idea
is followed up by the analyses of § 4.3.

Figure 8 also confirms the consistency of this case as a prevalent orbit exists in the phase
space of case C. In contrast to case S , the orbit is tilted inside the three-dimensional (3-D)
phase space, as both, A7 and A9, play an important role.

Despite possible differences regarding the driving forces, the findings of the temperature
measurements indicate that the reconfiguration mechanisms of both cases are based on the
translation of flow structures in the sample accompanied by the generation and decay of
LSCs at the sidewalls. This result corresponds to the conclusions drawn by Schmeling
et al. (2013). To test this model concept, the results of 3-D PIV measurements performed
during the presented time series are addressed in the next sections.

4.2. Velocity fields of spontaneous events
For assessing flow field information of an event of type S , we used a temperature-based
trigger, see § 2.2. Especially, a condition checking for a change in the relation of two
local temperatures between the previous (t − Δt) and latest (t) measurements was found
to be an indicator for the onset of an event in preliminary tests (Mommert et al. 2019),
see (4.3a,b). Its instant of occurrence is also marked by a circle in figure 9(a), which
depicts the evolution of the respective temperature signals. Additionally, the colour-coded
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background indicates periods of |A3| or |A4| dominance based on the cosine fits.

T(X = 0.275L, t − Δt) > T(X = 0.425L, t − Δt) and (4.3a)

T(X = 0.275L, t) ≤ T(X = 0.425L, t). (4.3b)

Limited by the delay for achieving a sufficiently high seeding density, we acquired flow
data for the time span marked by a blue bar in figure 9(a), which covers approximately
75 % of the event. Exemplary flow fields of this time span are presented in figure 9(b). They
comprise velocity vectors in three cross-sections and streamlines in regions of relatively
low velocities (‖u‖/vin < 0.2) to visualise the convection roll structure in the domain.

Regarding the temperature analysis, the first observed state (I) represents the beginning
of the transition from a 3 LSC configuration with prevalent cold temperatures at the left
sidewall to four LSCs with a ‘warm sidewall’. At this instant, the streamlines reflect a
single convection roll core with a diagonal alignment characterised by a displacement
towards the front and top on the left side and rear and bottom on the right side. We
assign this instant already to the onset of a 4 LSC state, as instants II and III display an
intensified version of this alignment of the main roll core. At the same time, first traces of
the formation of a secondary structure can be observed for instant II: at X ≈ L/8, another
roll core branches out on the rear side of the main roll and extends to the left sidewall
where it curves towards a Y-parallel alignment. This formation prevails throughout the
dominance of |A4| as velocity field III represents a similar formation.

At time instant IV, the onset of the |A3|-dominant interval, the secondary structure
vanishes and the diagonal displacement of the main roll from its central location is
reduced. Thus, it can be considered as central and straight. With |A4| becoming dominant
again at instant V, the main roll realigns with the inverse diagonal (left rear to upper
right front) which also entails a secondary roll branch. For this alignment, the secondary
structure branches also from the rear side of the main roll at X ≈ L/8 and stretches to
X ≈ L/4 corresponding to the hot spot location at the rear wall. There, it aligns parallel to
the Y-axis. Velocity field VI shows that this branch alignment is prevalent for the 4 LSC
configuration observed during the remainder of the measurement period.

Especially, the occurrence of a secondary roll branch raises further questions with
regard to possible links to corner roll-driven reversals in RBC; see Sugiyama et al. (2010)
and Soucasse et al. (2019). For a stable mixed convection case, Kühn et al. (2012) also
found Y-parallel vortical structures, which occurred in pairs and were otherwise similar
to the structure of the secondary branches. Therefore, we extrapolate that a mirrored
secondary branch outside the PIV domain exists for fields like V or VI, see figure 9(c).
Regarding their dynamic behaviour, we observed the decay of these branches at the onset
of the reconfiguration rather than a growth. This rules out a reversal process analogous to
RBC in quasi two-dimensional samples.

In the following our observations will be summarised and evaluated. In terms of the
temperature analysis, we expected the following behaviour of the main convection roll:
during |A3|-dominance, the diagonal segments stretch to fill the space along the X-axis.
Under this assumption, the secondary branches persist and move corresponding to the hot
spots over the course of a reconfiguration; compare with figure 4. However, we found that
the flow structures occurring in the monitored part of the sample during |A3|-dominance
reflect a transition state without strong diagonal displacements or secondary roll branches;
see instant IV. While a translational propagation of the secondary structures is plausible
for more X-central regions of the sample, our observations contradict the translational
model regarding the dynamics of the leftmost LSC. Rather, the motion of this segment
of the main convection roll is described by the switch of orientation of the observed roll
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FIGURE 9. (a) Temperature time series recorded by selected sensors over the course of a
reconfiguration event. The interval for which velocity fields were measured is marked by a blue
bar. (b) Velocity fields for 6 points in time, which are indicated in the temperature series. The
fields are represented by vectors in 3 cross-sections and streamlines in areas of ‖u‖/vin < 0.2
reflecting the convection roll core. The displayed fields are short-time averaged over 9 frames.
Supplementary movie 1, available at https://doi.org/10.1017/jfm.2020.705, shows the complete
time series. (c) Sketches of the extrapolated or idealised flow structures. The main convection
roll and the secondary branch are marked in blue and green, respectively. They are projected onto
the bottom plate in red.
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FIGURE 10. (a) Vortex system represented by angular momentum arrows in the PIV region of
the sample. Blue: main convection roll. Green: secondary roll branch. Brown: front bottom edge
vortex. Grey: control region for plume event analysis. (b) X velocity component averaged over
the region of the edge vortex. (c) Z velocity component averaged over the region of the control
plane.

segment around a pivot at X ≈ L/8, which we will refer to as switching. This raises the
question why figure 4 displays a translating hot spot in the region overlapping the PIV
domain, where no secondary structure was observed during the transition (see figure 9c).

The reason for these observations is that the position of the temperature sensor array
leads to the acquisition of temperature footprints related to local structures occurring
during the reconfiguration events. These structures are plumes which originate from
the front bottom edge vortex of the sample. Figure 10 shows the position of the edge
vortex in relation to the main convection roll and its secondary roll branch. In order
to describe the mechanism responsible for a reconfiguration event, the longitudinal
velocity component in the region of the edge vortex is depicted in figure 10(b). Similarly,
figure 10(c) shows the spanwise-averaged vertical velocity component in the control region
drawn in a).

Regarding the longitudinal flow within the edge vortex, it is evident that this vortex
transports fluids towards the secondary roll branch. However, this mechanism changes its
direction, when the flow reconfigures itself (17.0 × 103 ≤ t ≤ 17.5 × 103). Similar to 2-D
RBC (Sugiyama et al. 2010), the edge vortex gathers heat from the bottom plate. Due to
the small size of this circulation, the heat can hardly dissipate through the boundaries
of the vortex. Therefore, the longitudinal convection within the vortex plays a major
role when it comes to transporting the accumulated heat. Apparently, a reconfiguration
occurs when this longitudinal transport is interrupted and switches its direction – most
likely due to saturation effects. At the same time, the heat is not sufficiently removed
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FIGURE 11. Eigenvalue distribution for the POD of case S (a) and the four most prevalent
modes normalised by the square root of the respective eigenvalue (b). Their structure is
represented by the vectors of the highest magnitude. Supplementary movie 2 contains tracking
shots of the displayed structures.

from the edge vortex, which leads to multiple eruptions of plumes. The latter disturb the
main roll and therefore promote its reorientation (see Huang & Xia 2016). Evidence for
these plume eruptions is provided by the averaged vertical velocity component in a control
plane displayed in figure 10(c). It shows that footprints of these plumes occur when the
longitudinal transport of the edge vortex switches direction. Therefore, the translation of
hot spots observed in the temperature distributions of the rear wall is associated with events
of local plume eruptions.

In the meantime, the macroscopic flow structure follows certain maximum and
minimum principles: the two diagonal arrangements of the LSC represent potential
minima. Regarding the changes between these states, the potential barrier for a switching
appears lower than for a translation, as the latter would require the generation of a very
narrow diagonal convection roll segment at the sidewall.

In order to gain insight into the macroscopic processes behind the switching of this roll
segment, we investigated the underlying coherent structures. Hence, a POD was conducted
with the instantaneous velocity fields. Applying the approach of Podvin & Sergent (2015),
representations of the structure of the most prevalent modes and the respective eigenvalue
distribution are presented in figure 11 for this case.

Most remarkably the first POD mode is represented by a vector field shaped like
a longitudinal convection roll similar to the one of pure forced convection (Westhoff
et al. 2010; Kühn et al. 2012); see figure 11(b). Although the Richardson number
Ri = 3.7 indicates that a buoyancy dominated flow exists, this forced convection mode
acquires 60 % of the kinetic energy. However, it will be shown that the flow dynamics is
mainly represented by the second mode, which we assign to the contribution of thermal
convection. This is due to the fact that the large-scale circulation of the second mode
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FIGURE 12. Time development coefficients for the first four POD modes as presented
in figure 11.

is aligned in Y-direction. This agrees with the alignment obtained for pure thermal
convection, i.e. RBC, in samples with the same aspect ratios (Kaczorowski & Wagner
2009; Podvin & Sergent 2012). The fraction of the second mode’s eigenvalue amounts
to 11.5 %. With both X- and Y-angular momenta covered by the first two modes, these
allow us to reconstruct the convection roll’s diagonal alignment and rotation in the
central XY-plane. Although only 2 % and 1 % of the overall energy is contained in the
following modes, their influence on the reconfiguration process cannot be excluded:
these modes also mark the transition from large-scale contributions to the coverage of
localised structures. The third mode comprises not only a large-scale circulation aligned
in Z-direction but also a strong contribution to an upward flow near the front left vertical
edge of the sample. Mode 4 is even more localised, with a downward flow in the front
part of the sample, which makes the strongest contribution at X ≈ 0.14L. Regarding the
considerations on PODs in terms of translating structures, it is certain that the present POD
does not represent a translation-dominated process, since the eigenvalues would decline
significantly slower in that case (Brunton & Kutz 2019, pp. 396–397). Further, modes 3
and 4 do not display structures comparable to Fourier modes, that means multiple rolls
with a Y-angular momentum. Instead, they show more localised and complex structures
as the example of mode 4 shows. However, no further modes will be presented due
to the advancing decline of their eigenvalues and therefore decreased contribution to
the flow.

Another reason for this can be deduced from figure 12 displaying the temporal
development of the modes: higher modes cover structures associated with small(er)-scale
turbulence and increasing measurement noise which results in the time evolution
becoming noisier and harder to interpret.

However, the presented modes allow us to shed more light on the flow processes during a
reconfiguration event: the first mode’s coefficient remains constant until t ≈ 17.5 × 103 s,
then it drops from 0.02 to 0.016. We explain this drop as an artefact of the incomplete
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reconfiguration process as input of the POD. It can also be retraced in an imperfection of
the longitudinal convection roll visible at the left vertical edge of the vector plot k = 1 in
figure 11. However, since the change of this coefficient is small compared to the dynamic
of the other coefficients, the reconfiguration is captured sufficiently by the POD.

The coefficient of mode 2 crosses zero at t ≈ 15.2 × 103 s and rises to 0.02 where
it remains stable during the time span 15.75 × 103 s ≤ t ≤ 16.75 × 103 s. Afterwards, it
falls with increasing rates to a value of −0.025 and levels off for the remainder of the time
series. As for the influence on the flow, the coefficient’s changes of sign at t ≈ 15.2 × 103 s
and t ≈ 17.3 × 103 s imply that the main thermally induced structure reverses twice
during a reconfiguration event. Interpreting this in the context of super-positioned angular
momenta, a reversing second mode reflects a change in the diagonal alignment of the main
convection roll by rotation (see Soucasse et al. 2019; Vasiliev et al. 2019).

This poses the following question: how do the buoyancy-induced coherent structures
behave in comparison with the LSCs of RBC?

A similarity to the cessations observed in cylindrical RBC (Brown & Ahlers 2006)
is indicated by the two zero crossings in the time course of the coefficient of the second
mode. These two zero crossings reflect that the main structure driven by the buoyancy force
ceases to exist during reconfiguration events. The cessation process is, like other Poisson
processes in cubic RBC (Bai et al. 2016), based on the breaking of a potential barrier
by turbulent fluctuations. However, taking the remaining modes 3 and 4 into account
contradicts the explanation of random fluctuations as a cause for the reversals of the
present case: in particular, the coefficients of mode 3 and 4 display increased absolute
values during the sign changes of mode 2 and lower ones during the level intervals of
mode 2. This means that momentum is transferred between the coherent structures of
mode 2 and the two following modes. Thus, this exchange resembles a coordinated process
rather than random fluctuations as it proceeds for both sign changes of mode 2.

Further investigation of mode 3 in figure 12, reveals that this mode approximates the
change rate of mode 2. As mode 3 is associated with an angular momentum in the
Z-direction, it might represent a azimuthal motion which drives the reconfiguration (see
Vasiliev et al. 2019). However, the consideration of the sign of a3 yields an azimuthal
flow contrary to the one expected from the evolution of the flow structure. That means the
observed reconfigurations are not driven by azimuthal flow. Rather, the Z-oriented rotation
of mode 3 adds another, vertical angular momentum component to the model describing
the diagonally aligned convection roll with the first two modes. This way, mode 3 mainly
represents an additional vertical tilt of the convection roll core. Tangible descriptions of its
effect are given by the depiction of the reconstructed roll cores in figure 13: the addition
of mode 3 allows the reconstruction of a stronger elevation of the roll core next to the
sidewall for time step II. On the contrary, the correct central core position at time step IV
is also achieved by including mode 3.

Furthermore, the time coefficient of mode 3 falls constantly in the period 15.75 ×
103 s ≤ t ≤ 16.75 × 103 s, in which the direct observation of the flow fields revealed no
significant transition process. This again underlines the presence of a accumulation and
release reversal mechanism (Wang et al. 2018). In detail, the kinetic energy accumulated
in the coherent structures of mode 3 is released and transferred to mode 2 rather quickly
after a critical level was reached (t ≈ 17.4 × 103 s).

Further indication for this kind of process is provided by mode 4: it keeps fluctuating
around −0.01 for most of the time but shows elevated values surpassing 0.03 while the
large-scale flow structure is being transformed. Spatially, this mode has the strongest
contributions at X ≈ 0.14L, see figure 11. Hence, we associate its flow structure with the
‘release’ which triggers the progression of the reconfiguration.
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FIGURE 13. The ‖u‖ = vin/8 isosurfaces representing the convection roll core for the
short-time average PIV fields (red) and the POD reconstructions with the modes k ≤ 2 (green)
and k ≤ 3 (blue) for the times II and IV from figure 9(a). Tracking shots of these isosurface plots
are part of supplementary movies 3 and 4.
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FIGURE 14. Phase space of the modes 2 and 3 during a reconfiguration event.

More information about the characteristics of the present reconfiguration event can be
deduced from its progression in the phase space of the time coefficients of modes 2 and
3 displayed in figure 14. It shows, that approximately three quarters of the reconfiguration
cycle are covered by the measurement, which is consistent with the temporal consideration
of figure 9(a). The distribution of flow states in this phase plane further reveals an elliptical
shape. While it is almost axisymmetric to a3 = 0, its extent in the a2 direction is larger in
the negative direction. This might be caused by parts of the secondary roll branch inherent
to this mode. Another possible explanation is that negative a2 values represent the flow
state which is preferred in comparison with the reversed one.

Besides that eccentricity, the point density reveals the rate at which the states change.
This also indicates an accumulation and release process, as the state evolves slowly around
a3 = 0 as well as in quadrant Q4 and rapidly in the quadrants Q1 and Q3.

Projecting the progression of Q4 onto Q2 yields point-symmetric change rates relative
to the origin. This indicates that both diagonally aligned states of the main convection roll
can be considered as meta-stable states with similar mechanisms depleting their stability.
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FIGURE 15. Correlation plots of the cosine coefficients A and the POD coefficients a with the
respective Pearson’s correlation coefficients ρ for case S.

To identify relations between the different dynamics of the temperature and velocity
field, we conducted correlations of the cosine and POD coefficients, see figure 15. It
reveals that the prevalence of the 4 LSC state (A4) strongly correlates with the respective
coherent structure determined by the POD ρA4a2 = 0.96. During the events, both A3, A5
and a3, a4 become particularly active. However, only a3 yields reasonable correlation
coefficients for ρA3a3 and ρA5a3 with differing signs. However, these correlations may be
coincidental, as the structure of mode 3 itself does not contain flow structures explaining
rear-wall hot spots, whose positions would match the implied wavenumbers. As the
cosine functions cover the complete sample, connecting features between the temperatures
and the flow process represented by mode 3 might also exist outside the PIV domain.
Regarding a4, only low correlation values are registered. However, the ‘<’-shape of the
correlation plots indicates that there is a correlation with the absolute values of |A3| and
|A4|. That means this mode is associated with the transition period characterised by the
hot spot movement. This also explains that, the mode’s contribution is of the same sign
for both directions of the reversal of mode 2.

In summary, the POD provided coherent structures to generate a model concept for the
reconfiguration events. It includes constant (mode 1) and reversing (mode 2) fractions
of the flow structure. Modes 3 and 4 represent details of the two reversals processes of
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mode 2, which are dependent and independent from the reversal direction, respectively. In
particular, the separation of the superimposed forced flow (mode 1) allowed us to consider
these events as buoyancy-induced flow reversals with an accumulation and release process.

The correlation plots of the latter two modes showed that there is a correlation of
these modes and the cosine fit amplitudes which describe the translation mechanism.
Nevertheless, the causal connection cannot be deduced from the modes’ coherent
structures in an obvious manner. Therefore both concepts, translation and switching,
represent projections of a complex underlying flow process. Thus, their connection should
be further investigated in the future.

4.3. Velocity fields of continuous reconfigurations
As discussed in § 4.1, the wavenumbers 7, 8 and 9 are dominant at certain times of a
reconfiguration cycle for the smaller Richardson number RiC = 1.5. In figure 16(a), we
depict coefficient A8, which showed the largest amplitudes, to emphasise how the acquired
flow fields are associated with the cycle. The graph shows approximately six cycles of
varying amplitudes of which just over four were covered by PIV. Six exemplary flow fields
of that measurement are shown in figure 16(b) analogous to § 4.2.

Snapshot I shows a convection roll which is straight in relation to the different
alignments of case S . However, with regard to the color-coded Y-positions, it is possible
to observe a displacement towards the rear at the sides of the measurement volume
and towards the front at X ≈ L/8. That equals a doubled number of distinct diagonal
alignments in the PIV domain in comparison with case S . It further matches the dominant
wavenumber w = 8 derived from the temperature data by the cosine fits. For snapshot II,
there are no roll displacements from the centre. This coincides with a constant decline and
zero crossing of A8. The next snapshot (III) relates to a minimum of A8 and shows the
opposite displacements in the velocity field as compared to I. Snapshot IV completes the
cycle since it again represents a zero crossing of A8 with no roll displacement observable
in the corresponding velocity field. To demonstrate the repeatability, the snapshots V and
VI show similar roll core arrangements as I and III. Both pairs represent a maximum and
a minimum of A8, respectively.

Just as in case S , this case also shows a switching of the diagonal roll alignment,
whereas the analysis of the temperature data indicates a translation. However, this case
is characterised by different associations of the hot and cold regions at the rear wall with
the main roll’s Y-displacement: by comparing the implied temperature distribution of A8
with the velocity fields, we found that warmer regions are associated with areas where
the convection roll’s core is displaced towards the rear. This is the opposite behaviour
compared to the S case.

To better understand this observation, it is necessary to gain insight into the coherent
structures of this flow by applying a POD to the velocity fields. Above all, these roll
core displacements are superimposed by erratic fluctuations which have nearly the same
amplitude as the displacement in the exemplary snapshots, as supplementary movie 5
associated with figure 16(b) shows. This emphasises the need for a filtering analysis of the
flow structures also represented by the POD. Following the same approach as in § 4.2, the
eigenvalue distribution as well as the normalised structure of the most prevalent modes is
depicted in figure 17.

For this case, the first mode includes significantly more energy (79 %) than the first
mode of case S (60 %). Since a larger amount of energy is concentrated within this
mode, less energy is allocated to the following modes compared to their equivalents of
case S . For instance, the contribution of the second mode is already smaller than 1 %.
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FIGURE 16. (a) Time series of the wavenumber amplitudes over the course of a reconfiguration
event. The interval for which velocity fields were measured is marked by a blue bar.
(b) Velocity fields for 6 points in times, which are indicated in the temperature series. The fields
are represented by vectors in 3 cross-sections and streamlines in areas of ‖u‖/vin < 0.2, which
reflect the convection roll core. The displayed fields are short-time averaged over 25 frames. The
complete time series can be seen in supplementary movie 5.

This corresponds to the smaller Richardson number of case C, as it signals that the inertial
forces, which support the structure of the first mode, are even more dominant for this case.

Similar to case S , the second mode incorporates coherent structures with rotation axes
parallel to the Y-axis. In contrast to the single circulation which spreads across the whole
domain for case S , we observe six smaller circulations for the C case. Their arrangement,
two rolls in the longitudinal direction and three of these pairs in the vertical direction of
the domain, was similarly found by Westhoff (2012, pp. 57–59).
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FIGURE 17. Eigenvalue distribution for the POD of case C (a) and the four most prevalent modes
normalised by the square root of the respective eigenvalue (b). Their structure is represented by
the vectors of the highest magnitude. Supplementary movie 6 contains tracking shots of the
displayed structures.

Modes 3 and 4 also display vortical structures, whose rotation axes are parallel to Y .
However, their strongest contribution is limited to one layer of vortices above the bottom
plate. Together with mode 2 and with regard to Brunton & Kutz (2019, pp. 396–397),
these structures represent the translation of vortices in this lower layer. This motion is not
transferred to the centre of the sample, as contributions of modes 3 and 4 are weak in this
region and a switching can be observed. Our analysis of these modes is limited to their
structure, as the time development coefficients of modes with lower eigenvalues appear
increasingly noisy.

Superimposing the first two modes yields, similar to case S , diagonally aligned
convection roll segments in the centre XY-plane. Regarding mode 2, only the circulations
at central Z-positions influence the alignment of the core of forced convection structure
of mode 1, which is positioned at the same height. This explains the difference between
both cases regarding the association of warm regions at the rear wall and the displacement
of the convection roll core: while the centre pair of rotating coherent structures controls
the roll displacement, the counter-rotating bottom structures affect the air reaching the
temperature sensors.

In order to assess whether roll segments of this case perform a switching motion during
reconfigurations, we consider the time development coefficients displayed in figure 18.
Again, the first mode has a constant coefficient of just under 0.02, signalling a consistent
contribution of the main forced convection roll structure to the flow. Whereas the second
mode shows fluctuations around zero with varying amplitudes. The changes of sign of
this mode’s coefficients indicate that the direction of the coherent structures of mode 2
reverses for case C, too. That means that the overall convection roll alignment switches as
in case S , but with the doubled spatial wavenumber.
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FIGURE 18. Time development coefficients for the first 2 POD modes also displayed
in figure 17.

The relation between velocity and temperature fields is investigated by means of
correlation plots presented in figure 19. The strongest correlation occurs with |ρA8a2 | =
0.83 which confirms that the lower Y-parallel roll pair of mode 2 is responsible for the
appearance of LSC-indicating hot spots at the rear wall.

As stated in § 4.1, the characteristics of the temperature fit parameters indicated a
mechanism driven by forced flow. The second mode in case C confirms this concept:
the strong bottom pair of coherent structures of this mode has a similar appearance as
Taylor–Görtler-like vortices appearing in lid-driven or open cavity flows (Koseff & Street
1984; Iwatsu et al. 1989). Both studies show that these structures can occur with a size of
H/3 for Re numbers of the same magnitude as those of the present study.

These structures originate from a Görtler or Taylor instability as the down-welling flow
follows concave streamlines bending towards the bottom plate near the front edge of the
sample. Both instabilities are based on an unstable radial stratification of the flow’s angular
momentum (Strutt 1917; Taylor 1923; Görtler 1954). Yet, the Taylor and Görtler numbers
are tailored to determine the onset of unstable behaviour for the respective flows and are
thus unsuitable to explain the different behaviour of the two present cases. Therefore, we
apply the Rayleigh criterion for stability (Φ > 0) presented by Chandrasekhar (2013, pp.
273–275). In order to compare both cases, the stability discriminant Φ = (1/r3)∇r(r ‖u‖)2

is calculated for the flow fields averaged over complete respective time series. These fields
are similar to the first modes and thereby contain the longitudinal roll structure from which
Taylor–Görtler-like vortices eventually arise. All details regarding the definition of Φ can
be found in appendix A.

Figure 20 shows the Φ fields in a representative cross-section at X = L/8. For both
cases, regions of unstable angular momentum stratifications (Φ < 0) can be found next
to the edge vortices in the top and bottom left corners of the cross-sections, where the
vortex boundaries (see appendix A) are highlighted by green contour lines. The decisive
difference between the cases is that the instability regions occurring for case C at the
bottom edge vortex are stronger and larger. Integrating the regions of negative Φ next of
the bottom edge vortex yields −0.018 m2 s−2 for case S and −0.056 m2 s−2 for case C.
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FIGURE 19. Correlation plots of the cosine coefficients A and the POD coefficients a with the
respective Pearson’s correlation coefficients ρ for case C.

This proves that the centrifugal forces, which can induce Taylor–Görtler-like vortices, are
significantly stronger for the low Ri.

To sum it up, the different behaviour of both cases can be attributed to the different
manifestations of their longitudinal convection rolls. While they appear similar in
figures 11 and 17, the different relation between thermal and forced convection causes
the inlet jet to curve dissimilarly around the front edges of the sample and consequently to
develop different angular momentum gradients.

Besides displaying similar vortex structures as case C, open cavity flow also holds
analogies for the observed dynamic behaviour of these structures. Douay, Pastur &
Lusseyran (2016) and Picella et al. (2018) presented cases of these flows where sidewall
effects lead to an instability of the arrangement of Taylor–Görtler-like vortices. Such
effects lead to Bödewadt flow (Schlichting & Gersten 2016, pp. 329–330). However, this
type of flow alone would induce a movement of the structures from the centre to the
sidewalls of the sample. Hence, this mechanism can only function as an initial stimulus,
while the switching process is then driven by an interaction of both buoyancy and inertial
forces. Therefore, future research should focus on the proposed interaction, for example
with parameter studies regarding the exact onset of this reconfiguration type.
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FIGURE 20. Value of Φ at X = L/8 of the average velocity field for both cases. The thin black
contour line highlights the change of sign. The thicker green contour indicates the extent of the
edge vortices, as it shows where the X-curvature equals zero.

5. Conclusion and outlook

Mixed convection flow in a cuboidal sample was investigated for two cases of different
Richardson numbers, RiS = 3.7 and RiC = 1.5, in order to determine to what extent
concepts of RBC can be transferred to the occurring spontaneous or continuous flow
reconfigurations. An initial rear-wall temperature analysis allowed us to allocate different
prevalent numbers of LSCs, namely wS = 4 and wC = 8, to the cases. For both cases,
the temperature measurements confirmed the translation of the structures observed by
Schmeling et al. (2013). We showed that this translation can be described by fitting a
sum of cosine functions to the temperature distribution. The time evolution of the fit
parameters implied – in accordance with earlier findings – that the apparent translation
is accompanied by dissolving and emerging LSCs near the sidewalls. However, 3-D PIV
measurements of the volume next to the left sidewall were analysed for both cases and
showed that the translation mechanism cannot be transferred to the dynamics of the
velocity structures. Instead, a switching of the observable diagonal section(s) over the
course of a reconfiguration was identified.

In accordance with RBC in rectangular samples, a secondary circulation in shape of
a convection roll branch was found for the case of spontaneous reconfigurations (S).
However, it rather manifests a given LSC structure than it influences the reconfiguration
process. The POD of the observed S-type event extracted a set of influential modes.
One mode represented a large fraction of the thermally forced flow as it resembles the
flow structure of pure RBC. It allowed us to consider the switching of a diagonal LSC
as superposition of constant forced flow combined with a reversal of the thermal flow
components. Furthermore, the time evolution of the cosine and POD coefficients revealed
that a process of accumulation and release is the underlying reconfiguration concept of
this case. In particular, the events are associated with the release of multiple strong plumes
from the front bottom edge vortex.

The POD results for the continuous reconfiguration case (C) showed that the second
mode also supports the concept of switching diagonals, which was observed in the
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velocity fields of this case, too. The second mode’s structure of vertically stacked coherent
circulations further explained the opposite relation between convection roll displacement
and hot spots in comparison with case S . The stacked structures additionally indicated
that this case including its reconfigurations is mainly driven by forced convection. We
found that these structures form due to the predominant influence of the Taylor or Görtler
instability. A consideration of similar structures in open cavity flow shows that secondary
instabilities provided also explanations for the onset of reconfigurations of this structure.

Correlations between the different time coefficients obtained from the temperature
and velocity fields showed that the respective second mode covers the formation of the
prevalent temperature structure for both cases. However, many aspects of the relation
between the different flow structure dynamics, translation of temperatures and switching
of velocities, are still not understood. Future research should focus on the coupling of both
mechanisms and on how the different states affect the heat transport in the sample.

Overall this study showed that certain concepts of RBC are transferable to mixed
convection. As case S showed, it is possible to approximate the reconfigurations as a
reversal of the thermal fractions of the flow, while the forced fractions remain constant.
However, this simplification is only valid for high enough Ri. This was shown by the
investigation of the low-Ri case C, which had nearly the same Ra as case S but showed
completely different coherent structures.

This raises the question of a critical Ri for this distinction, as it may not necessarily
be bound to the reconfiguration type and is therefore a topic for future research. Future
investigations should also focus on confirming the implications for the complete sample
which are so far only extrapolations, due to the technical limitations of 3-D PIV. The
present study provides an important prerequisite, as the knowing the three-dimensional
structure of a complete LSC provides the basis for interpretation of future two-dimensional
measurements covering the complete sample.
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Appendix A. Calculation of the Rayleigh criterion discriminant

In § 4.3, the reason for the existence of Taylor–Görtler-like vortices is explained by
comparing the fields of the Rayleigh criterion discriminant Φ = (1/r3)∇r(r ‖u‖)2. This
definition is a modification of the definition in cylindrical coordinates by Chandrasekhar
(2013, pp. 273–275)

Φ = 1
R3

d
dR

(R2 Ω)2. (A 1)

The origin of this cylindrical coordinate system with the radius coordinate R is assumed
to be the centre of an analysed vortex. As the position of this centre is not per se known,
we replaced R by the local curvature radius r and its associated unity vector r. The latter is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.705
https://doi.org/10.1017/jfm.2020.705


904 A33-30 M. Mommert, D. Schiepel, D. Schmeling and C. Wagner

used for the directional derivative of the squared angular momentum term (R2Ω)2, where
the azimuthal velocity Ω = ‖u‖/r is replaced by the velocity magnitude ‖u‖, as each
velocity vector is tangential to its local rotation.

In order to calculate the local curvature radii, we refer to Theisel (1996, pp. 22–23). As
a first step, the curvature vector κ is calculated as follows:

κ = u × u̇
‖u‖3

. (A 2)

This introduces the time derivative u̇ of the velocity vector. As we analyse single vector
fields as steady states, it is reduced to the convection term

u̇ = (u · ∇) · u. (A 3)

The local radius r and its unity vector r are then calculated as follows:

r = 1
‖κ‖ , (A 4)

r = u × κ

‖u × κ‖ . (A 5)

For figure 20, these equations were applied in paraview, which calculates derivatives
for the cells inscribed by the grid points of the vector field. These cell values were then
interpolated to the original grid to complete the calculations. The curvature vector was
further used to highlight the boundaries of the edge vortices, which we defined as κX = 0.
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