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Abstract

Let Sn, n ≥ 1, be the successive sums of the payoffs in the classical St. Petersburg
game. The celebrated Feller weak law states that Sn/(n log2 n)

P→ 1 as n → ∞. In this
paper we review some earlier results of ours and extend some of them as we consider
an asymmetric St. Petersburg game, in which the distribution of the payoff X is given
by P(X = srk−1) = pqk−1, k = 1, 2, . . . , where p + q = 1 and s, r > 0. Two
main results are extensions of the Feller weak law and the convergence in distribution
theorem of Martin-Löf (1985). Moreover, it is well known that almost-sure convergence
fails, though Csörgő and Simons (1996) showed that almost-sure convergence holds for
trimmed sums and also for sums trimmed by an arbitrary fixed number of maxima. In
view of the discreteness of the distribution we focus on ‘max-trimmed sums’, that is, on
the sums trimmed by the random number of observations that are equal to the largest
one, and prove limit theorems for simply trimmed sums, for max-trimmed sums, as well
as for the ‘total maximum’. Analogues with respect to the random number of summands
equal to the minimum are also obtained and, finally, for joint trimming.
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1. Introduction

Th classical St. Petersburg game is defined as follows (see, e.g. [9]). Peter throws a fair coin
repeatedly until heads turns up; if this happens at trial number k, he has to pay Paul 2k ducats.
What might the value of the game be to Paul? Since the random variable X describing the
payoff is governed by

P(X = 2k) = 1

2k
, k = 1, 2, . . . ,

which has infinite expectation, this expected value gives no guidance as to what may be a ‘fair’
price for Paul to participate in the game.

One variation is to set the fee as a function of the number of games. This leads to the
celebrated Feller solution [9], namely, that if X,X1, X2, . . . are independent and identically
distributed (i.i.d.) random variables as above, and Sn = ∑n

k=1Xk, n ≥ 1, then

Sn

n log2 n

P→ 1 as n → ∞, (1.1)

where, generally, logr (·) denotes the logarithm relative to the base r > 0. For details, see [10,
Chapter X] and [11, Chapter VII] or [14, Section 6.4.1]. More on the history of the game can
be found in [18].
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This paper is devoted to the generalization in which a biased coin, for which P(heads) = p,

0 < p < 1, is tossed repeatedly until heads appears. If this happens at trial number k, you
receive srk−1 euro, where s, r > 0. This procedure induces the random variable

P(X = srk−1) = pqk−1, k = 1, 2, . . . . (1.2)

Our first result is an extension of Feller’s weak law (1.1) to the setting (1.2) under the assumption
that r = 1/q. If, in addition, s = 1/p, the result reduces to [13, Theorem 2.1(i)], where
additional references can be found. The case in which p = q = 1

2 (and s = 1/p) corresponds
to the classical game.

As for convergence in distribution in the classical case, Martin-Löf [18] obtained conver-
gence in distribution along the geometric subsequence 2n to an infinitely divisible, semi-stable
distribution. In Section 2 we extend his theorem to the general case. If s = 1/p and r = 1/q
then some of our results reduce to those of [13], while if also p = q = 1

2 , we are in the setting
of [18].

Next note that in the setting of Feller’s law (1.1) almost-sure convergence fails because

lim inf
n→∞

Sn

log2 n
= 1 and lim sup

n→∞
Sn

log2 n
= +∞ (1.3)

(see [1, Example 4] and [5], respectively). However, Csörgő and Simons [8] showed that
almost-sure convergence holds for trimmed sums, that is, for Sn − max1≤k≤n Xk , as well as
for sums trimmed by an arbitrary fixed number of maxima (for a recent paper on this, see [4]).
Since our actual distribution is discrete, there may be ties. We therefore focus on ‘max-trimmed
sums’, that is, on sums trimmed by the random number of observations that are equal to the
largest one. In Section 3 we prove an analogue of Martin-Löf’s distributional limit theorem
[18] for such max-trimmed sums, as well as for simply trimmed sums and the ‘total maxima’,
after which we interpret these findings in terms of sums of truncated Poisson random variables
in Section 5.

The, albeit maybe less important, min-trimming amounts to subtracting the random number
of minima from the sums. This is the topic of Section 6, after which in Section 7 we provide
some remarks on joint trimming, which might be interpreted as a random version of intermediate
trimming. These results extend those of Gut and Martin-Löf [15], [17], which are devoted to
the classical case. A final section contains some remarks on almost-sure convergence.

2. A weak law and a limit distribution

Throughout this paper, let X,X1, X2, . . . be i.i.d. random variables with

P(X = srk−1) = pqk−1, k = 1, 2, . . . ,

and set Sn = ∑n
k=1Xk and Mn = max1≤k≤n Xk, n ≥ 1. Since we are aiming at weak limits,

we begin by noting that if r < 1/q then E[X] < ∞, so that the classical strong law holds, viz.

Sn

n

a.s.−−→ sp

1 − rq
as n → ∞,

where, for the value of the limit, we refer to (2.2) below with β = 1.
In the following we therefore assume that rq ≥ 1, and, thus, in particular, that r > 1.
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Theorem 2.1. If r = 1/q then

Sn

n logr n
P→ sp as n → ∞.

Remark 2.1. For p = q = 1
2 and s = 2, the theorem reduces to (1.1); for general p with

s = 1/p, it reduces to [13, Theorem 2.1(i)]. For the case s = r = q−1, Adler and Rosalsky [2,
Theorem 4] proved a weak law for the weighted sum

∑n
k=1 k

γXk , where γ > −1.

Our next theorem extends Martin-Löf’s subsequence result for the classical game [18]. Note
thatM ,N , and tN below need not be integers; we leave it to the reader to replace such quantities
with the respective integer parts and to make the necessary amendments.

Theorem 2.2. Let N = rn and M = q−n.

(i) If r = 1/q then, for t > 0,

StN − tspNn

N
= StN

N
− tspn

D−→ Z(t) as n → ∞,

where Z(t) is the Lévy process defined via the characteristic function ϕZ(t)(u) =
E[exp{iuZ(t)}] = exp{th(u)}, where

h(u) =
0∑

k=−∞
(exp{iusrk} − 1 − iusrk)pqk +

∞∑
k=1

(exp{iusrk} − 1)pqk.

(ii) If r > 1/q then, for t > 0,

StM

N

D−→ Z(t) as n → ∞,

where now Z(t) is defined via the characteristic function ϕZ(t)(u) = exp{th(u)} with

h(u) =
∞∑

k=−∞
(exp{iusrk} − 1)pqk.

In complete analogy with [18] we infer that the limit law is infinitely divisible, that the
corresponding Lévy measure has point masses pqk at the points srk for k ∈ Z, and that we are
facing a compound Poisson distribution with (two-sided) geometric weights. In addition, by
replacing 2m by q−m = rm in the proof of [18, Theorem 2], it follows immediately that h(u) =
qm(h(uqm)+ iuspm) for allm ∈ Z, and, hence, that the limit distribution in Theorem 2.2(i) is
semi-stable in the sense of Lévy, which illustrates the fact that we do not have a limit distribution
for the full sequence.

Next we present some technicalities, after which we present the proofs of the theorems.

2.1. Preliminaries

The following well-known relation holds between logarithms with bases r and u for y > 0:

logr (y) = logu(y) · logr (u). (2.1)
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Lemma 2.1. For X as defined in Theorem 2.1,

E[Xβ ] =
⎧⎨
⎩

sβp

1 − rβq
for r < q−1/β;

+∞ for r ≥ q−1/β .

(2.2)

Moreover, as x → ∞,

P(X > x) = q[logr (x/s)]+1 ≥ q logr (x/s)+1 ≥ s

rx
, (2.3)

E[X 1{X ≤ x}] ∼ sp logr

(
x

s

)
when r = 1

q
. (2.4)

Proof. Relation (2.2) follows via the fact that E[Xβ ] = ∑∞
k=1(sr

k−1)βpqk−1, and the tail
estimate is equivalent to [7, Equation (1)]. The final inequality exploits the fact that rq ≥ 1.

Relation (2.4) for the truncated first moment for large x follows directly from

E[X 1{X ≤ x}] =
∑

{k : srk−1≤x}
srk−1pqk−1 = sp

∑
1≤k≤logr (x/s)+1

1 = sp

[
logr

(
x

s

)
+1

]
. �

2.2. Proof of Theorem 2.1

Recall that r = 1/q. Observe first that the function x log1/q x ∈ RV(1) (that is, regularly
varying with exponent 1).

Now, nP(X > n logr n) = nq[logr ((n/s) logr n)]+1 ∼ n/((n/s) logr n) = s/ logr n → 0 and
E[X 1{X ≤ n logr n}] ∼ sp logr ((n/s) logr n) as n → ∞ by (2.3) and (2.4), respectively,
so that

nE[X 1{X ≤ n logr n}]
n logr n

→ 0,

after which the conclusion is an immediate consequence of the extension of Feller’s weak law
of large numbers given in [12, Theorem 1.3]; cf. also [14, Theorem 6.4.2].

2.3. Proof of Theorem 2.2

Theorem 2.2(i) is proved via a straightforward modification of the corresponding proof in
[18].

Since P(X = srk−1) = pqk−1, ϕX(u) = E[eiuX] = ∑∞
k=1 eiusrk−1

pqk−1, from which it
follows that

ϕStN/N−tspn(u) = e−iutspn
( ∞∑
k=1

eiusrk/Npqk
)tN

= e−iutspn
( ∞∑
k=1

eiusrk−npqk
)tN

= e−iutspn
(

1 +
∞∑
k=1

(eiusrk−n − 1)pqk
)tN

= e−iutspn
(

1 + qn
∞∑

k=−n+1

(eiusrk − 1)pqk
)tN

= e−iutspn
(

1 + 1

N

∞∑
k=−n+1

(eiusrk − 1)pqk
)tN
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= e−iutspn
(

1 + 1

N

0∑
k=−n+1

(eiusrk − 1 − iusrk)pqk

+ iusp
n

N
+ 1

N

∞∑
k=1

(eiusrk − 1)pqk
)tN

= e−iutspn
(

1 + 1

N

{ 0∑
k=−n+1

(eiusrk − 1 − iusrk)pqk

+ iuspn+
∞∑
k=1

(eiusrk − 1)pqk
})tN

,

which converges to eth(u) as n → ∞. The proof of (ii) is similar with obvious modifications.

3. Max-trimming

For distributions with infinite variance that belong to some domain of attraction, a sum is
large because one of the summands is large. In fact, recalling (1.3), the process has rather wild
sample behaviour. It is then frequently natural to consider sums minus the maximum and hope
for some ‘nicer’ behaviour. This has generated the theory of trimmed sums. In the present
context Csörgő and Simons [8] showed that a strong law holds for the trimmed sums, namely,

Sn − max1≤k≤n Xk
n log2 n

a.s.−−→ 1 as n → ∞;
indeed, they proved more, namely that almost-sure convergence holds for the sums trimmed by
any finite number of summands.

Rather than focussing on a fixed number of large observations, our interest lies in what we
call ‘max-trimmed’sums, that is, in the successive partial sums minus all maximal observations.
This means that we trim the sums by the random number of summands equal to the largest
one—this last we call the ‘total maximum’. In Section 4 we prove analogues for the max-
trimmed sums, the trimmed sums, and the total maximum. Section 5 contains some remarks
on identifications and interpretations of our results. For p = q = 1

2 and s = r = 2, our results
reduce to those of [17]. Also, some of our results exist essentially as special cases of more
general results (cf. [3], [6], and [7], where further references can be found). An important point
is that here we provide more elementary and transparent proofs.

3.1. Notation

Trimming involves extreme observations, so we recall standard notation for order statistics,

X1:n ≤ X2:n ≤ · · · ≤ Xn:n,
and note that equality between the order variables has positive probability because we have a
discrete distribution. In particular, and this is a main point here, there is a random number of
payoffs equal to the largest one. We therefore define

Mn = max{X1, X2, . . . , Xn} (= Xn:n), (3.1)

τ (+)n = #{obs = Mn} = #{k ≤ n : Xk = Mn}, (3.2)

M∗
n =

n∑
k=n−τ (+)n +1

Xk:n = τ (+)n Mn. (3.3)
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The classical trimmed sum equals Sn − Mn, that is, the sum minus the largest observation.
Somewhat more generally, we may trim by subtracting more than one of the extremes. Our
interest here concerns Sn −Mn and Sn −M∗

n .
Finally, for any random variable Y , ϕY (u) = E[eiuY ] denotes its characteristic function and

gY (u) = E[uY ] its generating function.

3.2. Some facts about Mn

For later use, note also that, for any positive integer m,

P(X > srm−1) = qm,

P(Mn ≤ x) =
( ∑

{k : srk−1≤x}
pqk−1

)n
= (1 − q−[logr x/s]+1)

n
,

P(Mn ≤ srm−1) = (1 − qm)
n
.

3.3. The joint distribution of Mn and τ
(+)
n

The event {τ (+)n = k, Mn = srm−1} occurs precisely when k of the summands are equal
to srm−1 and all others are at most equal to srm−2. This shows that, for k = 1, 2, . . . , n and
m ≥ 1,

P(τ (+)n = k, Mn = srm−1) =
(
n

k

)
(pqm−1)

k
(1 − qm−1)

n−k
. (3.4)

Recall that N = rn = q−n throughout, and that, as n → ∞,
(
tN
k

)
N−k → tk/k!. Then we

conclude that, for 1 ≤ k ≤ tN and m+ n ≥ 1, as n → ∞,

P

(
τ
(+)
tN = k,

MtN

N
= srm−1

)
=

(
tN

k

)(
pqm−1

N

)k(
1 − qm−1

N

)tN−k

→ (tpqm−1)
k

k! e−tqm−1
. (3.5)

3.4. Marginal limits

Let M(t), t > 0, denote the random variable with the limiting distribution of MtN/N as
N → ∞ (equivalently, n → ∞). Summing over k in (3.5) and noting thatqm−1 = pqm−1+qm,
we obtain the following result.

Theorem 3.1. It holds that MtN/N
D−→ M(t) as n → ∞, where, for m = 1, 2, . . . ,

P(M(t) ≤ srm−1) = e−tqm; hence, P(M(t) = srm−1) = e−tqm(1 − e−tpqm−1
).

By summing over m in (3.4), we obtain the marginal limit for τ (+)tN as follows.

Theorem 3.2. It holds that τ (+)tN

D−→ T (t) as n → ∞, where

P(T (t) = k) = pk

k!
∞∑

m=−∞
(tqm)ke−tqm; hence, gT (t)(u) =

∞∑
m=−∞

(euptq
m − 1)e−tqm .
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3.5. The generating function of τ
(+)
n

Proposition 3.1. The probability generating function of τ (+)n is given by

g
τ
(+)
n
(u) =

∞∑
m=1

[(1 − qm−1(1 − pu))
n − (1 − qm−1)

n].

Proof. Exploiting (3.4) we obtain

g
τ
(+)
n
(u) =

n∑
k=1

ukP(τ (+)n = k)

=
n∑
k=1

uk
∞∑
m=1

P(τ (+)n = k, Mn = srm−1)

=
∞∑
m=1

n∑
k=1

uk
(
n

k

)
(pqm−1)

k
(1 − qm−1)

n−k

=
∞∑
m=1

[(1 − qm−1(1 − pu))
n − (1 − qm−1)

n]. �

By differentiating the generating function, or else by exploiting (3.4) as above, it is now easy
to determine, for example, the individual probabilities and moments of τ (+)n .

4. Asymptotics

In this section we extend our results from [17] by proving analogues of Martin-Löf’s limit
theorem [18] for max-trimmed sums, trimmed sums, and the total maximum.

4.1. The max-trimmed sum StN − M∗
tN

Theorem 4.1. Let N = rn = q−n as before, and define

hm(u) =
m∑

j=−∞
(eiusrj−1 − 1 − iusrj−1)pqj−1 + iupsm. (4.1)

Then, for t > 0,
StN −M∗

tN

N
− pstn

D−→ Z∗(t) as n → ∞,

where Z∗(t) has the characteristic function

E[eiuZ∗(t)] =
∞∑

m=−∞
ethm−1(u)e−tqm(1 − e−tpqm−1

).

Proof. Let m ≥ 1, define ψm(u) = ∑m
k=1 eiusrk−1

pqk−1, and, for k ≥ 1, write X(m)k for Xk
conditional on Xk ≤ srm−1. Then ϕ

X(m)
(u) = E[eiuX(m) ] = ψm(u)/(1 − qm); hence,

E

[
exp

{
iu

n∑
j=1

X
(m)
j

}]
=

(
ψm(u)

1 − qm

)n
,

so that

E

[
exp

{
iu

N

tN−k∑
j=1

X
(m+n−1)
j

}]
=

(
ψm+n−1(u/N)

1 − qm+n−1

)tN−k
.
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We can express ψ as

ψm+n−1

(
u

N

)

=
m+n−1∑
j=1

ei(u/N)srj−1
pqj−1

=
m−1∑

j=−n+1

eiusrj−1
pqn+j−1

=
m−1∑

j=−n+1

((eiusrj−1 − 1 − iusrj−1)pqn+j−1 + (1 + iusrj−1)pqn+j−1)

= 1

N

m−1∑
j=−n+1

(eiusrj−1 − 1 − iusrj−1)pqj−1 + (1 − qn+m−1)+ iups(m+ n− 1)

N

= 1 − qm−1

N
+ iups(m+ n− 1)

N
+ 1

N

m−1∑
j=−n+1

(eiusrj−1 − 1 − iusrj−1)pqj−1,

so that, following the path of [17] and [18] cited above,

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)}
, τ

(+)
tN = k,

MtN

N
= srm−1

]

= e−iupstn
E

[
exp

{
iu

N

tN−k∑
j=1

X
(m+n−1)
j

}]
P(τ

(+)
tN = k, MtN = srm+n−1)

= e−iupstn
(
ψm+n−1(u/N)

1 − qm+n−1

)tN−k(
tN

k

)
(pqm+n−1)

k
(1 − qm+n−1)

tN−k

= e−iupstn
(

1 − qm−1

N
+ iups(m+ n− 1)

N

+ 1

N

m−1∑
j=−n+1

(eiusrj−1 − 1 − iusrj−1)pqj−1
)tN−k

×
(
tN

k

)(
pqm−1

N

)k
. (4.2)

With hm(u) as defined in (4.1), standard estimates tell us that, as n → ∞, the expression in
(4.2) preceding ‘×’ converges to

ethm−1(u)−tqm−1 (tpqm−1)k

k! = ethm−1(u)e−tqm−1 (tpqm−1)k

k! , (4.3)

a quantity that, via an appeal to [14, Lemma A.1.2], is bounded. Therefore, since

(
tN

k

)(
pqm−1

N

)k
≤ (tpqm−1)k

k! ,

https://doi.org/10.1017/apr.2018.74 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.74


An asymmetric St. Petersburg game 123

we conclude that

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)}
,
MtN

N
= srm−1

]

=
tN∑
k=1

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)}
, τ

(+)
tN = k,

MtN

N
= srm−1

]

→
∞∑
k=1

ethm−1(u)e−tqm−1 (tpqm−1)k

k! (as N → ∞),

= ethm−1(u)e−tqm−1
(etpq

m−1 − 1)

= ethm−1(u)e−tqm(1 − e−tpqm−1
).

In order to complete the proof, we first note that

∑
m≥−n+1

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)}
,
MtN

N
= srm−1

]

=
∑

m≥−n+1

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)} ∣∣∣∣ MtN

N
= srm−1

]
P

(
MtN

N
= srm−1

)

=
∑

m≥−n+1

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)} ∣∣∣∣ MtN

N
= srm−1

]
e−tqm(1 − e−tpqm−1

)

+
∑

m≥−n+1

E

[
exp

{
iu

(
StN −M∗

tN

N
− pstn

)} ∣∣∣∣ MtN

N
= srm−1

]

×
[
P

(
MtN

N
= srm−1

)
− e−tqm(1 − e−tpqm−1

)

]

:= I + II.

Furthermore, ∣∣∣∣E
[

exp

{
iu

(
StN −M∗

tN

N
− pstn

)} ∣∣∣∣ MtN

N
= srm−1

]∣∣∣∣
≤ E

[∣∣∣∣ exp

{
iu

(
StN −M∗

tN

N
− pstn

)}∣∣∣∣
∣∣∣∣ MtN

N
= srm−1

]

= 1,

so, with d(·, ·) denoting the variational distance,

|II| ≤ 2d

(
MtN

N
,M(t)

)
.

This, finally, tells us that, as n → ∞,

I →
∞∑

m=−∞
ethm−1(u)e−tqm(1 − e−tpqm−1

)

by dominated convergence, and II → 0 by the discrete version of Scheffé’s lemma (see [14,
Theorem 5.6.4]). �
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4.2. The trimmed sum StN − MtN

Minor modifications of the arguments from the previous section, together with a glance at
[17], allow us to establish analogous asymptotics for the trimmed sums: we start from the fact
that the difference between a max-trimmed sum and the corresponding trimmed sum consists
of the τ (+)n − 1 maximal observations which are subtracted in the former sum but not in the
latter, namely,

(Sn −M∗
n)− (Sn −Mn) = Mn −M∗

n = Mn − τ (+)n Mn = −(τ (+)n − 1)Mn. (4.4)

Theorem 4.2. Let N = rn = q−n, and define hm(u) as in (4.1). Then, for t > 0 and n → ∞,

StN −MtN

N
− pstn

D−→ Z∗(t),

where Z∗(t) has the characteristic function

E[eiuZ∗(t)] =
∞∑

m=−∞
e−iusrm−1+thm−1(u)−tqm−1

(etpq
m−1eiusrm−1 − 1).

4.3. The total maximum M∗
tN

Finally, we provide the limiting characteristic function for the total maximum,M∗
tN . To this

end, we again modify the corresponding proof in [17].

Theorem 4.3. Let N = rn = qn. Then, as n → ∞,

E

[
exp

{
iu
M∗
tN

N

}]
→

∞∑
m=−∞

e−tqm−1
(etpq

m−1eiusrm−1 − 1).

Moreover, the mean of the limit distribution is infinite, in the sense that

E

[
M∗
tN

N

]
→ tsp

∞∑
m=−∞

e−tqm = +∞.

5. Interpretations and facts about the limiting processes

In this section we interpret our limit theorems for max-trimmed sums, trimmed sums and
max-trimming itself in terms of sums of Poisson random variables (RVs) and truncated Poisson
RVs. Let Poi(λ) denote a Poisson RV with mean λ; its characteristic function is ϕPoi(λ)(u) =
exp{λ(eiu − 1)}. For the Poisson process representation, see also [6] and [18]. As well as
hm(u), defined in (4.1), recall h(u) from Theorem 2.2(i), namely,

h(u) =
0∑

j=−∞
(eiusrj−1 − 1 − iusrj−1)pqj−1 +

∞∑
j=1

(eiusrj−1 − 1)pqj−1. (5.1)

By comparing eth(u) with ϕPoi(·), we conclude that eth(u) is the characteristic function of

Z(t) =
0∑

j=−∞
srj−1(Zj (t)− tpqj−1)+

∞∑
j=1

srj−1Zj (t),

where the {Zj (t), −∞ < j < ∞} are independent Poi(tpqj−1)-distributed random processes,
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and where ethm(u) is the characteristic function of

Sm(t) =
m∑

j=−∞
srj−1(Zj (t)− tpqj−1)+ pstm.

In terms of {Zj } this means that

P(M(t) = srm−1) = P(Zm(t) > 0, Zj (t) = 0, j > m)

= (1 − e−tpqm−1
)

∞∏
j=m+1

e−tpqj−1

= (1 − e−tpqm−1
)e−tqm,

in agreement with Theorem 3.1. Moreover, Sm−1(t) is independent of Zj for all j ≥ m.

5.1. The max-trimmed sum

Recalling from (3.3) that M∗
tN = τ

(+)
tN MtN , observe that, by exploiting Theorem 3.1, the

limit in Theorem 4.1 can be rewritten as

StN −M∗
tN

N
− pstn

D−→ Z∗(t) with ϕZ∗(t)(u) =
∞∑

m=−∞
ethm−1(u)P(M(t) = srm−1).

5.2. The trimmed sum

Starting from (4.4) shows that, as n → ∞,

StN −MtN

N
− pstn = StN −M∗

tN

N
− pstn+ (τ

(+)
tN − 1)

MtN

N
D−→ Z∗(t)+ (T (t)− 1)M(t)

≡ Z∗(t).

Combining (5.1) and (3.5) then tells us that

ϕZ∗(t)(u) =
∞∑

m=−∞

∞∑
k=1

eiuZ∗(t)eiu(k−1)srm−1
P(T (t) = k, M(t) = srm−1)

=
∞∑

m=−∞

∞∑
k=1

ethm−1(u)eiu(k−1)srm−1 (tpqm−1)k

k! e−tqm−1

=
∞∑

m=−∞
e−iusrm−1+thm−1(u)−tqm−1

(etpq
m−1eiusrm−1 − 1).

5.3. The total maximum

As n → ∞,
M∗
tN

N
= τ

(+)
tN

MtN

N

D−→ T (t)M(t) =: M∗(t),

for which the characteristic function is

ϕM∗(t)(u) =
∞∑

m=−∞

∞∑
k=1

eiuksrm−1 (tpqm−1)k

k! e−tqm−1 =
∞∑

m=−∞
e−tqm−1

(etpq
m−1eiusrm−1 − 1).
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6. Min-trimming

We now consider trimming with respect to the random number of summands equal to the
minimum, mn. In the classical case our findings reduce to those of [15]. In addition to the
notation introduced in Section 3.1, notably (3.1)–(3.3), we define

mn = min{X1, X2, . . . , Xn},
τ (−)n = #{obs = mn} = #{k ≤ n : Xk = mn},

m∗
n =

τ
(−)
n∑
k=1

Xk:n = τ (−)n mn.

6.1. Some facts about mn and τ
(−)
n

For any positive integer m,

P(X1 > srm−1) = qm, P(mn > srm−1) = qmn, P(mn = srm−1) = q(m−1)n(1−qn).
Now, since

∑∞
n=1 P(Xn = s) = ∞, it follows from the second Borel–Cantelli lemma that

P(Xn = s i.o.) = 1, which in turn shows in particular that

mn
a.s.−−→ s as n → ∞; (6.1)

indeed, mn = s for all n > some n0(ω) for almost all ω.
Next, in order to compute the joint distribution of (τ (−)n ,mn), we exploit the fact that the

event {τ (−)n = k, mn = srm−1} occurs precisely when k of the summands are equal to srm−1

and all the others are at least equal to srm, namely,

P(τ (−)n = k, mn = srm−1) =
(
n

k

)
(pqm−1)

k
(qm)

n−k =
(
n

k

)
pkqmn−k. (6.2)

Summing over m yields (as might be expected) a zero-truncated binomial distribution:

P(τ (−)n = k) =
∞∑
m=1

(
n

k

)
pkqmn−k

=
(
n

k

)(
p

q

)k ∞∑
m=1

qmn

=
(
n

k

)
pkqn−k

1 − qn
, k = 1, . . . , n. (6.3)

By comparing the product of the marginal distributions of τ (−)n andmn with (6.2), we see that the
two quantities are independent. This is explained by the scale invariance of the St. Petersburg
distribution, or otherwise put, the lack of memory of the geometric distribution. Moreover, by
exploiting (6.3), we conclude first that E[τ (−)n ] = np/(1 − qn) and var(τ (−)n ) = npq/(1 − qn).
From these moments, it follows that, as n → ∞,

τ
(−)
n

n

a.s.−−→ p and
τ
(−)
n − np√
npq

D−→ N(0, 1). (6.4)

Finally, by combining (6.1) and the strong law for τ (−)n , we immediately see that(
τ
(−)
n

n
,mn

)
a.s.−−→ (p, s) as n → ∞.
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6.2. Asymptotics

In this subsection we record asymptotic results for min-trimmed sums, trimmed sums, and
the total minimum. To that end, set N = rn = q−n, and define Z(t) as in Theorem 2.2.
Coupled with the almost-sure convergence properties noted in the previous subsection we
deduce analogues of Theorems 2.1 and 2.2 as follows.

Theorem 6.1. It holds that

StN −m∗
tN

N
− pstn

D−→ Z(t)− pst as n → ∞.

Theorem 6.2. It holds that

StN −mtN

N
− pstn

D−→ Z(t) as n → ∞.

Combining the exponential decay of mn, namely, P(mn > s) = qn, with (6.4), yields

m∗
n

n

a.s.−−→ ps and
m∗
n − nps√
n

D−→ N(0, s2pq) as n → ∞. (6.5)

7. Extreme trimming

By combining our results for max- and min-trimming, the following mixtures can be
obtained. They can be interpreted as maxmin analogues of intermediate trimming.

For t > 0 and n → ∞,
StN −M∗

tN −m∗
tN

N
− pstn

D−→ Z∗(t)− t,

StN −MtN −m∗
tN

N
− pstn

D−→ Z∗(t)− t,

StN −M∗
tN −mtN

N
− pstn

D−→ Z∗(t),

StN −MtN −mtN

N
− pstn

D−→ Z∗(t).

7.1. The joint distribution of (τ
(−)
n , mn, τ

(+)
n , Mn)

The event {τ (−)n = i, mn = srk−1, τ
(+)
n = j, Mn = srm−1} occurs precisely when i of the

summands are equal to srk−1, j of the summands are equal to srm−1, and all others lie strictly
between srk−1 and srm−1. From this we deduce that

P(τ
(−)
tN = i, mtN = srk−1, τ

(+)
tN = j,MtN = srm−1)

=
(
tN

i, j

)
(pqk−1)i(pqm−1)j (qk − qm−1)tN−i−j .

Sincemn
a.s.−−→ s as n → ∞, the only nonzero contribution to the limit distribution comes from

the case k = 1. Noting also that
(
tN
i,j

) = (
tN
i

)(
tN−i
j

)
yields

P

(
τ
(−)
tN = i, mtN = s, τ

(+)
tN = j,

MtN

N
= srm−1

)

= P(τ
(−)
tN = i, mtN = s, τ

(+)
tN = j, MtN = srm+n−1)

=
(
tN

i, j

)
pi(pqm+n−1)j (q − qm+n−1)tN−i−j
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=
(
tN

i

)(
tN − i

j

)
pi(pqm+n−1)j qtN−i−j

(
1 − qm−2

N

)tN−i−j

=
(
tN

i

)
pi+j qtN−i−j

(
tN − i

j

)
q(n+m−1)j

(
1 − qm−2

N

)tN−i−j
.

A consequence of the asymptotic normality of τ (−)tN (cf. (6.4)) is that the contributing i-values
reduce to ptN ± x

√
pqtN . In the last displayed expression, the binomial probability from the

first three factors converges to the probability mass of the corresponding normal distribution
from (6.4), while, for the remaining factors,

(
tN − i

j

)
q(n+m−1)j

(
1 − qm−2

N

)tN−i−j

∼
(
tN − tNp

j

)(
1

N

)j
q(m−1)j

(
1 − qm−2

N

)tN−tNp−j

∼
(
tNq

j

)(
1

Nq

)j
qmj

(
1 − qm−1

Nq

)tNq−j

∼ (tNq)j

j !
(

1

Nq

)j
qmj e−tqm−1

= (tqm)j

j ! e−tqm−1
.

Using 	 to denote the standard normal distribution function, this shows that, as n → ∞,

P

(
τ
(−)
tN ∈ (tNp + x

√
tNpq, tNp + y

√
tNpq], mtN = s, τ

(+)
tN = j,

MtN

N
= srm−1

)

→
⎧⎨
⎩
(	(y)−	(x))

(tqm)j

j ! e−tqm−1
for − ∞ ≤ x < y ≤ ∞, j ∈ Z+, m ∈ Z,

0 otherwise.

In particular,

• the pairs (τ (−)tN ,mtN) and (τ (+)tN ,MtN) are asymptotically independent;

• we rediscover the limit distribution of (τ (+)tN ,MtN/N) from Subsection 3.3; and

• mtN andMtN are asymptotically independent (which is no surprise, sincemtN
a.s.−−→ s as

n → ∞).

8. Almost-sure convergence?

In this final section we offer some brief comments on almost-sure convergence. In view
of (1.3) we can only expect a negative answer in the general case in the sense that (a version
of) (1.3) remains true also in our framework. Indeed, for any c > 0, we find, via (2.3), that∑∞
n=1P(Xn > cn logr n)=∞ so that, by the Borel–Cantelli lemma, P(Xn > cn logr n i.o.)=1

and, hence, all the more, P(Sn > cn logr n i.o.) = 1.
As for the limit inferior, following [1], we note, via partial integration and Lemma 2.1, that

μ(x) := ∫ x
0 P(X > y) dy ∼ sp logr (x/s) as x → ∞, and, via (2.1), that μ(x) ∼ μ(x logr x)

as x → ∞. Finally, an application of [1, Theorem 2] tells us that lim infn→∞ Sn/(n logr n) =
ps.
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Next, recalling [8], it is natural to ask whether almost-sure convergence holds for the
normalized max-trimmed sum Sn − M∗

n . Unfortunately we have not been able to settle this
problem beyond the triviality that

0 ≤ lim inf
n→∞

Sn −M∗
n

n logr n
≤ lim sup

n→∞
Sn −M∗

n

n logr n
≤ lim sup

n→∞
Sn −Mn

n logr n
= 1.

However, by combining Theorems 3.1 and 3.2, we note thatM∗
tN/ logr N

P→ 0 as n → ∞; this
implies that a Feller version holds, namely there is convergence in probability.

As for trimming from below, a Feller version for Sn−m∗
n is immediate, in view of the strong

law for m∗
n in (6.5), but no almost-sure result holds.
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[7] Csörgő, S. (2007). Merging asymptotic expansions in generalized St. Petersburg games. Acta Sci. Math. (Szeged)

73, 297–331.
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