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Outer scaling of the mean momentum equation
for turbulent boundary layers under adverse
pressure gradient

Tie Wei1,† and Tobias Knopp2

1Department of Mechanical Engineering, New Mexico Tech, Socorro, NM 87801, USA
2Institute of Aerodynamics and Flow Technology, DLR (German Aerospace Center), Bunsenstr. 10,
37073 Gottingen, Germany

(Received 10 October 2022; revised 14 December 2022; accepted 18 January 2023)

A new scaling of the mean momentum equation is developed for the outer region of
turbulent boundary layers (TBLs) under adverse pressure gradient (APG). The maximum
Reynolds shear stress location, denoted as ym, is employed to determine the proper scales
for the outer region of an APG TBL. An outer length scale is proposed as δe − ym, where δe
is the boundary layer thickness. An outer velocity scale for the mean streamwise velocity
deficit is proposed as Ue − Um, where Ue and Um are the mean streamwise velocities
at the boundary layer edge and ym, respectively. An outer velocity scale for the mean
wall-normal velocity deficit is proposed as Ve − Vm, where Ve and Vm are the wall-normal
velocities at δe and ym, respectively. The maximum Reynolds shear stress is found to
scale as (δe − ym)Ue dUe/dx. The new outer scaling collapses well the experimental and
numerical data on APG TBLs over a wide range of Reynolds numbers and strengths
of pressure gradient. Approximations of the new scaling are developed for TBLs under
strong APG and at high Reynolds numbers. The relationships between the new scales and
previously proposed scales are discussed.

Key words: free shear layers

1. Introduction

Turbulent boundary layer (TBL) flows subject to an adverse pressure gradient (APG) often
play a critical role in determining the performance of a variety of engineering devices.
Under a strong APG, the boundary layer flow may separate from the solid surface, causing
a drastic change in the flow pattern. Therefore, accurate knowledge of the development
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of the APG boundary layer is pivotal in predicting the overall performance of the device,
e.g. for the wing design of modern aircraft (Slotnick & Heller 2019).

APG TBLs have been the subject of numerous theoretical, experimental and numerical
studies. The scaling of the outer layer of a TBL was first developed from the velocity-defect
law formulation by von Kármán (1930) and Millikan (1938). In the outer region, where
viscous effects are not important, the scaling is applied to the mean velocity defect Ue − U
compared to the boundary layer edge mean velocity Ue. For the zero pressure gradient
(ZPG) case, the classical velocity scale is the wall friction velocity uτ , and the classical
length scale is the defect displacement thickness Δ, known as the Rotta–Clauser length
scale (Rotta 1950; Clauser 1954):

Ue − U
uτ

= g
( y
Δ

)
. (1.1)

The Rotta–Clauser parameter βRC = (δ∗/(ρu2
τ )) dPe/dx is commonly used to characterize

the strength of pressure gradient. Here, δ∗ is the mass displacement thickness. In the case
of an APG, the scaling of (1.1) is appropriate for βRC < 8, shape factor H < 1.8, and
the corresponding small mean velocity defect (see Maciel et al. 2018). For a large defect
(βRC > 8, H > 1.8), the pressure velocity up = (δ∗ρ−1 dPe/dx)1/2 of Mellor & Gibson
(1966), together with a modified defect displacement thickness, which involves up rather
than uτ , can be used. A summary of outer scales used previously is given in table 2 of
Maciel et al. (2018).

Building on their study of the TBL as a wall-confined wake, Schofield & Perry (1972)
proposed a velocity scale Um that is related to the maximum shear stress in the boundary
layer τm. Denote Um = (τm/ρ)1/2, and let ym be the wall distance of τm. Then the defect
law is formulated using the velocity scale Us and a length scale B. The velocity scale Us is
defined by an extrapolation of the half-power law for the mean velocity to the wall, and Us
and B are related to Um and ym by the relations B = 2.86δ∗Ue/Us and Us = 8(B/ym)1/2Um
(see Perry & Schofield 1973; Schofield 1981).

Recently, several alternative outer layer scales have been proposed. In their study of
turbulent pipe flows, Zagarola & Smits (1998a) proposed a new outer velocity scale as
Uctr − Uavg, where Uctr is the mean axial velocity at the pipe centreline, and Uavg is the
bulk velocity. Extending to a ZPG TBL, the Zagarola–Smits outer scale can be written
as U∞ − Uavg = U∞δ∗/δe. Zagarola & Smits (1998b) showed that the new velocity scale
collapsed the experimental data significantly better than profiles normalized by the friction
velocity or free stream velocity. The Zagarola–Smits velocity scale has also been used to
collapse APG TBL data.

Gungor et al. (2016) proposed an outer velocity scale as twice the velocity deficit at
the middle of the shear layer, 2(Ue − U( y = 0.5δe)), based on the similarity between the
outer region of the APG TBL and the single-stream mixing layer. Schatzman & Thomas
(2017) proposed an embedded shear layer scaling. This scaling assumes the existence of
an inflection point for the mean velocity profile in the outer layer at the wall distance yIP.
The inflection point is used as an anchor to define the new scaling. The velocity scale
is the local velocity defect at the inflection point, Ud = Ue − UIP, the length scale is the
local embedded shear layer vorticity thickness δω, and the scaled wall distance becomes
( y − yIP)/δω. The scaled mean velocity becomes (Ue − U)/Ud.

A similar scaling was proposed by Sekimoto et al. (2019). They consider the shear rate S,
normalized by a turbulence time scale k/ε. Here, k is the turbulent kinetic energy (TKE),
and ε is the turbulent dissipation. They define the shear thickness δs as the distance from
the wall to the maximum of the quantity ( y/δ∗)(Sk/ε). For the velocity scale, the pressure
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velocity is redefined as up = (δsρ
−1 dPe/dx)1/2. To this end, a mixed friction–pressure

velocity u∗ = (u2
τ + u2

p( y/δs))
1/2 is defined, which involves the wall distance y. A similar

velocity scale was proposed by Romero et al. (2021).
The modifications of the outer scales summarized above concur with the findings for

the balance of the TKE and of the Reynolds stresses. The balance of the TKE is found
to be different, however, in TBL flows subjected to an APG. While the peak in the
TKE production occurs at approximately y+ = 10–20 in the ZPG case, the peak of TKE
production is typically in the outer part of the APG TBL at approximately y/δe = 0.3–0.4.
The outer peak of TKE production and turbulence intensity is closely related to an
inflection point in the mean velocity profile (see Elsberry et al. 2000; George, Stanislas &
Laval 2012). According to George et al. (2012), an inflectional mean velocity profile forms
as a TBL under an APG evolves downstream over a sufficiently long distance, independent
of whether the boundary layer ultimately separates. For moderate velocity defects, there is
an outer peak of TKE production without the presence of an inflection point in the mean
velocity profile. In other words, the peak is not directly related to an inflection point in all
cases.

The classical description of the mean velocity profile is based on Coles’ notion that a
boundary layer flow can be viewed as a wake-like structure that is constrained by a wall; see
Coles & Hirst (1969). This is manifested in their famous law-of-the-wall/law-of-the-wake
equation:

U+ = 1
κ

log( y+) + B + W(η), W(η) = 2Π

κ

(
sin

(πη

2

))2
, (1.2a,b)

where y+ = yuτ /ν is the inner scaled distance from the wall, and η = y/δ is the outer
scaled distance from the wall. In more recent work, modified forms W(η) = b(1 −
exp( p(η)) with a suitable polynomial p(η) have been used for the wake function (see
Nickels 2004; Monkewitz, Chauhan & Nagib 2007). The outer region is influenced by the
interaction between turbulence and the free stream at the turbulent/non-turbulent interface
(TNTI; Corrsin 1943; Corrsin & Kistler 1955; Klebanoff 1955). In this vein, an alternative
view of the outer part of the TBL was given by Krug, Philip & Marusic (2017). They devise
a two-state model, consisting of an inertial self-similar region designated as pure wall flow
state (featuring a log-law velocity distribution) and the free stream state together with a
stochastic model at the interface. Their physical interpretation of the two-state model is
to lump the effects of internal shear layers and the TNTI into a single discontinuity at the
interface.

Regarding the Reynolds stresses, Kitsios et al. (2016) report collapse of the normal
stresses scaled by U2

e and of the shear stress −u′v′ scaled by U2
e dδ∗/dx plotted versus y/δ∗.

However, such a collapse was not found in the study of Bobke et al. (2017). Elsberry et al.
(2000) found that a mixed scaling UeU0 (with a constant reference velocity U0 independent
of x) produces near-collapse of −u′v′ for their experimental data.

A new outer scaling of the mean momentum equation for an APG TBL is developed
in the present work using the scaling patch approach, which was originally developed to
investigate the multi-layer and multi-scaling properties of turbulent pipe or channel flows
(see Fife et al. 2005; Wei et al. 2005; Fife 2006; Fife, Klewicki & Wei 2009; Wei 2020).
The scaling patch approach has been applied successfully to rough-wall TBLs (Mehdi,
Klewicki & White 2010), turbulent channel flow with heat transfer (Zhou, Pirozzoli &
Klewicki 2017), buoyancy-driven turbulent convection (Wei 2019), and more recently free
shear turbulent flows, including jets, wakes and mixing layers (Wei & Livescu 2021a,b;
Wei, Livescu & Liu 2022b; Wei, Li & Livescu 2022a). Whereas some concepts and ideas
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in the scaling patch approach are similar to previous scaling approaches, the logical train
of thought in the new approach is distinctly different (Fife 2006; Wei 2020).

One objective of a scaling patch analysis is to reveal naturally the relative magnitudes
of different terms in an engineering equation. Such an equation typically consists of more
than two terms, with the terms contributing unequally to the balance of the equation. The
relative magnitude of each term is often not obvious when the equation is presented in a
dimensional form. Through a systematic transformation of the dimensional equation into
a dimensionless form, the scaling patch approach is able to determine the scales for the
various terms (Fife 2006; Wei 2020). A key component of the approach is to formulate an
admissible scaling for the governing equation. The admissible scaling equation will be a
dimensionless equation in which at least two pre-factors of the terms in the equation have
nominal order 1, and the other pre-factors have nominal order either 1 or 0. Moreover, the
dimensionless boundary conditions should also be 0 or nominal order 1.

In § 2, the scaling patch approach is applied to develop the new outer scaling equation,
and new outer scales for the length, velocity and Reynolds shear stress are proposed. The
new scaling is verified against experimental and numerical data in § 3. Approximate outer
scales are presented in § 4. In § 5, the relationship between the new scales and the results
of previous analysis are presented. Section 6 summarizes the work.

2. New outer scaling for the mean momentum equation in APG TBL

Due to its significance in understanding and modelling of turbulent flows, the Reynolds
shear stress distribution has been a major focus in turbulence research. In a TBL over a flat
plate (ZPG TBL) or turbulent flow through a pipe or channel, it is known (see e.g. Long
& Chen 1981; Afzal 1982; Sreenivasan & Sahay 1997; Wei et al. 2005) that the location
of maximum Reynolds shear stress ym is proportional to the geometric mean of the inner
length scale ν/uτ and the outer scale δe: ym ∝ √

ν/uτ δe. At high Reynolds numbers, ym
is a small fraction of δe. That is, the maximum Reynolds shear stress location is close to
the wall in the ZPG TBL. For instance, at Reτ = δeuτ /ν = 1000, ym/δe ∼ 0.03, and at
Reτ = 5000, ym/δe ∼ 0.01.

Under an APG, however, the location of the maximum Reynolds shear stress in TBLs
shifts outwards. For example, a value ym ≈ 0.4δe was found for the equilibrium TBL under
a strong APG in Skåre & Krogstad (1994), as shown in figure 1. In the present work, the
characteristics of the Reynolds shear stress distribution are employed to determine the
proper scales for the flow in the outer region of the APG TBL.

The governing equations for a statistically steady two-dimensional TBL under pressure
gradient are (see e.g. Tennekes & Lumley 1972)

0 = ∂U
∂x

+ ∂V
∂y

, (2.1a)

0 = −U
∂U
∂x

− V
∂U
∂y

+ ∂Ruv

∂y
+ ∂(Ruu − Rvv)

∂x
− 1

ρ

dPe

dx
+ ν

∂2U
∂y2 . (2.1b)

Here, upper-case letters U and V denote the mean velocity component in the streamwise
x-direction and wall-normal y-direction, respectively, and Pe is the mean pressure in
the free stream. Fluid density is ρ. The kinematic Reynolds shear stress is denoted
as Ruv = −〈uv〉, where lower-case letters u and v are the velocity fluctuations in the
streamwise and wall-normal directions, respectively, and angle brackets denote Reynolds
averaging. The Reynolds normal stresses in the streamwise and wall-normal directions
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0 ym

yref = δe – ym

U
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f 
=

 U
e 

–
 U

m

Um

Ruv|max

Ruv

U

Ue

δey

Figure 1. Defining the new outer scales for an APG TBL. The data are from experiments of Skåre & Krogstad
(1994) at the sixth station (Reτ ≈ 5160 and βRC = 21.2). The sketch is to illustrate the shapes of the profiles;
the magnitudes on the vertical axis do not scale.

y = ym U = Um V = Vm Ruv = Ruv |max

y = δe U = Ue V = Ve Ruv ≈ 0

Table 1. Conditions at the maximum Reynolds shear stress location ym and boundary layer edge δe.

are denoted as Ruu = −〈uu〉 and Rvv = −〈vv〉, respectively. In the outer region of APG
TBL, viscosity has a negligible effect on the flow, and the viscous term in (2.1b) will
be neglected in the following analysis. In general, the turbulence term ∂(Ruu − Rvv)/∂x
also has a negligible effect on the balance of the mean momentum equation (2.1b), and
is omitted in the following analysis (Townsend 1956). The flow conditions at ym and
δe are listed in table 1. In the present work, the boundary layer edge is determined as
the location of 1 % |Ruv|max if the data points of Reynolds shear stress data are spaced
closely in the wall-normal direction. If the data points of Reynolds shear stress are not
spaced closely, then the location of 5 % |Ruv|max is used to determine the boundary layer
edge. Compared with the mean streamwise velocity profile, it is more robust and easier to
determine the boundary layer edge using the Reynolds shear stress profile. Furthermore,
the new determination of δe is applicable to both TBL flows and free shear flows (wake
flow, planar mixing layer), indicating the close connection between the outer region of the
APG TBL and planar turbulent mixing layers discussed in § 3.

The first step of the scaling patch approach is to construct the scaled variables (denoted
by a superscript ∗), whenever possible, to vary between 0 and 1. Such a scaled variable
is able to reveal a natural reference scale for the flow variable. The scaled wall-normal
location and flow variables are

y∗ def= y − ym

yref (x)
, (2.2a)

U∗ def= Ue − U
Uref (x)

, (2.2b)
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y∗ = 0 U∗ = Ue − Um

Uref
V∗ = Ve − Vm

Vref
R∗

uv = Ruv |max

Ruv,ref

y∗ = δe − ym

yref
U∗ = 0 V∗ = 0 R∗

uv ≈ 0

Table 2. Conditions at ym and δe.

V∗ def= Ve − V
Vref (x)

, (2.2c)

R∗
uv

def= Ruv

Ruv,ref (x)
. (2.2d)

The reference scales yref , Uref , Vref and Ruv,ref depend on x only. Note that self-similarity
is not assumed in the definition of U∗, V∗ and R∗

uv . That is, the scaled variables U∗, V∗
and R∗

uv may vary in both y∗ and x. The scaling wall-normal location y∗ deserves some
comment. It uses the well-known finding from APG TBL that an outer maximum of the
turbulent shear stress appears at a wall distance ym. As the derivative ∂Ruv/∂y enters into
the mean momentum balance (2.1b), it appears natural to use ym as an anchor point for y∗.

In previous similarity analyses of APG TBL, the mean streamwise velocity deficit
Ue − U was used typically, but the wall-normal velocity was used directly. Here, the
wall-normal velocity deficit is used in the scaled variable to remove the wall effect in
the outer region. As pointed out by Castillo & George (2001), there is no need to use a
deficit to define the normalized Reynolds shear stress, because the Reynolds shear stress
is approximately zero at the boundary layer edge, so Ruv|e − Ruv ≈ −Ruv .

Substituting the normalized variables defined in (2.2a)–(2.2d) into the mean momentum
equation (2.1b) produces

0 = −UeVref

yref

∂V∗

∂y∗ + Uref Ve

yref

∂U∗

∂y∗ + Uref Vref

yref

(
U∗ ∂V∗

∂y∗ − V∗ ∂U∗

∂y∗

)

+ Ruv,ref

yref

∂R∗
uv

∂y∗ − 1
ρ

dPe

dx
. (2.3)

Note that the continuity equation (2.1a) is employed to write −U ∂U/∂x as U ∂V/∂y in
the mean momentum equation, so there is no x derivative in (2.3) except in dPe/dx. The
flow conditions at y = ym and y = δe for the normalized variables are listed in table 2. To
satisfy the admissible scaling requirement for the boundary conditions (see Fife 2006; Wei
2020), proper scales for yref , Uref and Vref are set as

yref = δe − ym, (2.4a)

Uref = Ue − Um, (2.4b)

Vref = Ve − Vm, (2.4c)

Ruv,ref = Ruv|max. (2.4d)

Consequently, all the normalized boundary conditions at y∗ = 0 (at y = ym) and y∗ = 1
(at y = δe) are either 1 or 0. Therefore, in the outer region of the APG TBL, the scaled
variables U∗, V∗ and R∗

uv in the scaling patch analysis all vary between 0 and 1 within the
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scaled distance of 0 � y∗ � 1. Moreover, as U∗, V∗ and R∗
uv are smooth functions of y∗ in

the outer region, their derivatives ∂/∂y∗ and ∂2/∂( y∗)2 also remain � O(1).
The mean momentum equation in a dimensionless form can be obtained by dividing

Ue dUe/dx into (2.3):

0 = −

⎡
⎢⎣ Ve − Vm

(δe − ym)
dUe

dx

⎤
⎥⎦ ∂V∗

∂y∗ +

⎡
⎢⎣Ue − Um

Ue

Ve

(δe − ym)
dUe

dx

⎤
⎥⎦ ∂U∗

∂y∗

+

⎡
⎢⎣Ue − Um

Ue

Ve − Vm

(δe − ym)
dUe

dx

⎤
⎥⎦

(
U∗ ∂V∗

∂y∗ − V∗ ∂U∗

∂y∗

)

+

⎡
⎢⎣ Ruv|max

(δe − ym)Ue
dUe

dx

⎤
⎥⎦ ∂R∗

uv

∂y∗ −
1
ρ

dPe

dx

Ue
dUe

dx

. (2.5)

Note that the last term in (2.5) is 1, as −(1/ρ) dPe/dx = Ue dUe/dx from the mean
momentum equation in the free stream. If there is at least another pre-factor in (2.5) (in
the square brackets) having nominal order 1, then this equation satisfies the requirement
for an admissible scaling. The variations of the pre-factors in the x-direction are presented
in figure 2. The pre-factor of the first term in (2.5), (Ve − Vm)/((δe − ym) dUe/dx),
approaches a constant −2.5, which is of o(1). The deviation at the beginning of the
simulation domain is attributed to the fact that the APG effect takes some distance to
influence the outer flow in the boundary layer. Figure 2(b) shows that (Ue − Um)/Ue
approaches a constant of value 0.3–0.4. Hence the pre-factor of the third term in (2.5)
also approaches a constant in the range −0.75 to −1.0. Figure 2(c) shows that Ve/((δe −
ym) dUe/dx) can be approximated by a constant −3. (The cause of the scatter and rise
near the end of the simulation domain in figure 2(c) is not clear to the authors.) Therefore,
the pre-factor of the second term in (2.5) is in the range −0.9 to −1.2. Figure 2(d) shows
that the pre-factor of the fourth term in (2.5) varies between −0.5 and −0.6, except near
the beginning and end of the large-eddy simulations (LES) domain. Note that the LES
studies of Bobke et al. (2017) were on near-equilibrium mild APG TBLs. At present, it is
not clear whether the values presented in figure 2 vary with the streamwise distribution of
the pressure gradient and strength of APG, especially for flow near the separation. More
studies are required to look into the issue.

The values of the pre-factors of terms in (2.5) are summarized in table 3 based on
the LES of Bobke et al. (2017), showing that all the pre-factors in (2.5) are constants of
nominal order 1. In other words, (2.5) is an admissible scaling of the mean momentum
equation for the outer region of the APG TBL.

3. Evaluating the new outer scales using experimental and numerical simulation data

The new outer scaling is evaluated against experimental and numerical simulation data
on the APG TBL over a wide range of Reynolds numbers and strengths of the pressure
gradient. Table 4 lists the x station (or the grid index in simulation), the momentum
thickness Reynolds number Reθ , the Rotta–Clauser parameter βRC, and the shape factor
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Figure 2. Parameters in the pre-factors of (2.5). (a) Pre-factor of the first term in (2.5). (b) Plots of (Ue −
Um)/Ue versus x. (c) Plots of Ve/((δe − ym) dUe/dx) versus x. (d) Pre-factor of Reynolds shear stress gradient
term in (2.5). The LES data are from Bobke et al. (2017), and the DNS data are from Kitsios et al. (2017). To
prevent clutter, only every 80 x-grids are plotted.

Ve − Vm

(δe − ym)
dUe

dx

Ue − Um

Ue

Ve

(δe − ym)
dUe

dx

Ue − Um

Ue

Ve − Vm

(δe − ym)
dUe

dx

Ruv |max

(δe − ym)Ue
dUe

dx

−2.5 −0.75 to −1.0 −0.9 to −1.2 −0.5 to −0.6

Table 3. Values of the pre-factors of terms in (2.5), computed from the LES data of Bobke et al. (2017).

H of the data used in this work. Marušić & Perry (1995) investigated two flow cases,
with one upstream velocity set nominally to 10 m s−1 (10APG) and the other to 30 m s−1

(30APG). In the LES of Bobke et al. (2017), the pressure gradient was imposed following
the near-equilibrium definition of Townsend (1956) and Mellor & Gibson (1966): U∞ =
C(x − x0)

m. The five LES cases were named m13 (m = −0.13), m16 (m = −0.16), m18
(m = −0.18), b1 (m = −0.14) and b2 (m = −0.18). In the m13, m16 and m18 cases, the
Rotta–Clauser pressure gradient varies in the streamwise direction, but in the b1 and b2
cases, βRC is about the same in the streamwise direction. Kitsios et al. (2017) carried out
two direct numerical simulations (DNS): a mild APG at βRC ≈ 1, and a strong APG at
βRC ≈ 39. We have analysed all the data profiles of these experimental and numerical
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Researchers Method x (m) Reθ βRC H

Nagano, Tagawa & Tsuji (1993) [NTT] Exp. 0.523, 1.121 1290, 3350 0.76, 4.66 1.52, 1.88
Skåre & Krogstad (1994) [SK] Exp. 4.0, 5.2 39 120, 53 970 19.9, 21.4 2.006, 1.986
Marušić & Perry (1995) [MP(10APG)] Exp. 2.24, 3.08 4155, 7257 1.45, 7.16 1.49, 1.73
Marušić & Perry (1995) [MP(30APG)] Exp. 1.8, 3.08 8588, 19 133 0.71, 6.07 1.41, 1.60
Maciel, Rossignol & Lemay (2006) [MRL] Exp. 0.99, 1.615 3355, 12 691 3.23, ∞ 1.27, 3.85

Bobke et al. (2017) [LES(m13)] LES ix = 1–1570 990–3515 0.85–1.49 1.58–1.51
Bobke et al. (2017) [LES(m16)] LES ix = 1–1570 1010–4000 1.55–2.55 1.58–1.56
Bobke et al. (2017) [LES(m18)] LES ix = 1–1570 990–4320 2.15–4.01 1.58–1.60
Bobke et al. (2017) [LES(b1)] LES ix = 1–1570 910–3360 1 1.58–1.51
Kitsios et al. (2017) [DNS(mild)] DNS ix = 1–580 3100–3440 1 1.58–1.57
Kitsios et al. (2017) [DNS(strong)] DNS ix = 1–1000 10 000–12 300 39 2.46–2.62

Table 4. Experimental and numerical simulation of APG TBL. To prevent clutter, only the first and last
x-stations were used from each data set; ix for the LES and DNS data refers to the grid number in the x-direction.

studies, but to prevent clutter, only data at the first and last streamwise stations of each
study are presented in figures 3, 4, 5, 6, 7 of § 3.

3.1. Mean streamwise velocity profiles
Figure 3 presents experimental measurements of mean streamwise velocity in APG TBL.
In figure 3(a), the measurements are presented as U/Ue versus y/δe, showing that the
mean streamwise velocity distribution is distinctly influenced by the pressure gradient.
As the APG becomes stronger, the mean velocity profile becomes less full. Note that the
curvature of the profiles for U/Ue plotted versus y/δe is not the same between small and
large deficit cases. Small defect profiles have positive curvature, while large defect profiles
can have regions of negative curvature. However, above ym, the curvature of the profiles is
positive for both small and large defect profiles. Applying the new outer scaling, figure 3(b)
shows that the mean streamwise velocity deficit profiles from different studies collapse
well onto a single curve, even including the profile from the data of Maciel et al. (2006)
(at x = 1.615 m), which has a large mean velocity deficit and is close to separation. From
empirical curve fitting, the approximating equation, represented by the dashed curve in
figure 3(b), is found as

Ue − U
Ue − Um

≈ 1 − erf(1.3y∗ + 0.21(1.3y∗)4), (3.1)

where y∗ = ( y − ym)/(δe − ym), and erf( ) is the error function. The functional form of
(3.1) is similar to the profile obtained for the self-similar planar mixing layer by Görtler
(1942) (see also Pope 2000; Eisfeld 2021; Wei et al. 2022a), offering evidence for the
similarity between the outer part of the APG TBL and free shear turbulent flows. The term
0.21(1.3y∗)4 is added to better fit the data near the boundary layer edge, following the
practice in planar turbulent wakes (see e.g. Liu et al. 2002 and Wei & Livescu 2021b, for
example).

Figure 4(a) presents numerical simulation data of U/Ue versus y/δ. Like the
experimental data in figure 3(a), the simulation data also displays clear influence of
pressure gradient on the distribution of the mean streamwise velocity. In particular, the
last station in the strong APG case of Kitsios et al. (2017) is at the verge of separation.
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Figure 3. Experimental data of mean streamwise velocity. (a) Plots of U/Ue versus y/δ. (b) New outer scaling
for the mean streamwise velocity deficit. Data: NTT from Nagano et al. (1993), SK from Skåre & Krogstad
(1994), MP from Marušić & Perry (1995), and MRL from Maciel et al. (2006).
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Figure 4. Numerical simulation data of mean streamwise velocity. (a) Plots of U/Ue versus y/δ. (b) New outer
scaling for the mean streamwise velocity deficit. Data: LES from Bobke et al. (2017), DNS from Kitsios et al.
(2017).

Under the new outer scaling, the mean streamwise velocity deficit data in the simulations
are also well approximated by (3.1). Near the beginning of the simulation domain in
LES(m13) and LES(m18), the outer scaled mean streamwise velocity deficit deviates
slightly from the approximate (3.1).

3.2. Mean wall-normal velocity profiles
It is challenging to obtain accurate measurements of the wall-normal velocity in
wind-tunnel experiments of TBL flows. Therefore, experimental data of V are scarce, and
the uncertainties of the measurements are often unclear. Here, we use LES and DNS data
of V to evaluate the new scaling. Figure 5(a) presents V/Ve versus y/δe. Note that the
slope of the V profile outside the boundary layer varies, because dV/dy|e = −dUe/dx.

Figure 5(b) shows that with the new outer scaling, the mean wall-normal velocity deficit
collapses well in the outer region of APG TBL. An approximating function for the mean
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Figure 5. Numerical simulation data of mean wall-normal velocity deficit. (a) Plots of V/Ve versus y/δe.
(b) New outer scaling for the mean wall-normal velocity deficit. Data: LES from Bobke et al. (2017), DNS
from Kitsios et al. (2017).

wall-normal velocity deficit is found as

Ve − V
Ve − Vm

≈ 1 − 4.1(−0.125 erf(−1.3y∗) − 0.156 exp(−(1.3y∗)2) + 0.156). (3.2)

Equation (3.2) follows the functional form for the mean transverse flow in planar turbulent
mixing layers (see Wei et al. 2022a).

3.3. Reynolds shear stress profiles
Figure 6(a) presents the experimental data for Reynolds shear stress as Ruv/U2

e versus
y/δe. Given the scatter in the experimental data, it is challenging to determine precisely
the maximum Reynolds shear stress location and value. For instance, figure 6(a) shows
that the maximum Ruv occurs at a wall-normal location y/δe ≈ 0.6 for the data of Maciel
et al. (2006) at x = 1.615, but this may not be the actual peak location. The new outer
scaling for the Reynolds shear stress is presented in figure 6(b); the scatter is related to the
uncertainties in estimating the maximum Reynolds shear stress locations and values from
experimental measurements.

Reynolds shear stress data from numerical simulation are presented in figure 7. At the
beginning of the simulation domain of LES(m13) and LES(m18) (× symbols in the figure),
the maximum Reynolds shear stress occurs closer to the wall, indicating that the flow at
those stations is more similar to the ZPG TBL. When the APG effect is sufficient, the
maximum Reynolds shear stress locations shift outwards, as shown in figure 6(a). Using
the new outer scaling, the simulation data display better collapse, as shown in figure 7(b).
An approximation function for the normalized Reynolds shear stress is found by curve
fitting as

Ruv

Ruv|max
≈ exp(−(1.3y∗)2 − 0.385(1.3y∗)4). (3.3)

The similarities and differences between the approximate equations of U∗, V∗ and R∗
uv

for the outer region of the APG TBL and planar turbulent mixing layers are summarized in
table 5. In planar turbulent mixing layers, the self-similar transverse location is typically
denoted as ξ = ( y − y05)/δ, where y05 is the transverse location at which the mean
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Figure 6. Experimental data for Reynolds shear stress. (a) Plots of Ruv/U2
e versus y/δe. (b) New outer scaling

for Reynolds shear stress.
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Figure 7. Numerical simulation data for Reynolds shear stress. (a) Plots of Ruv/U2
e versus y/δe. (b) New

outer scaling for Reynolds shear stress. Data: LES from Bobke et al. (2017), DNS from Kitsios et al. (2017).

axial velocity is the average of the high-speed stream Uh and low-speed stream Ul. The
parameter 1.81ξ in the planar turbulent mixing layer equations arises from the definition of
the mixing layer half-width using the error function (see Pope 2000 or Wei et al. 2022a).
In the approximate U∗ equations, the difference between 1.3y∗ in the APG TBL and 1.81ξ

in the planar turbulent mixing layer comes from the different definitions of flow width.
To better fit the data near the boundary layer edge, an additional term 0.21(1.3y∗)4 is
introduced in the APG TBL equation. In the approximate V∗ equations, the differences
between the APG TBL and mixing layers come from the differences in the boundary
conditions and the reference velocity scale Vref . In the approximate R∗

uv equation for APG
TBL, the term −0.385(1.3y∗)4 is also introduced, to better fit the data near the boundary
layer edge.

4. Approximate reference scales for the outer region of the APG TBL

In § 2, the new outer scales are determined based on the maximum Reynolds shear stress
location ym. However, the values of ym, Um, Vm and Ruv|max are not known a priori,
so it is desirable to obtain approximate scales based on parameters that are easier to

958 A9-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.72


Outer scaling of APG TBL

Outer region of APG TBL Planar turbulent mixing layers

y∗ = y − ym

δe − ym
ξ = y − y05

δ

U U∗ = Ue − U
Ue − Um

U∗ = U − Uavg

Uh − Ul

U∗ ≈ 1 − erf(1.3y∗ + 0.21(1.3y∗)4) U∗ ≈ 0.5 erf(1.81ξ)

V V∗ = Ve − V
Ve − Vm

V∗ = V − Vo′

(Uh − Ul) dδ/dx
V∗ ≈ 1 − 4.1{−0.125 erf(−1.3y∗)

− 0.156 exp(−(1.3y∗)2) + 0.156}
V∗ ≈ −0.125 erf(1.81ξ)

− 0.156 exp(−(1.81ξ)2) + 0.156

Ruv R∗
uv = Ruv

Ruv |max
R∗

uv = Ruv

0.5Uavg(Uh − Ul) dδ/dx

R∗
uv ≈ exp(−(1.3y∗)2 − 0.385(1.3y∗)4) R∗

uv ≈ 0.156 exp(−(1.81ξ)2)

Table 5. Approximate functions for the outer region of the APG TBL and planar turbulent mixing layer. In the
planar turbulent mixing layer equations, Uh is the high speed, Ul is the low speed, Uavg = 0.5(Uh + Ul) is the
average speed of the two streams, and o′ is the location where the mean axial velocity is Uavg. The coefficients
in the planar turbulent mixing equations are based on a = 0.5518 and B = −0.25 in Wei et al. (2022a).
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Figure 8. Ratio of (δe − ym) and δe. (a) Experimental data. Note that δx=x1 is the boundary layer thickness at
the first measuring station, not the leading edge. (b) The LES data of Bobke et al. (2017), and DNS data (mild
APG case) of Kitsios et al. (2017). Here, δ0 is the boundary layer thickness at the first x-grid of numerical
simulation.

obtain. Figure 8 presents the ratio of (δe − ym)/δe versus x/δ0 from experimental data and
numerical simulation data, including both flows in or approaching equilibrium (Skåre &
Krogstad 1994; Bobke et al. 2017) and streamwise evolving flows (Marušić & Perry 1995).
Recall that a certain distance is required, in physical experiments or numerical simulations,
for the APG to affect the development of the boundary layer. Near the beginning of
the boundary layer, the maximum Reynolds shear stress ym is much smaller than δe,
and the ratio is clearly larger (close to 1 at high Reynolds number flows), as shown in
figure 8. Moving downstream, the ratio (δe − ym)/δe is found to approach a constant value
around 0.6 for the flows considered here. In other words, at a sufficient distance from the
imposition of an APG for flows in or approaching equilibrium, the outer length scale can
be approximated as yref = δe.
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yref Uref Vref Ruv,ref

Reference scale δe − ym Ue − Um Ve − Vm Ruv |max

Approximation δe Ue δe
dUe

dx
δeUe

dUe

dx

Table 6. Reference scales in the outer region of the APG TBL.

At this point, it is important to point out that ym ∼ 0.4δe is used only as an approximation
to evaluate the new scaling. It is well known that the location of ym depends on the
strength of the pressure gradient (i.e. on βRC), and for non-equilibrium flows, also on the
extent of the velocity defect, on flow history, and on the Reynolds number. An empirical
relation for ym might be inferred from (8) in Perry, Marusic & Li (1994). To give two
examples for streamwise evolving flows, for illustration, a value of ym/δe at approximately
0.25–0.35 is found for the last stations of the flow of Marusic and Perry, and a value
of approximately 0.2 was found for the flow of Cuvier et al. (2017) with an upstream
change from a mild favourable pressure gradient (FPG) into an APG. Moreover, it is worth
emphasizing that APG TBLs are not generally approaching equilibrium unless they were
specifically designed to do so. To conclude, despite these important details, it appears from
figure 8 that at a sufficient distance from the imposition of the APG, the outer length scale
can be approximated as yref = δe, at least for flows without significant disequilibrating
effects due to the imposed streamwise pressure gradient. The estimation ym ∼ 0.4δe can
be seen as a low-order approximation, and a higher-order correction could be obtained
using, for example, Perry et al. (1994).

Figure 2(a) indicates that an approximate reference scale for the mean wall-normal
velocity deficit in the outer region of the APG TBL can be developed as

Vref ∼ (δe − ym)
dUe

dx
∼ δe

dUe

dx
. (4.1)

Figure 2(b) indicates that an approximate scale for the mean streamwise velocity deficit
in the outer region of APG TBL can be developed as

Uref ∼ Ue. (4.2)

Figure 2(d) indicates that an approximate reference scale for the Reynolds shear stress
in the outer region of the APG TBL can be developed as

Ruv,ref ∼ Ue(δe − ym)
dUe

dx
∼ δeUe

dUe

dx
. (4.3)

Note that the approximate scale for the Reynolds shear stress is a mixed scale of
UeVref , and scales with the local streamwise pressure gradient. The approximate reference
scales are valid only at a sufficient distance from imposition of the APG (assuming no
continuously disequilibrating effects due to the streamwise pressure gradient distribution).
For comparison, the reference scales and their approximations for the outer region of the
APG TBL are listed in table 6.

5. Relation to results of previous analysis

As reviewed in the Introduction, a number of scales have been proposed previously to
describe the flow in the outer region of an APG TBL. Here, we show that the new scales
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proposed in this work are closely related to several proposed previously, particularly the
Zagarola–Smits scales, the scales based on the inflection point of the mean streamwise
velocity profile, and the scales of Castillo & George (2001).

5.1. Relation with Zagarola–Smits velocity scale
The Zagarola–Smits velocity scale Uzs has been used widely in the scaling of the mean
streamwise velocity deficit in both ZPG and APG TBLs. Here, we show that the outer
velocity scale Ue − Um proposed in the present paper is closely related to Uzs. The mass
displacement thickness used in the definition of Uzs is typically defined by integration
from the wall to infinity (see e.g. Schlichting 1979), but it can also be approximated as

δ∗ ≡
∫ ∞

0

Ue − U
Ue

dy ≈
∫ δe

0

Ue − U
Ue

dy. (5.1)

Then the Zagarola–Smits scale (Zagarola & Smits 1998a,b) can be written as

UZS = Ue
δ∗

δe
= (Ue − Um)

δe − ym

δe

∫ 1

(0−ym)/(δe−ym)

(
Ue − U

Ue − Um

)
d
(

y − ym

δe − ym

)
. (5.2)

As shown in figure 8, the ratio (δe − ym)/δe approaches a constant around 0.6 in the
APG TBL. Figures 3 and 4 show that (Ue − U)/(Ue − Um) profiles collapse well in the
outer region. For moderate APG TBLs, figures 3(b) and 4(b) show that the profile of
(Ue − U)/(Ue − Um) rises sharply in the near-wall region. In other words, the deviation
of (Ue − U)/(Ue − Um) from the approximate (3.1) is significant only in the near-wall
region, which occupies a very small fraction of ( y − ym)/(δe − ym) in figures 3(b) and
4(b). At a strong APG TBL (x = 1.615 m in the study of Maciel et al. 2006), the near-wall
profile of (Ue − U)/(Ue − Um) deviates only slightly from the curve valid for the outer
layer. Therefore, the integral in (5.2) over the entire boundary layer can be obtained
approximately from (3.1). The new outer scale proposed in the present work is then closely
related to the Zagarola–Smits scale, Ue − Um ∼ UZS.

The Zagarola–Smits velocity scale and the new outer velocity scale Ue − Um were
calculated from the experimental and LES data, and the ratio Uzs/(Ue − Um) is presented
in figure 9. The scatter, especially in the experimental data, is likely caused by the
uncertainty in the determination of the maximum Reynolds shear stress location ym.
The experimental and simulation data indicate that Uzs/(Ue − Um) ≈ 0.8 at a sufficient
distance from the imposition of APG, which supports the conclusion that the new outer
velocity scale is indeed closely related to Uzs.

5.2. Mean streamwise velocity inflection point and maximum Reynolds shear stress
location

In several previous studies of APG TBL (see e.g. Schatzman & Thomas 2017; Maciel
et al. 2018), the inflection point yIP of the mean streamwise velocity has been used to
define outer scales. Typically, the mean streamwise velocity at yIP is used directly as an
outer velocity scale. Our scaling patch analysis also allows use of the inflection point to
define the outer length scale as δe − yIP, the outer velocity scale for the mean streamwise
velocity deficit as Ue − UIP, the outer velocity scale for the mean wall-normal velocity
deficit as Ve − VIP, and the scale for the Reynolds shear stress as Reuv( yIP).

The use of ym in the present work can be viewed as a generalization of the idea of
Schatzman & Thomas (2017), since the maximum of the Reynolds shear stress ym is
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Figure 9. Ratio of Zagarola–Smits velocity scale and the new outer velocity scale (Ue − Um).
(a) Experimental data. (b) The LES data of Bobke et al. (2017), and DNS data (mild APG case) of Kitsios et al.
(2017).
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Figure 10. (a) Typical shapes of dU/dy in the APG TBL. (b) Typical shapes of Reynolds shear stress in the
APG TBL.

located near the inflection point of the mean velocity profile in the outer part of TBLs.
However, the mean velocity inflection point in the outer layer occurs only under strong
pressure gradients, whereas the outer maximum of the Reynolds shear stress appears
already in a mild or moderate APG. Moreover, ym is significantly easier to determine from
experimental or simulation data. As an example, figure 10(a) shows the mean velocity
gradient profiles at the first and last stations in the simulation of Bobke et al. (2017).
The inset shows a monotonic decrease of dU/dy with y at the first station. At the last
station, dU/dy first decreases from the wall to a smaller value, then rises to a peak (the
inflection point), and decreases again towards the boundary layer edge. In practice, it is
challenging to obtain an accurate and smooth profile of dU/dy, even from numerical
simulation data. Hence the determination of the inflection point may lead to significant
uncertainties. Figure 10(b) presents the Reynolds shear stress profiles for the two locations
used in figure 10(a). The maximum Reynolds shear stress location ym can be determined
more easily from the simulation data. For accurate determination of ym in experimental
measurements, sufficient spatial resolution and smoothness of the data are required.
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An additional, even more important, advantage of using the maximum shear stress
location to define the outer layer scaling for the APG TBL is the direct connection to free
shear turbulent flows. In this sense, the outer part of a TBL resembles a free shear flow; the
comparison echoes the wake flow analogy of Coles & Hirst (1969) and the mixing layer
analogy of Maciel et al. (2018).

5.3. Relation to results of Castillo and George
Castillo & George (2001) performed a similarity analysis of the outer part of an APG TBL.
The boundary layer thickness δe was used as the reference scale for the outer flow. They
derived a dimensionless mean momentum equation using two self-similar functions of
fop∞ = (U − Ue)/Uref , rop∞ = −〈uv〉/Ruv,ref and their derivatives f ′

op∞ and r′
op∞. (In

their work, Castillo & George (2001) denoted the outer velocity scale as Uso and the
Reynolds shear stress scale as Rso.) For the dimensionless equation to yield equilibrium
similarity solutions, Castillo & George (2001) argued that all the pre-factors of the terms
in their dimensionless equation should have the same x dependence, and must remain
proportional to each other as the flow develops. Consequently, they proposed the outer
scales for the APG TBL as

Uref ∼ Ue, (5.3)

Ruv,ref ∼ U2
ref

dδ

dx
. (5.4)

Therefore, the outer velocity scale used by Castillo & George (2001) is the same as
the approximation (4.2). Castillo & George (2001) specified additional independent
constraints

dδ

dx
∼ δ

Ue

dUe

dx
∼ δ

ρU2
e

dPe

dx
. (5.5)

Applying the relation in (5.5), the reference scale of Castillo & George (2001) for the
Reynolds shear stress can be written as Ruv,ref ∼ δUe dUe/dx, which is similar to the
approximation (4.3) developed in the present work.

In the present work, the self-similarity assumption is not applied directly in the scaling
patch analysis of the mean momentum equation (see § 2), and the x derivative is not
involved except in dUe/dx. The constraint equation (5.5) suggested by Castillo & George
(2001) can be obtained by a scaling patch analysis of the mean continuity equation,
supplemented by a self-similarity assumption as in the analysis of planar turbulent wake
flows (Wei et al. 2022b).

Substituting the normalized variables, the mean continuity equation (2.1a) becomes

0 = ∂(Ue − Uref U∗)
∂x

+ ∂(Ve − Vref V∗)
∂y

, (5.6)

which can be rearranged as

0 = dUe

dx
− dUref

dx
U∗ − Uref

∂U∗

∂x
− Vref

yref

∂V∗

∂y∗ . (5.7)

Note that Ve is a function of x only, not depending on y. Multiplying yref /Vref onto (5.7)
yields a dimensionless equation

0 =
yref

dUe

dx
Vref

−
yref

dUref

dx
Vref

U∗ − yref Uref

Vref

∂U∗

∂x
− ∂V∗

∂y∗ . (5.8)
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The self-similarity assumption is introduced now to transform the derivative ∂U∗/∂x as

∂U∗

∂x
= dU∗

dy∗
∂y∗

∂x
= dU∗

dy∗
∂( y − ym)/yref

∂x

= − 1
yref

dym

dx
dU∗

dy∗ − 1
yref

dyref

dx
y∗ dU∗

dy∗ . (5.9)

Then (5.8) becomes

0 =
yref

dUe

dx
Vref

−
yref

dUref

dx
Vref

U∗ + Uref

Vref

dym

dx
dU∗

dy∗ + Uref

Vref

dyref

dx
y∗ dU∗

dy∗ − dV∗

dy∗ . (5.10)

Note that y∗, U∗ and V∗ in (5.10) are of order O(1). Moreover, ∂U∗/∂y∗ and ∂V∗/∂y∗ are
also of order O(1) in the outer region of the APG TBL, as U∗ and V∗ are smooth functions
of y∗. The first term in (5.10) is about 0.5 (see figure 2a), so it has a nominal order 1. The
pre-factor to the second term also has a nominal order 1. Therefore, the pre-factor of the
third and fourth terms in (5.10) must be

Uref

Vref

dym

dx
� O(1),

Uref

Vref

dyref

dx
� O(1). (5.11a,b)

The constraint equation (5.5) suggested by Castillo & George (2001) can be obtained by
setting the pre-factors of the first and fourth terms in (5.10) proportional to each other:

yref
dUe

dx
∼ Uref

dyref

dx
. (5.12)

Therefore, the self-similarity analysis of Castillo & George (2001) can also be developed
from a scaling patch analysis of the mean continuity equation.

6. Summary

The scaling patch approach is applied in the present work to develop a new scaling of the
mean momentum equation for the outer region of the APG TBL. The flow properties at
the maximum Reynolds shear stress location ym are found to play a key role in the new
outer scaling. A new outer length scale is proposed as δe − ym, a new velocity for the
mean streamwise velocity deficit is proposed as Ue − Um, and a new velocity for the mean
transverse velocity deficit is proposed as Ve − Vm. The new scales are verified against
experimental and numerical APG TBL data over a wide range of Reynolds numbers and
strengths of pressure gradient. Approximate scales are also developed for the convenience
of practical application, and the relation between the new scales and previous analysis
has been clarified. In figures 3(b), 4(b), 6(b) and 7(b), the new outer scaling is applied to
experimental and numerical data at the first and last x-locations. These figures show minor
differences in the scaled profiles between the first and last station. Figure 11 shows that, not
surprisingly, the new outer scaling works better when only the rear half of the simulation
data are presented.

In previous investigations of the APG TBL, the mean transverse velocity V was rarely
studied. In the present work, we demonstrate that the characteristics of V are important in
the understanding and scaling of the mean flow in the outer region of the APG TBL. In
fact, the proper scale for the Reynolds shear stress is a mixed scale of Ue and Vref (see
(4.1) and (4.3)).
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Figure 11. New outer scaled profiles in the rear half of the simulation domain. (a) Mean streamwise velocity
deficit. (b) Reynolds shear stress.

The new outer scaling arises directly from a scaling patch analysis of the mean
momentum equation. Two distinct differences between the new outer scaling and previous
studies are the outer length scale and the outer scale for the mean transverse velocity
deficit. The new outer scaling for APG TBL is cast in a form that is similar to that for
planar turbulent wake flows or planar turbulent mixing layers. Therefore, the new outer
scaling developed here opens a pathway for future investigation on the similarities and
differences between the outer region of the APG TBL and free shear turbulent flows, such
as turbulent wakes or turbulent mixing layers.
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