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We identify a class of smooth Banach *-algebras that are differential subalgebras of
commutative C*-algebras whose openness of multiplication is completely determined
by the topological stable rank of the target C*-algebra. We then show that group
algebras of Abelian groups of unbounded exponent fail to have uniformly open
convolution. Finally, we completely characterize in the complex case (uniform)
openness of multiplication in algebras of continuous functions in terms of the
covering dimension.
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1. Introduction

Gelfand’s proof of Wiener’s lemma [20], which asserts that the reciprocal of a
function with absolutely convergent Fourier series that does not vanish anywhere
has absolutely convergent Fourier series too, was central to the development of
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2 T. Kania and N. Maślany

Banach-algebraic ramifications of harmonic analysis. Wiener’s lemma may be
rephrased as follows: the algebra of absolutely convergent Fourier series is inverse-
closed when embedded into the algebra of all continuous functions on the unit
circle. In the present article, we shall be concerned with algebras that have even
a stronger property, namely that the norm of an invertible element is a function
of the norm of the element and its supremum norm of its Gelfand transform (see
Theorem 1.1); a property that the algebra of absolutely convergent series lacks.

When A is a unital Banach algebra and i : A→ B is a unital continuous injective
homomorphism, we say that A admits norm-controlled inversion in B, whenever
there exists a function h : (0,∞)2 → (0,∞) so that for every element a ∈ A, which
is invertible in B, we have

‖a−1‖A 6 h(‖a‖A, ‖i(a−1)‖B).

Since the embedding i is injective, an invertible element a in algebra A remains
invertible in B (strictly speaking, i(a) is invertible); however, in this case, the norm-
controlled inversion of A in B implies that the inverses are actually in A (i.e., i(A)
is inverse-closed in B).

Following Nikolskii [29], for δ > 1, we say that a Banach algebra A is δ-visible in
B, whenever

ψ
(
δ−1

)
= sup{‖a−1‖A : a ∈ A, ‖a‖A 6 1, ‖i(a−1)‖B 6 δ} <∞. (1.1)

Then A admits norm-controlled inversion in B if and only if it is δ-visible in B for
all δ > 1. Should that be the case, the norm-control function h can be arranged to
be

h(‖a‖A, ‖i(a−1)‖B) =
1

‖a‖A
ψ
(
‖a‖A‖i(a−1)‖B

)
. (1.2)

For a commutative (*-)semi-simple Banach (*-)algebra A we say, for short, that
A admits norm-controlled inversion, whenever it admits norm-controlled inversion
in C(ΦA), the space of continuous functions on the maximal (*-)ideal space ΦA of
A, when embedded by the Gelfand transform. (For a commutative (*-)semi-simple
Banach (*-)algebra, the Gelfand transform is injective, see also [15, proposition
30.2(ii)].)

The Wiener (convolution) algebra `1(Z) is a primary example of a commuta-
tive Banach *-algebra without the norm-controlled inversion in C(T), the algebra
of continuous functions on the unit circle. Indeed, in [29], Nikolskii showed that
for δ > 2 we have ψ(δ−1) = ∞, where ψ is given in (1.1). The same conclu-
sion extends to convolution algebras `1(G) for any infinite Abelian group G that

lack norm-controlled inversion in C(Ĝ), the algebra of continuous functions on the
Pontryagin-dual group to G, but this behaviour appears rather exceptional. On
the positive side, various weighted algebras of Fourier series (see [17]) as well as
algebras of Lipschitz functions on compact subsets of Euclidean spaces enjoy the
norm-controlled inversion.

Norm-controlled inversion is a consequence of smoothness of the embedding as
observed by Blackadar and Cuntz [9]. More specifically, let i : A → B be a unital
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Differential embeddings into algebras of topological stable rank 1 3

injective homomorphism of unital Banach algebras. (By a subalgebra of a unital
algebra, we shall always mean a unital subalgebra. Likewise, all homomorphisms
between unital Banach algebras are assumed to preserve the unit.) Then A is a dif-
ferential subalgebra of B whenever there exists D > 0 such that for all a, b ∈ A we
have

‖ab‖A 6 D(‖a‖A‖i(b)‖B + ‖i(a)‖B‖b‖A). (1.3)

When A and B are Banach *-algebras, we additionally require that i is *-preserving
(hence it preserves the modulus); we omit the symbol i, when the map i is clear from
the context (for example, when it is the formal inclusion of algebras). Differential
subalgebras (especially of C*-algebras) have been extensively studied, see, e.g., [21,
22, 24, 31].

A unital Banach *-algebra A is symmetric, if the spectrum of positive elements is
non-negative (i.e., σ(A(a∗a)) ⊆ [0,∞) for all a ∈ A), which means that for any a ∈
A the element 1+a∗a is invertible (see [15, chapter 6] for further characterizations).
In the sequel, we shall make use of [21, theorem 1.1(i)] that we record below:

Theorem 1.1 Differential *-subalgebras of C*-algebras have norm-controlled
inversion.

In particular, differential *-algebras of C*-algebras are symmetric.
Note that the condition of being a differential norm is a rather mild assumption,

and norms satisfying (1.3) meet a weak form of smoothness as explained in [21,
theorem 1.1(v)]).

In the present article, we investigate the possible connections between smoothness
of an embedding of Banach algebras and topological stable rank 1 (which for unital
Banach algebras is equivalent to having dense invertible group) with the openness
of multiplication of a given Banach algebra A, i.e., the question of for which Banach
algebras the map m : A× A→ A given by m(a, b) = ab (a, b ∈ A) is open, that is,
it maps open sets to open sets. The problem of which Banach algebras have open
multiplication was systematically investigated by Draga and the first-named author
in [16], where it was observed that unital Banach algebras with open multiplication
have topological stable rank 1 but not vice versa. For example, matrix algebras
Mn have topological stable rank 1 but multiplication therein is not open unless
n =1 [7]. On the other hand, the problem of openness of convolution in `1(Z) is
persistently open.

Various function algebras have been observed to have open multiplication (even
uniformly, where a map f : X → Y is uniformly open whenever for every ε> 0
there is δ > 0 such that for all x ∈ X one has f(B(x, ε)) ⊇ B(f(x), δ)): spaces of
continuous/bounded functions: [2–6, 10, 25, 30] and spaces of functions of bounded
variation: [11, 26]. The first main result of the article unifies various approaches
to openness of multiplication. (All unexplained terminology may be found in the
subsequent section.)

Theorem 1.2 Suppose that A is a unital Banach *-algebra such that there exists
an injective *-homomorphism i : A→ C(X) for some compact space X such that A
has norm-controlled inversion in C(X). Let us consider either case:
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4 T. Kania and N. Maślany

• A = C(X),
• A = E∗ is a dual Banach algebra that shares with X densely many points.

Then multiplication in A is open at all pairs of jointly non-degenerate elements.
Furthermore, suppose that i has dense range in C(X). If A has open multiplica-

tion, then the maximal ideal space of A is of dimension at most 1.

Theorem 1.2 applies, in particular, to A = C(X), which may be interpreted as a
complex counterpart of the main result of [8].

Since the bidual of C (X ) is isometric to C (Z ) for some compact, zero-
dimensional space (in particular, C(X)∗∗ has uniformly open multiplication), using
Lemmas 2.1 and 2.2 we may record the following corollary.

Corollary 1.2. Suppose that A is an Arens-regular Banach *-algebra that is
densely embedded as a differential subalgebra of C(X) for some compact space X.
Then A∗∗ has open multiplication at all pairs of jointly non-degenerate elements.

The proofs of the main results of [11, 26] centre around showing that the algebras
of functions of p-bounded variation (for p=1 and p ∈ (1,∞), respectively) are
approximable by jointly non-degenerate products. Our theorem appears to be the
first general providing sufficient conditions for openness in a given commutative
Banach *-algebra (i.e., a self-adjoint function algebra).

In [16, corollary 4.13], Draga and the first-named author proved that `1(Z) does
not have uniformly open convolution (whether it is open or not remains an open
problem). We strengthen this result by showing that having unbounded exponent
(that is, the condition supg∈G o(g) = ∞, where o(g) denotes the rank of an element
g ∈ G) is sufficient for not having uniformly open convolution.

Theorem 1.4 Let G be an Abelian group of unbounded exponent, i.e.,
supg∈G o(g) = ∞. Then convolution in `1(G) is not uniformly open.

By Prüfer’s first theorem (see [27, p. 173]), every Abelian group of bounded
exponent is isomorphic to a direct sum of a finite number of finite cyclic groups
and a direct sum of possibly infinitely many copies of a fixed finite cyclic group, so
if one seeks examples of group convolution algebras with uniform multiplication,
the only candidates to be found are groups that are effectively direct sums of any
number of copies of a fixed cyclic group.

Finally, we establish a complex counterpart of Komisarski’s result [25] linking
openness of multiplication in the real algebra C (X ) of continuous functions on a
compact space X with the covering dimension of X. In the complex case, C (X ) has
open multiplication if and only if X is zero-dimensional in which case multiplication
is actually uniformly open with δ(ε) = ε2/4 (ε> 0). (see also [16, proposition 4.16]
for an alternative proof using direct limits that does not depend on the scalar field;
we refer to [18] for a modern exposition of dimension theory and standard facts
thereof.)

Theorem 1.5 Let X be a compact space. Then the following conditions are
equivalent for the algebra C(X) of continuous complex-valued functions on X:
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Differential embeddings into algebras of topological stable rank 1 5

(i) C(X) has open multiplication,
(ii) C(X) has uniformly open multiplication,
(iii) the covering dimension of X is at most 1.

Moreover, the algebras C(X) have equi-uniformly open multiplications for all
compact spaces of dimension at most 1.

A necessary condition for a unital Banach algebra to have open multiplication
is topological stable rank 1, that is, having dense group of invertible elements. For
a compact space X of dimension at least 2, this is not the case, so C (X ) does not
have open multiplication [16, proposition 4.4]. The proof of Theorem 1.5 is split
into three cases.

• The first one uses a reduction to spaces being topological (planar) real-
izations of graphs. Here we rely on certain ideas from an unpublished
manuscript of Behrends for which we have permission to include them
in the present note. We kindly acknowledge this crucial contribution from
Professor Behrends establishing the case of X = [0, 1].

• Then we proceed via an inverse limit argument to conclude the result for
all compact metric spaces of dimension at most 1.

• Finally, we apply a result of Madrešić [28] to conclude the general non-
metrisable case from equi-uniform openness of multiplication of C (X ) for
all one-dimensional compact metric spaces X.

2. Preliminaries

2.1. Banach algebras

Compact spaces are assumed to be Hausdorff. All Banach algebras considered in
this article are over C, the field of complex scalars unless otherwise specified. We
denote by T the unit circle in the complex plane.

A Banach algebra A has topological stable rank 1, whenever invertible elements
are dense in A if A is unital or in the unitization of A otherwise. Algebras whose
elements have zero-dimensional spectra have topological stable rank 1 and include
biduals of C (X ) for a compact space X, the algebra of functions of bounded vari-
ation, or the algebra of compact operators on a Banach space; we refer to [16, §2]
for more details.

2.1.1. Arens regularity, dual Banach algebras
As observed by Arens [1], the biudual of a Banach algebra may be naturally endowed
with two, rather than single one, multiplications (the left and right Arens products,
denoted �, �, respectively). Even though these multiplications may be explicitly
defined, the following ‘computation’ rule is perhaps easier to comprehend: for f, g ∈
A∗∗, where A is a Banach algebra, by Goldstine’s theorem, one may choose bounded
nets (fj), (gi) from A that are weak* convergent to f and g, respectively. Then

• f � g = limj limi fjgi,
• f � g = limi limj fjgi
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6 T. Kania and N. Maślany

are well-defined and do not depend on the choice of the approximating nets.
A Banach algebra is Arens-regular when the two multiplications coincide. For a
locally compact space X, the algebra C0(X) is Arens-regular, but a group G, the
group algebra `1(G) (see §2.5) is Arens-regular if and only if G is finite [33].

A dual Banach algebra is a Banach algebra A that is a dual space to some
Banach space E whose multiplication is separately σ(A,E)-continuous. Notable
examples of dual Banach algebras include von Neumann algebras, Banach algebras
that are reflexive as Banach spaces, or biduals of Arens-regular Banach algebras, see
[13, §5] for more details.

Suppose that A = E∗ is a dual Banach algebra and let i : A → C(X) be an
injective homomorphism for some compact space X. We say that A shares with X
densely many points whenever there exists a dense set Q ⊂ X such that i∗(δx) ∈ E
(x ∈ Q), i.e., the functionals i∗(δx) (x ∈ Q) are σ(A,E)-continuous (here δx ∈
C(X)∗ is the Dirac delta evaluation functional at x ∈ X). Since for an Arens-
regular Banach algebra, the bidual endowed with the unique Arens product is a
dual Banach algebra, we may record the following lemma.

Lemma 2.1. Let A be a unital Arens-regular Banach algebra and let i : A→ C(X)
be an injective algebra homomorphism with dense range. Then A∗∗ shares with the
maximal ideal space of C(X)∗∗ densely many points.

Proof. Since A is Arens-regular, A∗∗ is naturally a dual Banach algebra with the
unique Arens product. Since i∗∗∗ extends i∗, for every x ∈ X, we have i∗∗∗(δx) =
i∗(δx) ∈ A∗, so that i∗(δx) is σ(A

∗∗, A∗)-continuous. It remains to invoke the fact
that X can be identified with an open dense subset of the maximal ideal space
of C(X)∗∗ via x 7→ (δx)

∗∗ = δι(x) for some point ι(x) in the maximal ideal space
of C(X)∗∗ (see the discussion after [12, definition 3.3]); the map ι is necessarily
discontinuous unless X is finite). �

Let us record two permanence properties of differential embeddings; even though
we shall not utilize (ii) in the present article, we keep it for possible future reference.

Lemma 2.2. Let A be a Banach algebra continuously embedded into another Banach
algebra B by a homomorphism i : A→ B as a differential subalgebra.

(i) Consider both in A∗∗ and B∗∗ either left or right Arens products. Then in
either setting i∗∗ : A∗∗ → B∗∗ is a differential embedding.

(ii) Let U be an ultrafilter. Then iU : AU → BU is a differential embedding
between the respective ultrapowers.

Proof. Case 1. Let {aα}, {bβ} ⊂ A be bounded nets σ(A∗∗, A∗)-convergent to a, b ∈
A∗∗ respectively, satisfying for any α, β conditions ‖aα‖A 6 ‖a‖A∗∗ and ‖bβ‖B 6
‖b‖B∗∗ (it is possible by the Goldstine and Krein–Šmulyan theorems). Then

‖ab‖A∗∗ 6 lim inf
α,β

‖aαbβ‖

6 D · lim inf
α,β

(
‖aα‖A‖i(bβ)‖B + ‖i(aα)‖B‖bβ‖A

)
6 D

(
‖a‖A∗∗‖i∗∗(b)‖B∗∗ + ‖i∗∗(a)‖B∗∗‖b‖A∗∗

)
.
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Case 2. Let a = [(aγ)γ∈Γ], b = [(bγ)γ∈Γ] ∈ AU . Then

‖ab‖AU = lim
γ,U

∥∥aγbγ∥∥A
6 lim

γ,U
D
(∥∥aγ∥∥A∥∥i(bγ)∥∥B +

∥∥i(aγ)∥∥B∥∥bγ∥∥A)
6 D

(
lim
γ,U

∥∥aγ∥∥A · lim
γ,U

‖i(bγ)
∥∥
B
+ lim

γ,U

∥∥i(aγ)∥∥B · lim
γ,U

∥∥bγ∥∥A)
= D

(∥∥a∥∥
AU

∥∥iU (
b
)∥∥

BU +
∥∥iU (

a
)∥∥

BU

∥∥b∥∥
AU

)
.

�

2.2. Banach *-algebras

Let A be a unital Banach *-algebra. In this setting, for a ∈ A, we interpret |a|2 as
a∗a. We say that elements a, b in A are jointly non-degenerate, when |a|2 + |b|2 is
invertible. When X is a compact space and a, b ∈ C(X), we sometimes say that
elements with |a|2 + |b|2 > η (for some η > 0) are jointly η-non-degenerate. Let us
introduce the following definition.

Definition 2.3. A unital Banach *-algebra A is approximable by jointly non-
degenerate products whenever for all a, b ∈ A and ε> 0 there exist jointly
non-degenerate elements a′, b′ ∈ A with max{‖a − a′‖, ‖b − b′‖} < ε such that
ab = a′b′.

Remark. It is readily seen that C (X ) for a zero-dimensional compact space X has
this property. Indeed, let f, g ∈ C(X) and ε> 0. Consider the sets

• D1 = {x ∈ X : |f(x)| > ε/3}
• D2 = {x ∈ X : |g(x)| > ε/3}
• D3 = {x ∈ X : |f(x)|, |g(x)| 6 ε/2}.

Certainly, the sets D1, D2, D3 are closed and cover the space X. As X is zero-
dimensional, there exist pairwise clopen sets D′

1 ⊆ D1, D
′
2 ⊆ D2, and D′

3 ⊆ D3

that still cover X, i.e., X = D′
1 ∪ D′

2 ∪ D′
3. Let f ′ = f · 1D′

1∪D′
2
+ ε

21D′
3
and

g′ = g · 1D′
1∪D′

2
+ 2

εfg1D′
3
. Then f

′
, g

′
are the sought jointly non-degenerate

approximants. On the other hand, as C (X ) for X = [0, 1] and compact spaces alike
are readily not approximable by jointly non-degenerate issues due to connectedness.

Kowalczyk and Turowska [26] showed that the algebra BV [0, 1] of functions of
bounded variation on the unit interval is approximable by jointly non-degenerate
products and Canarias, Karlovich, and Shargorodsky [11] extended this result to
algebras of bounded p-variation on the interval as well as certain further function
algebras.
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8 T. Kania and N. Maślany

2.3. Ultraproducts

Ultraproducts of mathematical structures usually come in two main guises: the
algebraic one (first-order) and the analytic one (second-order). Let us briefly sum-
marize the link between these in the context of groups and their group algebras.
This has been essentially developed by Daws in [14, §5.4] and further explained in
[16, §2.3.2].

Let (Sγ)γ∈Γ be an infinite collection of semigroups and let U be an ultrafilter

on Γ. The (algebraic) ultraproduct
∏U

γ∈Γ Sγ with respect to U (denoted SU when
Sγ = S for all γ ∈ Γ and then termed the ultrapower of S with respect to U ) is
the quotient of the direct product

∏
γ∈Γ Sγ by the congruence

(gγ)γ∈Γ ∼ (hγ)γ∈Γ if and only if {γ ∈ Γ: gγ = hγ} ∈ U .

Then the just-defined ultraproduct is naturally a semigroup/group/Abelian group
if Sγ are semigroups/groups/Abelian groups for γ ∈ Γ.

Let (Aγ)γ∈Γ be an infinite collection of Banach spaces. Then the `∞(Γ)-direct
sum A = (

⊕
γ∈ΓAγ)`∞(Γ), that is, the space of all tuples (xγ)γ∈Γ with xγ ∈ Aγ

(γ ∈ Γ) and supγ∈Γ ‖xγ‖ < ∞ is a Banach space under the supremum norm.

Moreover, the subspace J = cU0 (Aγ)γ∈Γ comprising all tuples (xγ)γ∈Γ such that

limγ→U ‖xγ‖ = 0 is closed. The (Banach-space) ultraproduct
∏U

γ∈ΓAγ of (Aγ)γ∈Γ

with respect to U is the quotient space A/J . If Aγ (γ ∈ Γ) are Banach algebras,
then naturally so is A and J is then a closed ideal therein. Consequently, the
ultraproduct is a Banach algebra. Let us record formally a link between these two
constructions.

Lemma 2.5. Let (Sγ)γ∈Γ be an infinite collection of semigroups and let U be
a countably incomplete ultrafilter on Γ. Then there exists a unique contractive
homomorphism

ι :
∏
γ∈Γ

U
`1(Sγ) → `1

(∏
γ∈Γ

U
Sγ

)
(2.1)

that satisfies

ι
([

(egγ )γ∈Γ

])
= e[(gγ)γ∈Γ]

([
(egγ )γ∈Γ

]
∈

∏
γ∈Γ

U
`1(Sγ)

)
.

2.4. Abelian groups

Let G be a group. For g ∈ G, we denote by o(g) the order of the element g. For a

(locally compact) Abelian group G, we denote by Ĝ the Pontryagin dual group of
G ; for details and basic properties concerning this duality, we refer to [23, chapter
6].

If G is an (Abelian) divisible group, that is, for any g ∈ G and n ∈ N there
is h ∈ G such that g =nh, then G is an injective object in the category Abelian
groups, which means that for any Abelian groups H1 ⊂ H2, every homomorphism
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Differential embeddings into algebras of topological stable rank 1 9

ϕ : H1 → G extends to a homomorphism ϕ : H2 → G. Direct sums of arbitrary
many copies of Q, the additive group of rationals, are divisible.

Let us record for the future reference the following observation, likely well known
to algebraically oriented model theorists.

Lemma 2.6. Suppose that G is an Abelian group with supg∈G o(g) = ∞. Then Z(R)

embeds into an ultrapower of G with respect to an ultrafilter on a countable set.

Proof. Let U be a non-principal ultrafilter on N and let (gn)
∞
n=1 be a sequence in G

such that supn o(gn) = ∞. Then g = [(gn)
∞
n=1] has infinite order inH = GU . Let A

be an almost disjoint family of infinite subsets of N that has cardinality continuum.
Then all but at most one elements A are not in U (as U is non-principal and
closed under finite intersections), so let us assume that A ⊂ U ′. For each A ∈ A ,
we set

gA(i) =

{
g, i /∈ A,

0, i ∈ A
(i ∈ N).

Then hA = [(gA(i))
∞
i=1] ∈ HU and o(hA) = ∞ (A ∈ A ). Moreover, {hA : A ∈ A }

is a Z-linearly independent set of cardinality continuum. As such, the subgroup it
generates is isomorphic to Z(R). It remains to notice that canonically (GU )U ∼=
GU ⊗U , as required. �

2.5. Semigroup algebras

Let S be a semigroup written multiplicatively. In the Banach space `1(S), one can
define a convolution product by

x ∗ y =
∑
t∈S

( ∑
r·s=t

xrys

)
et (x = (xs)s∈S , y = (ys)s∈S ∈ `1(S)),

where (es)s∈S is the canonical unit vector basis of `1(S), together with `1(S)
becomes a Banach algebra. For the additive semigroup of natural numbers, the
convolution in `1(N) renders the familiar Cauchy product.

Suppose that T ⊆ S is a subsemigroup. Then `1(T ) is naturally a closed subspace
of `1(S), which is moreover a closed subalgebra. Every surjective semigroup homo-
morphism ϑ : T → S implements a surjective homomorphism ιϑ : `1(T ) → `1(S) on
the Banach-algebra level by the action

ιϑet = eϑ(t) (t ∈ T ). (2.2)

When G is an Abelian (discrete) group, then the (compact) dual group Ĝ is
the maximal ideal space of the convolution algebra `1(G). More information on
semigroup algebras may be found in [12, chapter 4].

3. Proofs of theorems A and B

The proof of Theorem 1.2 relies on constructing certain approximation scheme for
pairs of elements, an idea that shares similarities with the methods used in the
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10 T. Kania and N. Maślany

main results of [26] and [11]. However, the results achieved in Theorem 1.2 are
more general, and the techniques applied in its proof are correspondingly broader.
Let us now proceed to the proof.

Proof of Theorem 1.2. Suppose that A has norm-controlled inversion implemented
by a *-homomorphism i : A → C(X). Since *-homomorphism of Banach *-algebra
into a C*-algebra is always norm decreasing, we have

‖i(f)‖∞ 6 ‖f‖A (f ∈ A). (3.1)

Suppose that F,G ∈ A are jointly non-degenerate (in particular, |F | + |G| is
invertible in C (X ) being nowhere zero). Fix ε ∈ (0, 1) and let

γ := min

{
1,

1

2
inf
x∈X

(
(|i(F ))(x)|+ |(i(G))(x)|

)}
. (3.2)

Set

K := 2 ·max
{
‖F‖A, ‖G‖A, 1

}
, (3.3)

T̂ :=
2C

γ2
· ψ

(
4K2

γ2

)
> 0, (3.4)

where the function ψ satisfies (1.1). Moreover, let T := max{T̂ , 1}. Pick an arbitrary
element H ∈ A so that

‖H‖A <
ε · γ

CK3T 2
(3.5)

and consider

F0 := F, G0 := G, H0 := H. (3.6)

We then define recursively the sequences (Fn)
∞
n=0, (Gn)

∞
n=0, and (Hn)

∞
n=0 by

Fn+1 := Fn +
HnGn

|Fn|2 + |Gn|2
, Gn+1 := Gn +

HnFn

|Fn|2 + |Gn|2
,

Hn+1 := − H2
nFnGn

(|Fn|2 + |Gn|2)2
. (3.7)

We claim that

(i)

FnGn +Hn = FG+H (n = 0, 1, 2, . . .),

(ii)

‖Fn‖A, ‖Gn‖A 6 1
2K + 1− 2−n < K,
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(iii)

inf
x∈X

(
|(i(Fn))(x)|+ |(i(Gn))(x)|

)
> γ + γ · 2−n > 0,

(iv)

‖Hn‖A 6
1

2n
· ε · γ
CK3T 2

.

Note that (iii) implies that sequences (3.7) are well-defined. We will prove these
claims by induction.

It follows from (3.6) that F0G0+H0 = FG+H. We obtain from (3.2)–(3.6) that

• ‖F0‖A = ‖F‖A 6 K/2,
• ‖G0‖A = ‖G‖A 6 K/2,
• ‖H0‖A = ‖H‖A < ε·γ

CK3T2 ,

• infx∈X

(
|F0(x)|+ |G0(x)|

)
= infx∈X

(
|F (x)|+ |G(x)|

)
> 2γ > 0.

That is, (i)–(iv) are satisfied for n =0.
Now we assume that (i)–(iv) are fulfilled for some n = 0, 1, 2, . . .. Consequently,

sequences (3.7) are well-defined. Then, taking into account (3.3), we see thatK/2 >
1 and

FnGn +Hn = FG+H, (3.8)

‖Fn‖A 6
K

2
+ 1− 2−n < K, (3.9)

‖Gn‖A 6
K

2
+ 1− 2−n < K, (3.10)

inf
x∈X

(
|(i(Fn))(x)|+ |(i(Gn))(x)|

)
> γ + γ · 2−n > γ, (3.11)

‖Hn‖A 6 ε · 2−n · γ

CK3T 2
. (3.12)

Let us show that (i)–(iv) are fulfilled for n +1.
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12 T. Kania and N. Maślany

For (i), it follows from (3.7)–(3.8) that

Fn+1Gn+1 +Hn+1 =

(
Fn +

Hn ·Gn

|Fn|2 + |Gn|2

)(
Gn +

Hn · Fn

|Fn|2 + |Gn|2

)
− H2

n · FnGn

(|Fn|2 + |Gn|2)2

= FnGn +Hn
FnFn +GnGn

|Fn|2 + |Gn|2
+H2

n

FnGn

(|Fn|2 + |Gn|2)2

−H2
n

FnGn

(|Fn|2 + |Gn|2)2

= FnGn +Hn = FG+H.

Hence, (i) is satisfied for n +1.
As for (ii), using (3.9)–(3.10), we conclude that

‖|Fn|2 + |Gn|2‖A 6 ‖Fn · Fn‖A + ‖Gn ·Gn‖A
6 ‖Fn‖A‖Fn‖A + ‖Gn‖A‖Gn‖A
= ‖Fn‖2A + ‖Gn‖2A
6 2K2. (3.13)

It follows from (3.11) that

γ2 6 inf
x∈X

(
|(i(Fn))(x)|+ |(i(Gn))(x)|

)2
= inf

x∈X
(|(i(Fn))(x)|2 + 2|(i(Fn))(x)| · |(i(Gn))(x)|+ |(i(Gn))(x)|2)

6 2 inf
x∈X

(
|(i(Fn))(x)|2 + |(i(Gn))(x)|2

)
,

hence

sup
x∈X

(
|(i(Fn))(x)|2 + |(i(Gn))(x)|2

)
> inf

x∈X

(
|(i(Fn))(x)|2 + |(i(Gn))(x)|2

)
>
γ2

2
> 0. (3.14)

By (3.1) and (3.14), we obtain

‖|Fn|2 + |Gn|2‖A >
1

C
· γ

2

2
> 0. (3.15)

It then follows from (3.7), (3.9)–(3.10), and (3.14) that

‖Fn+1‖A 6 ‖Fn‖A + ‖Hn‖A‖Gn‖A
∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥
A

6

(
K

2
+ 1− 2−n

)
+ ‖Hn‖AK

∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥
A

.

(3.16)

https://doi.org/10.1017/prm.2024.108 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.108


Differential embeddings into algebras of topological stable rank 1 13

Since A admits norm-controlled inversion in C (X ), we follows from (3.13), (3.14),
(3.15) that

∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥
A

6
1

‖|Fn|2 + |Gn|2‖A

· ψ
(
‖|Fn|2 + |Gn|2‖A ·

∥∥(|Fn|2 + |Gn|2
)−1∥∥

∞

)
6

2C

γ2
· ψ

(
2K2 · 2

γ2

)
= T̂ .

(3.17)

Combining (3.16)–(3.17) with (3.12) and taking into account that ε ∈ (0, 1), γ ∈
(0, 1], K > 2, C > 1, and T > 1, we obtain

‖Fn+1‖A, ‖Gn+1‖A 6
K

2
+ 1− 2−n +KT̂ · ε · 2−n · γ

CK3T 2

≤ K

2
+ 1− 2−n + 2−n · 1

2

=
K

2
+ 1− 2−n−1. (3.18)

Thus, (ii) is fulfilled for n +1.
In order to verify (iii), since ε ∈ (0, 1), γ ∈ (0, 1], K > 2, C > 1, and T > 1, it

follows from (3.7), (3.1), (3.10), (3.12), and (3.17) that for x ∈ X we have

|(i(Fn))(x)| ≤ |(i(Fn+1))(x)|+ |(i(Hn))(x)|
|(i(Gn))(x)|

|(i(Fn))(x)|2 + |(i(Gn))(x)|2

6 |(i(Fn+1))(x)|+ C‖Hn‖A‖Gn‖A
∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥
A

6 |(i(Fn+1))(x)|+ C · ε · 2−n γ

CK3T 2
·KT̂

< |(i(Fn+1))(x)|+ 2−n · γ

K2

6 |(i(Fn+1)(x)|+ 2−n · γ
4
.

Consequently,

|(i(Fn+1))(x)| > |(i(Fn))(x)| − 2−n−2γ (x ∈ X). (3.19)

In the same way, we observe that

|(i(Gn+1))(x)| > |(i(Gn))(x)| − 2−n−2γ (x ∈ X). (3.20)
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14 T. Kania and N. Maślany

We conclude from (3.11) and (3.19)–(3.20) that

inf
x∈X

(
|(i(Fn+1))(x)|+ |(i(Gn+1))(x)|

)
> inf

x∈X

(
|(i(Fn))(x)|+ |(i(Gn))(x)|

)
− 2 · 2−n−2γ

> γ + γ · 2−n − γ · 2−n−1

= γ + γ · 2−n−1,

so (iii) is fulfilled for n +1.
Finally, for (iv), by (3.9)–(3.10), (3.12), and (3.17), for ε ∈ (0, 1), γ ∈ (0, 1],

K > 2, and C > 1, we then have

‖Hn+1‖A 6 ‖Hn‖2A‖Fn‖A‖Gn‖A
∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥2
A

= ‖Hn‖2A‖Fn‖A‖Gn‖A
∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥2
A

6
(
ε · 2−n · γ

CK3T 2

)2

·K2 · T̂ 2

6 ε · 2−n · γ

CK3T 2
· γ

CK3T 2
·K2 · T̂ 2

6 ε · 2−n · γ

CK3T 2
· 1

K

6 ε · 2−n−1 · γ

CK3T 2
,

which verifies (iv) for n +1.
It follows from (3.1) and (iv) that

lim
n→∞

|(i(Hn))(x)| 6 C lim
n→∞

‖Hn‖A 6 ε · γ

K3T 2
lim

n→∞
2−n = 0 (x ∈ X). (3.21)

Suppose that m,n ∈ N, m > n. For ε ∈ (0, 1), γ ∈ (0, 1], K > 2, C > 1, and
T > 1, by (3.7), (3.10), (3.12), (3.17), we observe that

∞∑
n=0

‖Fn+1 − Fn‖A 6
∞∑

n=0

‖Hn‖A‖Gn‖A
∥∥∥∥ 1

|Fn|2 + |Gn|2

∥∥∥∥
A

6
∞∑

n=0

1

2n
· εγ

CK3T 2
·KT̂

6 ε · 1

K2

∞∑
n=0

2−n

< ε · 1
2
·

∞∑
n=0

1

2n
< ε.

(3.22)

https://doi.org/10.1017/prm.2024.108 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.108


Differential embeddings into algebras of topological stable rank 1 15

Case 1. From (3.22) for any ε1 > 0, there exist N such that for m,n ∈ N,m > n >
N holds

‖Fm − Fn‖∞ 6
m−1∑
j=n

‖Fj+1 − Fj‖∞ < ε1, (3.23)

which means that the sequence (Fn)
∞
n=1 is uniformly Cauchy, so it converges uni-

formly to some continuous function f. Similarly, there exists a continuous function
g that is the limit of the uniformly convergent sequence (Gn)

∞
n=1.

In particular, we obtain

lim
n→∞

Fn(x) = f(x) and lim
n→∞

Gn(x) = g(x). (3.24)

Using (3.24), (i) and (3.21), we see that

f(x) · g(x) = lim
n→∞

(
Fn(x) ·Gn(x)

)
= lim

n→∞

(
Fn(x) ·Gn(x) +Hn(x)

)
= F (x) ·G(x) +H(x). (3.25)

Moreover, from (3.22), we have

‖f − F‖∞ 6
∞∑

n=0

‖Fn+1 − Fn‖∞ < ε. (3.26)

We show that ‖g −G‖∞ < ε in the same way.
Case 2. A is a dual Banach algebra with A = E∗ that shares with X densely many
points as witnessed by some dense set Q ⊂ X.

In view of (ii), the sequences (Fn)
∞
n=0 and (Gn)

∞
n=0 are uniformly bounded by

constant K. Let U be a non-principal ultrafilter on N. By the Banach–Alaoglu
theorem, (Fn)

∞
n=0 and (Gn)

∞
n=0 converge to some elements f, g ∈ A, ‖f‖, ‖g‖ 6 K

with respect to σ(A,E) along U . Using (i) and (3.21), we see that for any x ∈ Q

(i(f))(x) · (i(g))(x) = 〈δx, i(fg)〉
= 〈i∗(δx), fg〉
= lim

n→U
〈i∗(δx), FnGn〉

= lim
n→U

〈δx, i(FnGn)〉

= lim
n→U

(
(i(Fn))(x) · (i(Gn))(x)

)
= lim

n→U

(
(i(Fn))(x) · (i(Gn))(x) + (i(Hn))(x)

)
(3.27)

nonetheless, it follows from (i) that

‖i
(
FnGn +Hn − (FG+H)

)
‖∞ 6 C · ‖FnGn +Hn − (FG+H)‖A = 0,
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16 T. Kania and N. Maślany

hence for any x ∈ Q we have

i
(
f(x)g(x)

)
= i

(
F (x)G(x) +H(x)

)
. (3.28)

Since Q is a dense subset of X, by continuity of i and elements belonging to C(X),
there are equal everywhere. This means that

fg = FG+H, (3.29)

because i is injective. Similarly, for x ∈ Q

(i(f))(x)− (i(F ))(x) = 〈δx, i(f − F )〉
= 〈i∗(δx), f − F 〉
= lim

n→U
〈i∗(δx), Fn − F 〉

= lim
n→U

〈δx, i(Fn − F )〉

= lim
n→U

(
(i(Fn))(x)− (i(F ))(x)

)
= lim

n→U

n∑
j=0

(
(i(Fj+1))(x)− (i(Fj(x)

)
(3.30)

but from (3.22) we know that

∞∑
n=0

∥∥i(Fn+1)− i(Fn)
∥∥
∞ 6 C ·

∞∑
n=0

‖Fn+1 − Fn‖A,

so for any x ∈ Q

(i(f))(x)− (i(F ))(x) =
∞∑

n=0

(
(i(Fn+1))(x)− (i(Fn))(x)

)
,

hence, again by density of Q in X, continuity of i and elements belonging to C(X),
we have this equality everywhere. Moreover, since i is injective, we obtain

f − F =
∞∑

n=0

(
Fn+1 − Fn

)
,

so from (3.22) we have

‖f − F‖A 6
∞∑

n=0

‖Fn+1 − Fn‖A < ε. (3.31)

We show that ‖g −G‖A < ε in the same way.
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In each of the above cases, we have obtained the appropriate functions f and g,
which, to simplify the notation, have been marked with the same symbols. So, for
every H ∈ A satisfying (3.5), there exist f and g in A such that

‖f − F‖A < ε, ‖g −G‖A < ε

(see respectively (3.26) or (3.31)) and FG + H = fg (see respectively (3.25) or
(3.29)). This means that

BA(F ·G, δ) ⊂ BA(F, ε) ·BA(G, ε)

with δ := ε · γ

CK3T2 . Hence, the multiplication in A is locally open at the pair

(F,G) ∈ A2.
Suppose now that i has dense range in C (X ). By inverse-closedness of A, A

has topological stable rank 1 if and only if C (X ) has topological stable rank 1.
Consequently, if C (X ) fails to have dense invertibles (which happens exactly when
dimX > 1), then A does not have open multiplication. �

Applying Theorem 1.1, we obtain the following conclusion.

Corollary 3.1. Suppose that A is a unital Banach *-algebra such that there exists
an injective *-homomorphism i : A→ C(X) for some compact space X such that A
is a differential subalgebra of C(X). Let us consider either case:

• A = C(X),
• A = E∗ is a dual Banach algebra that shares with X densely many points.

Then multiplication in A is open at all pairs of jointly non-degenerate elements.

Corollary 3.2. Let A be a (complex) reflexive Banach space with a K-
unconditional basis (eγ)γ∈Γ (K > 1). Then A is naturally a Banach *- algebra
when endowed with multiplication

a · b =
∑
γ∈Γ

aγbγeγ (a =
∑
γ∈Γ

aγeγ , b =
∑
γ∈Γ

bγeγ ∈ A)

and coordinate-wise complex conjugation. Let A# denote the unitization of A. Then
A# has open multiplication.

Proof. It is clear any pair of elements of A# is approximable by jointly non-
degenerate products (see definition 2.3). Since the basis (eγ)γ∈Γ is K -unconditional,
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18 T. Kania and N. Maślany

we have

‖ab‖A =

∥∥∥∥∑
γ∈Γ

aγbγeγ

∥∥∥∥
A

6 K

∥∥∥∥∑
γ∈Γ

aγ · ‖b‖`∞(Γ) · eγ
∥∥∥∥
A

= K‖a‖A‖b‖`∞(Γ)

6 K(‖a‖A‖b‖`∞(Γ) + ‖a‖`∞(Γ)‖b‖A).

This means that A# is a differential subalgebra of c(Γ), the unitization of the
algebra of functions that vanish at infinity on Γ. Since the formal inclusion from
A# to c(Γ) has dense range, the conclusion follows. �

We now turn our attention to Theorem 1.4.

Proof of Theorem 1.4. By Lemma 2.6, there exists an ultrafilter U such that Z(R)

embeds into GU . As Z(R) is a free Abelian group, it admits a surjective homomor-
phism ϕ onto Q(N). Since Q(N) is divisible, it is an injective object in the category
of Abelian groups, so ϕ extends to a homomorphism ϕ : GU → Q(N). In particular,

the infinite-dimensional space Q̂(N) ∼= TN embeds topologically into ĜU .

Consequently, dim ĜU = ∞ > 1. By [16, corollary 4.10], multiplication in
`1(G

U ) is not open. However, `1(G
U ) is a quotient of the Banach-algebra ultra-

power (`1(G))
U ([16, §2.3.2]), so by [16, corollary 3.3], convolution in `1(G) is not

uniformly open. �

4. Proof of Theorem 1.5

The present section is devoted to the proof of Theorem 1.5. We start by proving
a special case of X = [0, 1]; the argument is a slightly improved version of a proof
due to Behrends. We are indebted for his permission to include it here.

Theorem 4.1 The (complex) algebra C[0, 1] has uniformly open multiplication.

In order to prove Theorem 4.1, we require further auxiliary results.
Anywhere below ∆ will denote a set of all (α, β, γ) ∈ C3 such that |γ| = 1 and

the polynomial γz2+βz+α has two roots of different absolute value. In particular,
in this situation, there is a uniquely determined root, so we can introduce the
following definition

Definition 4.2. We denote by Z : ∆ → C the map that assigns to (α, β, γ) the
root of the quadratic polynomial γz2 + βz + α with the smaller absolute value.

Remark 4.3. The root function is locally analytic, so the function Z is continuous.

Let us now fix a non-degenerate interval [a0, b0].
We denote by I (respectively I o) the closure (respectively, the interior) of an

interval.
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Lemma 4.4. For any function h ∈ C[a0, b0] and arbitrary η2 > η1 > 0 there are
pairwise disjoint closed subintervals J1, . . . , Jk of [a0, b0] such that

{t ∈ [a0, b0] : |h(t)| 6 η1} ⊂
k⋃

j=1

Jj ⊂ {t ∈ [a0, b0] : |h(t)| < η2} .

Proof. Consider the sets K := {t : |h(t)| 6 η1} and O := {t : |h(t)| < η2}. Since
K ⊂ O, for any t ∈ K, we may find an open subinterval It so that t ∈ It ⊂ It ⊂ O.
As K is compact, it is possible to cover K with finitely many such intervals, whose
closures are the sought sets Ji (it might be necessary to pass to unions if they are
not disjoint). �

Lemma 4.5. Let h1, h2 ∈ C [a0, b0]. Suppose that h1 and h2 are jointly η2-non-
degenerate for some η > 0. Then there are continuous β1, β2 : [a0, b0] → T such
that

|h1(t)β1(t) + h2(t)β2(t)| > η (t ∈ [a0, b0]).

Proof. By compactness, we may find η0 > 0 such that that h1 and h2 are jointly
(η2 + η20)-non-degenerate; we also will assume that 2η20 < η2. Next we choose, with
a τ ∈ [0, 1] that will be fixed later, pairwise disjoint closed intervals J1, . . . , Jk and
pairwise disjoint closed intervals Jk+1, . . . , Jl such that

{
t : |h1(t)| 6 τ · η0

2

}
⊂

k⋃
j=1

Jj ⊂ {t : |h1(t)| < τ · η0}

and

{
t : |h2(t)| 6 τ · η0

2

}
⊂

l⋃
j=k+1

Jj ⊂ {t : |h2(t)| < τ · η0}

(see Lemma 4.4). As a consequence of 2η20 < η2 no Jj with j 6 k intersects Jj′ with

j′ > k : the family (Jj)
l
j=1 comprises disjoint intervals.

We now define β1 and β2. The function β1 is the function constantly equal to
one, and β2 is constructed as follows. On [a0, b0] \

⋃l
j=1 J

o
j , we put

β2(t) := i
h1(t)h2(t)∣∣∣h1(t)h2(t)∣∣∣ .

The values are in T so that, by the Tietze extension theorem, we may find a T-valued
continuous extension to all of [a0, b0] that will be also denoted by β2.

We claim that β1 and β2 have the desired properties. By construction, both
functions are continuous and they satisfy |β1(t)| = |β2(t)| = 1 for all t. For t ∈
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[a0, b0] \
⋃l

j=1 J
o
j , a simple calculation gives us

|h1(t)β1(t) + h2(t)β2(t)|2 = |h1(t)|2 + |h2(t)|2 > η2 + η20 .

Now fix t in one of the Jj with j 6 k. Then |h1(t)|2 < τ2η20 so that |h2(t)| >√
η2 + (1− τ2) η20 . We may then continue our estimation as follows:

|h1(t)β1(t) + h2(t)β2(t)| > |h2(t)| − |h1(t)|

>
√
η2 + (1− τ2) η20 − τη0

> η.

The last inequality holds if we choose τ small enough. The argument for
⋃l

j=k+1 Jj
is analogous. �

Lemma 4.6. Let h1, h2 ∈ C [a0, b0]. Suppose that h1, h2 are jointly non-degenerate.
Then for every ε> 0, there is a positive δ such that for every d ∈ C [a0, b0] satisfying
‖d‖ 6 δ there are z1, z2 ∈ C [a0, b0] such that

• |z1(t)| , |z2(t)| 6 ε and
• h1(t)z1(t) + h2(t)z2(t) + z1(t)z2(t) = d(t) (t ∈ [a0, b0]).

Proof. Choose β1, β2 as in the preceding lemma and put f := h1β1+h2β2 and g :=
β1β2. Then |f | > η for some η > 0 and |g| = 1. We conclude the proof by showing
that for every ε> 0 there is δ > 0 such that if d ∈ C[a0, b0] and ‖d‖ 6 δ there is
φ ∈ C[a0, b0] with ‖φ‖ 6 ε and

f(t)φ(t) + g(t)φ2(t) = d(t) (t ∈ [a0, b0]).

Indeed, then we can set z1 := β1φ and z2 := β2φ.
Fix (α, β, γ) ∈ C3 satisfying |β| > η, |γ| = 1 and arbitrary, strictly posi-

tive η, ε. It is enough to find δ > 0 such that if |α| 6 δ then (α, β, γ) ∈ ∆ and
|Z(α, β, γ)| 6 ε. Indeed, by remark 4.3, this allows us to define function φ as
φ(t) := Z(−d(t), f(t), g(t)) for t ∈ [a0, b0].

Denote by z1, z2 the roots of the polynomial γz2 + βz + α. By Vieta’s formulae

γ (z1 + z2) = −β,

hence either |z1| > η/2 or |z2| > η/2. Without loss of generality, we may assume
that |z1| > η/2.

Again, by Vieta’s formulae,

γz1z2 = α,

so that z2 = α/(γz1), hence |z2| ≤ 2|α|/η. Thus, it suffices to choose |α| 6 δ where
δ > 0 satisfies 2δ/η 6 ε and 2δ/η < η/2. Then |z2| < |z1| and |z2| 6 ε, so conclusion
follows by the definition of Z. �
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Lemma 4.7. Let ε> 0 and ψ ∈ C[a, b]. Suppose that inft∈[a,b] |ψ(t)| 6 ε2.
If there are Za,Wa, Zb,Wb ∈ C such that ZaWa = ψ(a), ZbWb = ψ(b) and
|Za| , |Wa| , |Zb| , |Wb| 6 ε, then there are Z1, Z2 ∈ C[a, b] with the following
properties:

• Z1(a) = Za, Z2(a) =Wa, Z1(b) = Zb, Z2(b) =Wb,
• |Z1(t)| , |Z2(t)| 6 εand Z1(t)Z2(t) = ψ(t)for all t.

Proof. Let b′ ∈ (a, b) and take Ẑ with Ẑ2 = ψ (b′). We will define the sought
functions Z 1 and Z 2 on the interval [a, b′]. In the case of [b′, b], we simply repeat
the procedure and glue Z1, Z2 together as defined on these subintervals.

Without loss of generality, we may suppose that |Za| > |Wa| so that |Za| >√
|ψ(a)|. Choose Z1 ∈ [a, b′] with

• Z1(a) = Za,

• Z1(b
′) = Ẑ, and

• ε > |Z1(t)| >
√
|ψ(t)| for all t.

Let us observe that |Ẑ| >
√
|ψ(b)|1.. We may then define

Z2(t) :=

0 if Z1(t) = 0,

ψ(t)/Z1(t) otherwise.

Then Z 1 and Z 2 will have the claimed properties. Indeed, the continuity of Z 2

at points t0 with Z1 (t0) = 0 is proved as follows. If Z1 (t0) = 0 then ψ (t0) = 0.
Thus, by continuity of ψ, if tn → t0, then

√
|ψ (tn)| → 0. Hence, |Z2 (tn)| =

|ψ (tn) /Z1 (tn)| 6
√
|ψ (tn)| will tend to zero as well. �

Proof of Theorem 4.1. Let ε0 > 0. We have to find δ0 > 0 with the follow-
ing property: whenever d : [0, 1] → C is a prescribed continuous function with
‖d‖ 6 δ0 it is possible to find functions d1, d2 ∈ C[0, 1] with ‖d1‖ , ‖d2‖ 6 ε0
and (f + d1) (g + d2) = fg + d (i.e., fd2 + gd1 + d1d2 = d) for any f, g ∈ C[0, 1].
Fix f, g ∈ C[0, 1].

The idea is to determine such d1, d2 by using Lemma 4.6 (Lemma 4.7, respec-
tively) on the subintervals where the functions f and g are jointly non-degenerate
(respectively, jointly degenerate) and to glue the pieces together.

With an ε1 > 0 that will be fixed later we apply Lemma 4.4 with h := |f |2+ |g|2
and η1 := ε21, η2 := 4ε21. Write the intervals Jj (j = 1, . . . , k) as Jj = [aj , bj ], where,
without loss of generality, 0 6 a1 < b1 < a2 < b2 < · · · < ak < bk. Note that
h(t) 6 4ε21 on each [aj , bj ] and h(t) > ε21 on the intervals [bj , aj+1].

Let us consider the intervals [bj , aj+1] and apply Lemma 4.6 with [a0, b0] :=
[bj , aj+1], η := ε1, and ε := ε1. Choose δ as in the lemma; without loss of generality,
we may assume that δ 6 ε21. We consider any d ∈ C[0, 1] with ‖d‖ 6 δ. Lemma
4.6 provides continuous z1, z2 : [bj , aj+1] → C with f(t)z1(t) + g(t)z2(t) + z1z2 =
d(t) and |z1(t)| , |z2(t)| 6 ε1 for t ∈ [bj , aj+1]. We define d1 (d2, respectively )

1.Here, it is important that we work in C and not in R.
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on [bj , aj+1] by z 2 (z 1, respectively). Then (f + d1) (g + d2) = fg + d on these
subintervals. (It should be noted here that the δ in Lemma 4.6 does only depend
on η and ε but not on a0, b0.)

Now d1, d2 are suitably defined on the union of the [bj , aj+1]. The gaps will be
filled with the help of Lemma 4.7. Consider any [aj , bj ]. For a t in such an interval,

we know that |f(t)|, |g(t)| 6 2ε1 so that |f(t)g(t)| 6 4ε21.
It follows that ψ : [aj , bj ] → C, t 7→ f(t)g(t)+d(t) satisfies |ψ(t)| 6 5ε21 6 (5ε1)

2.
We apply Lemma 4.7 with this function ψ and

Za := (f + d1) (aj) ,Wa := (g + d2) (aj) , Zb := (f + d1) (bj) ,Wb := (g + d2) (bj)

and ε := 5ε1. It remains to use the functions Z1, Z2 found by the lemma to define
d1, d2 on [aj , bj ]. Here, Z 1 (respectively Z 2) plays the rôle of f + d1 (g + d2) so
that we may set d1(t) := Z1(t) − f(t) and d2(t) := Z2(t) − g(t) for t ∈ [aj , bj ]. At
the endpoints, this assignment is compatible with the previous one: at aj, e.g., d1

was already defined, but as a consequence of Z1(a) = Za = f (aj) + d (aj) the new
definition of d1 (aj) as (Z1 − f) (aj) leads to the same value.

We observe that |dj(t)| 6 (2+ 5)ε1 = 7ε1 for j = 1, 2 so that we may summarize
the above calculations as follows: if one starts with ε1 := ε0/7, then δ0 := δ with
the δ that we have just found has the desired properties.

It should be noted that our proof is not yet complete since when considering the
[aj , bj ], our argument used the fact that the functions d1, d2 were already defined
at aj and bj, so we are to consider the cases a1 = 0 or bk = 1. If, e.g., a1 = 0 we
choose any Za,Wa with |Za| , |Wa| 6 ε and ZaWa = ψ(a); we proceed similarly for
bk = 1. �

4.1. Uniform openness of multiplication in C (X )

The next result is crucial for establishing the only non-trivial implication in
Theorem 1.5.

Theorem 4.8. Let X be a compact space of covering dimension at most 1. Then
multiplication in C(X) is uniformly open.

Proof. Case 1: X is a topological realization of a graph in the complex plane.
We claim that C (X ) has uniformly open multiplication and δ(ε) does not depend

on X in the class of such graphs, that is, multiplications in C (X ) are equi-uniformly
open for all graphs X.

For this, let us consider a partition of X into finitely many intervals,
⋃k

j=1[aj , bj ].
We define a finer partition of this graph into intervals as follows. If the intervals
[aj , bj ] and [ai, bi] intersect at c for some j, i ∈ {1, . . . k}, then c must be the
endpoint of the intervals, i.e., we replace the interval [aj , bj ] by sub-intervals [aj , c]
and [c, bj ] whenever c ∈ (aj , bj) (analogously for the interval [ai, bi]). For each

interval in the new partition P =
⋃K

j=1[aj , bj ], we apply a procedure analogous to
the one in the proof of Theorem 4.1.

More precisely, denote for any function F : P → C its restriction to the interval
[aj , bj ] by F j . Then for ε0 > 0 find a positive δ0 with the following property:
whenever d ∈ C(P ), ‖d‖ 6 δ0 for every restriction dj ∈ C[aj , bj ] (j ∈ {1, . . . ,K})
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we may find dj1, d
j
2 ∈ C[aj , bj ] with ‖dj1‖, ‖d

j
2‖ 6 ε0 and (f j+dj1)(g

j+dj2) = f jgj+dj

for any f, g : P → C.
We glue the functions dj1 for all j ∈ {1, . . . ,K} to obtain a function d1 : P → C

(analogously, we get d2). Note that due to the choice of partition P, these functions
are uniquely defined at the endpoints of the intervals, because at the intersection
points of the intervals, we always take the same value of the function. It should be
noted also (again) that the δ in Lemma 4.6 does only depend on η and ε and not
on a0, b0.
Case 2 : X is a compact metric space of covering dimension at most 1.

It is known that for a zero-dimensional (not necessarily metrisable) compact
space X, C (X ) has uniformly open multiplication with δ(ε) = ε2/4 [16, proposition
4.6]. In the light of Case 1, by taking minimum if necessary, we may suppose
that δ(ε) is the same for all zero-dimensional spaces as well as all graphs in the
plane. However, every one-dimensional compact metric space, X is the projective
limit of an inverse sequence (Ki, π

j
i ) of at most one-dimensional ‘polyhedra’ (this

is a theorem of Freudenthal [19], see [18, theorem 1.13.2] for modern exposition),
i.e., finite sets and graphs in the plane. Such an inverse sequence gives rise to a
direct system (C(Ki), hπj

i
), where h

π
j
i
is a *-homomorphic embedding of C(Ki)

into C(Kj) (i 6 j) given by

h
π
j
i
f = f ◦ πj

i (f ∈ C(Ki)).

As C (X ) is naturally *-isomorphic to the completion of the chain (C(Ki), hπj
i
)

(i.e., the C*-direct limit, see [32, §1] for more details) in which multiplications are
equi-uniformly open, by [16, corollary 3.6], C (X ) has uniformly open multiplication
and δ(ε) depends only on ε but not the compact metric space X considered.
Case 3 : X is an arbitrary compact space of covering dimension at most 1.

By [28, theorem 1], every compact space X is an inverse limit of a well-ordered
system of metrisable compacta Xα with dimXα 6 dimX. As proved in Claim 2,
C(Xα) have equi-uniformly open multiplications, meaning that δ(ε) is the same for
all items of the inverse system considered, so multiplication in C (X ) is uniformly
open [16, corollary 3.6]. �

5. Open problems

In the light of Theorem 1.2 let us pose the following question.
Question 1. What are further examples of (dual) Banach algebras that are approx-
imable by jointly non-degenerate elements? What about algebras of Lipschitz
functions on zero-dimensional compact spaces?

In the case of convolution algebras on discrete groups having at most one-
dimensional dual groups, we ask the following question.
Question 2. Can the group algebra of a group with bounded exponent have
(uniformly) open convolution?

More generally:
Question 3. Is there an infinite group G for which `1(G) has open convolution?

https://doi.org/10.1017/prm.2024.108 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.108


24 T. Kania and N. Maślany
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