
BULL. AUSTRAL. MATH. SOC. 51H10, 51H15, 52A37, 51B10, 51B15

VOL. 53 (1996) [325-340]

RECYCLING CIRCLE PLANES

BURKARD POLSTER

The main aim of this paper is to introduce new ways of constructing flat projective
planes from spherical circle planes and cylinder circle planes. We shall also touch
upon topics that have natural connections with our constructions, like the con-
struction of spreads of pseudolines from flat projective planes, the extendability of
partial spherical circle planes to spherical circle planes and giving examples of sets
of 2-arcs that determine flat projective planes and R2-planes.

1 SPHERICAL CIRCLE PLANES

1.1 INTRODUCTION. In this section we recall the definitions of some of the basic in-
cidence geometric structures we shall be dealing with in the following. We shall also
describe some of the fundamental relationships between them.

Let P be a topological 2-sphere and let K be a set of simply closed curves on P.
The pair S = (-P, £) is called a spherical circle plane with point set P and circle set K
if it satisfies the axiom

(Ml) Any three distinct points lie on a unique circle.

A spherical circle plane is called a flat Mobius plane if it satisfies the axiom

(M2) Given any circle c and two distinct points p and q such that p lies on
c and q does not, there is a unique circle that contains both points and
intersects c only in p.

Examples of spherical circle planes arise as the geometries of non-trivial hyperplane
sections of surfaces in R3 that are strictly convex and homeomorphic to the 2-sphere.
If the surface is differentiable, then every point of the surface is contained in a unique
tangent hyperplane, that is, a hyperplane that intersects the surface only in this point.
In this case the resulting spherical circle plane is a flat Mobius plane. The classical
example of a flat Mobius plane is the circle plane associated with the unit sphere S2 in
R3.

An R2-pione (P, C) is a point-line geometry whose point set P is a topological space
homeomorphic to R2 and whose line set C consists of subsets of P homeomorphic to
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326 B. Polster [2]

R that separate P into two open components. Furthermore, it satisfies the following
axiom:

(Al) Two distinct points are contained in a unique line.

An R2-plane is called a flat affine plane if it satisfies the axiom

(A2) Given a line / and a point p, there is a unique line /' that contains p and
that is parallel to /, that is, /' does not intersect I nor coincides with I.

The classical example of a flat affine plane is the Euclidean plane. The point-line
geometry induced on any convex open subset of R2 yields an R2-plane.

A flat protective plane (P,C) is a point-line geometry whose point set P is a
topological space homeomorphic to P2, the real projective plane (viewed as a topological
space only). Its line set C consists of subsets of P homeomorphic to the circle S1.
Furthermore, it satisfies axiom Al and the axiom

(A3) Two distinct lines intersect in a unique point.

The classical example of a flat projective plane is the real Desarguesian projective
plane.

If one removes a line W from a flat projective plane and punctures all other lines
of the plane in the point of intersection with W, then the resulting point-line geometry
is a flat affine plane. Furthermore, every flat affine plane A arises like this from a
unique (up to isomorphism) flat projective plane. This flat projective plane is called
the projective closure of A and W the line at infinity of A. The projective closure of
the Euclidean plane is the real Desarguesian projective plane.

A 2-arc in an R2-plane or a flat projective plane (P, C) is a subset of P such that

(01) every line in £ intersects the set in no more than two points.

A 2-arc is a topoiogical oval if it is homeomorphic to the unit circle and

(02) every point of the 2-arc is contained in a unique tangent line, that is, a
line that intersects the 2-arc only in this point.

Examples of topological ovals in the Euclidean plane and its projective closure are the
convex differentiable simply closed curves in R2.

Let <S = (P,IC) be a spherical circle plane, let p be a point in P and let K.p be
the set of all circles in K. that contain p and that have been punctured at p. The pair
Sp = (P \ {p},ICp) is an R2-plane. It is called the derived R2-plane of S at p. Every
circle in S that does not contain p is a 2-arc in Sp. If S is a flat Mobius plane, then
the derived R2-plane Sp is a flat affine plane, the derived flat affine plane of S at p.
Also, in this case, every circle in S that does not contain p is a topological oval in <SP

and its projective closure Sp.
All incidence geometries introduced so far are topological in the following sense:

If X = (P,M) is such a geometry, then the set M. carries a natural topology, the so
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called Hausdorff topology. With respect to this topology and the natural topology on
the point set P the geometric operations in the axioms that J satisfies are continuous.
For example, if J is a spherical circle plane, then the connecting circle of three distinct
points depends continuously on the positions of the three points in P.

The standard references for all the facts mentioned in this section are [16] for
general spherical circle planes, [15] and [18] for flat Mobius planes, [12] and [13] for
K2-planes and flat projective planes, [1] for topological ovals, respectively.

1.2 REPRESENTATIONS OF FLAT PROJECTIVE PLANES ON DISKS, ARRANGEMENTS

OF PSEUDOLINES AND SPREADS: Let J be any simply closed curve in E.2 and let
7 : J —> J be a continuous fixed-point-free involution. Then J is the boundary of a
topological compact disk Dj and the topological space Dj/f we arrive at by identifying
points on the boundary of this disk via 7 is homeomorphic to the real projective plane.
Given any flat projective plane V = {P,C) and a line I 6 C, we can think of P
as being constructed in this way such that under the identification via 7 , P \ I is
identified with the interior of the disk and the line / is covered twice by J. This gives
a representation of V on Dj. In this representation every point p 6 P corresponds
to a point in the interior of the disk if p is not contained in / and to a pair of points
9i 7(9) on J if p is contained in I. The line / corresponds to J , so I — J / 7 . Any
other line k in C corresponds to a Jordan arc (homeomorphic to a closed interval)
that connects the two points on J that correspond to the unique point of intersection
of I and A:. A flat projective plane given like this on a compact disk Dj in R 2 , or
in the one-point compactification S2 of R2, is said to be represented on the disk Dj
(via the involution 7 ) . In [4] Gans discusses one particular representation of the real
Desarguesian projective plane. Here J is the unit circle, Dj is the unit disk and 7 is
the antipodal map. The lines in the disk are the halves of all ellipses that touch the unit
circle in antipodal points and the straight line segments that connect antipodal points
(see Figure 1). For further examples of disk representations of flat projective planes the
reader is referred to [8] and [14].

The complement of a simply closed curve in Dj/~f is either connected or not
connected. A Jordan arc (homeomorphic to a closed interval) whose interior is contained
in the interior of Dj and whose endpoints are contained in J and are exchanged by
7 corresponds to a curve of the first kind. We call Jordan arcs like this pseudolines.
Clearly, all lines other than J / 7 in a representation of a flat projective plane on Dj are
pseudolines. A set of pseudolines in which two pseudolines intersect in a unique point
is called a pseudoline arrangement. Finite pseudoline arrangements are of fundamental
importance in the theory of oriented matroids (see [2, Chapter 6] and [7]). A spread
(of pseudolines) on Dj/*y is an infinite pseudoline arrangement such that

(Si) Every point p on J is contained in exactly one pseudoline l(p) in the
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Figure 1.

arrangement.
(S2) The pseudoline l(p) depends continuously on the point p (in the Hausdorff

metric).

An introduction to spreads can be found in [7, Chapter 4]. Every subset of lines
excluding J/j of a flat projective plane represented on Dj is a pseudoline arrangement.
It has been shown in [8] that every finite pseudoline arrangement can be embedded as
a subset of lines in a flat projective plane. A result about the extendability of finite
pseudoline arrangements to spreads can be found in [9]. It is not known whether every
spread of pseudolines can be embedded as a subset of lines in a flat projective plane.

Keeping in mind that flat projective planes are topological, it is clear how spreads
can be constructed from a representation of a flat projective plane V on the disk Dj.

PROPOSITION 1. Let f : [0,1] -> / fae an embedding such that /(0) = 7 ( / ( l ) )
and let h : [0,1] —> int(Dj) be a continuous map such that /i(0) = /i(l). Then the set
of all connecting lines f(t) V h(t), t £ [0,1) in the projective plane V is a spread of
pseudolines in Dj/y.

It is an open question whether all spreads arise from flat projective planes in this
manner. As an example we construct a spread in the Gans representation (see Figure
1) by letting h(t) equal the origin of the unit disk for all t £ [0,1]. Then, no matter
how / is chosen, the resulting 'spread consist of all straight line segments that connect
antipodal points on the unit circle (see Figure 2.2).

Let O be a topological oval of V that is completely contained in the interior of
Dj (in [11] we proved that topological ovals exist in every flat projective plane). Let
7' be a fixed-point-free continuous involution of O. Then we can construct spreads on
the two disks Dj and Do as follows.

PROPOSITION 2 . Let S be the set of all hnes in V that contain pairs of points
on O that get exchanged by 7 ' . TJien

(1) the set S is a spread of pseudohnes in DJ/J;
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spread

Figure 2.1

spread

Figure 2.2

flat projective
plane

Figure 2.3

spherical circle plane

Figure 2.4

(2) the set of all intersections of elements in S with Do is a spread of pseu-
doHnes in Doll' (see Figure 2.1).

PROOF: (1) Let p,r £ O such that p Since the involution 7' is fixed-
point-free, p and ~/'(p) are contained in different components of O \ {r,7'(r)}. This
means that the elements of 5 that contain the pairs p, 7*(p) and r, j'(r) intersect
somewhere in the disk Do • Axiom A3 implies that the two elements intersect J in
different pairs of points. Since V is topological it now follows easily that S is a spread
of pseudolines in DJ/J .

(2) follows immediately from axiom Al, 01 and the fact that V is topological. U

1.3 CONSTRUCTING FLAT PROJECTIVE PLANES FROM SPHERICAL CIRCLE PLANES. In

this section we describe how Figure 2.4 links up with Figures 2.1-2.3 by showing how flat
projective planes represented on a disk can be constructed from spherical circle planes.
The construction bears a strong resemblance to the construction of spreads described
in Proposition 2(2).

Let S = (P,IC) be a spherical circle plane and let p be a point in P. Then
P \ {p} is homeomorphic to R2. If we identify both sets via some homeomorphism,
for example, a stereographic projection, then the elements of K correspond to simply
closed curves in R2 if they do not contain the point and to Jordan curves that separate
R2 into two open components if they contain the point. Notice that the incidence
structure whose point set is R2 and whose lines are the curves of the second kind is
the derived R2-plane of the spherical circle plane 5 at p. For example, let S be the
classical example of a flat Mobius plane, that is, the geometry of non-trivial hyperplane
sections of the unit sphere S2 in R3. If we identify the unit sphere minus its "north
pole p" with R2 via the stereographic projection through p, then the circles that do
not pass through p are identified with the Euclidean circles in I 2 . The circles that
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pass through the point p are identified with the straight lines in R2. Since the set of
all straight lines in K2 makes up the line set of the Euclidean plane, we see that the
derived flat afnne plane of <S at the point p is isomorphic to the Euclidean plane. Of
course, this is also true for any other point of P . By representing a spherical circle
plane on R2 like this, no essential information about the circle plane gets lost since we
can reconstruct the circle plane by one-point-compactifying R2 by some point p and
extending all Jordan arcs by this point (this makes them into subsets of the one-point-
compactification that are homeomorphic to the circle.) Therefore it makes sense to
speak of a planar representation of a spherical circle plane. The pictures that we use in
this section to illustrate various arguments always depict examples in the above planar
representation of the classical spherical circle plane.

Let <S = (P,K.) be a spherical circle plane, let J £ K. and let 7 : J —» J be a fixed-
point-free continuous involution. Let Dj be one of the two compact disks bounded by
J. Let K.jn be the set of all circles in K, that contain one of the pairs of points p,
7(P)J P S J • Let CDJ,~I be the set of intersections of elements in K.ja with Dj and for
any point p G P let £.Dj,-i,p be the set of all those elements in CDJ,-/ that come from
circles that contain p. Finally, let Er>j be the set of all circles in K. that are contained
in the interior of Dj, let PT)J be the set of all circles in K that are contained in Dj
and that touch J in exactly one point, and let HDJ,-, consist of all sets Dj D k where
k £ K, intersects J in two points that are not exchanged by 7.

We prove

THEOREM 1. Let S = (P,IC) be a spherical circle plane, J £ K, Dj one of the
compact disks bounded by J and 7 : J —> J a fixed-point-free continuous involution.
Then

(1) T-'Dj,-! — {DJ,CDJ,I)
 l s a ^a* projective plane represented on Dj.

(2) If p £ P\J, then CDJ,I,P is a spread ofpseudoh^nes in DJ/J.

(3) All elements of EDJ , PDJ and HD} ,-r are 2-arcs in the Sat projective
plane VDj,-,-

If S is a flat Mobius plane, then

(4) all elements of EDJ and Prjj are topological ovals in the Hat projective
plane VDja.

PROOF: We mention that in a spherical circle plane two circles that intersect each
other in two points intersect each other transversally, that is, they don't just touch in
the points of intersection. We shall refer to the elements of Cr>Jty as lines.

(2) Let p G P \ J and q G J• By axiom Ml, there is exactly one circle in K.
that contains the points p, q and f(q). This circle corresponds to an element l(q) in
CDJ,-(,P- Let r G J be distinct from q and 7(9). Then, because 7 is fixed-point-free,
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the points q and 7(9) are contained in different connected components of
Hence two different lines in Coj,y,p intersect in exactly one point in the interior of
the disk Dj. Since S is topological, the line l(q) depends continuously on q. Hence
£-Dj,-y,p is a spread of pseudolines in DJ/J.

(1) By [12, Theorem 2.5], we only have to prove that VDJ,I satisfies axiom Al.
Clearly, J /7 is the only line that contains any two points contained in J /7 . Let p be
an interior point of Dj. By (2), we know that the set of lines containing p is a spread
and that any two lines in this set meet only in the point p. This implies that every
point on J is contained in precisely one line through p and, by [7, Theorem 4.1], that
every interior point different from p is also contained in precisely one such line. This
shows that VDJ,I satisfies axiom Al.

(3) This is an immediate consequence of axiom Ml.
(4) Let k be one of the circles under consideration. By (3) it satisfies axiom 01.

Let p (E k be one of the points in the interior of Dj. We need to show that there is
exactly one tangent line in this point. The set C of circles in K, that touch k in the
point p define a continuous involution 7' of J as follows (see Figure 3.1 for the case
that k G EDJ and Figure 3.2 for the case that A; 6 PDJ ): Let q be a point on J and
let I be the unique circle in C that contains q (by M2). Then I either touches J in q
or it intersects J in a second point. In the first case let 7'(g) = q. In the second case
let ~f'(q) be the second point of intersection.

Figure 3.1

This involution has necessarily two fixed points (corresponding to the two circles
in C that touch J ) . Since 7 does not fix any point, by [17, Proposition 3.2a], there is
exactly one pair of points q, 7(9) on J that is also exchanged by 7'. The line in CDJ ,y
that corresponds to the circle in C through these two points is a tangent line of the
2-arc k in this point. This tangent is unique since all lines through p that do not arise

https://doi.org/10.1017/S0004972700017044 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017044


332 B. Polster [8]

from circles in C intersect k in a second point. If k 6 E&, , every one of its points is
an interior point of Dj, hence it satisfies axiom 02 and is therefore a topological oval.
Let p e A; be the unique point in which an element k € PDJ touches J . Then J/-f
is clearly the unique tangent in this point. Again we conclude that A is a topological
oval. D

CONSTRUCTING NON-ISOMORPHIC FLAT PROJECTIVE PLANES FROM THE CLASSICAL

FLAT MOBIUS PLANE. Here is my favorite representation of the real Desarguesian pro-
jective plane on a disk: Let J be the circle in the usual planar representation of the
classical spherical circle plane that corresponds to the unit circle in R2, let Dj be the
unit disk and let 7 be the antipodal map. Then the lines in the flat projective plane
VDJ ,-y are all the Euclidean line and circle segments that connect antipodal points (see
Figure 4.1). It is easy to see that we are really dealing with a representation of the
real Desarguesian projective plane. Just remember that in one of the most popular
constructions of this plane we identify antipodal points of the unit sphere S2 in R3.
This gives the point set of the plane. The lines are the images of the great circles on
S2 under this identification. So a disk representation of the plane on the unit sphere is
the restriction of the geometry of great circles to the "southern hemisphere". Our flat
projective plane VDJ,I

 ls the stereographic projection of this geometry on the xy-plane.
Figure 4.2 shows a Pappus configuration in this particular representation. We leave

Dj unchanged and choose 7' to be a continuous involution of J that does exchange
all the endpoints of the lines in Figure 4.2 except the endpoints p and j(p) of the
dashed line. This means that all of the configuration, except the dashed line will be
contained in the flat projective plane 'Pc/ ) 7 ' . Clearly, no line in this plane contains
the three points r, a and t. Hence V^j )7< is not Desarguesian, which means that our
construction really yields non-isomorphic planes.

Figure 4.1 Figure 4.2

We also want to remark that special properties of the spreads in this representation
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of the real Desarguesian projective plane have been investigated in [19].

THE EUCLIDEAN PLANE IS ORTHOGONAL TO THE HYPERBOLIC PLANE. Let ADJ,-, be

the flat aifine plane we arrive at by removing the line J /7 from the real Desarguesian
projective plane VDJ,I (defined as in the previous remark). This particular represen-
tation of the Euclidean plane is remarkable insofar as it is 'orthogonal' to the Poincare
model of the real hyperbolic plane (a special kind of R2-plane). We need to explain this
idea: Figure 5.1 shows a parallel class of lines in this aifine plane. Figure 5.2 depicts
the uniquely determined set of Jordan arcs in the open unit disk that are orthogonal to
all lines in the parallel class.

If we rotate both pictures at the same time around the origin we sweep aross all
parallel classes and lines in the aifine plane in Figure 5.1 and all lines in the Poincare
model of the hyperbolic plane in Figure 5.2. In this way we get a partition of the
line set of each plane into 'parallel classes' of lines and a one-to-one correspondence of
the elements of these partitions such that corresponding elements are 'orthogonal'. We
shall explore the concept of orthogonality, or even more generally of transversality, of
R2-planes in a separate paper.

Figure 5.1 Figure 5.2

THE DERIVED R2-PLANE IN A POINT AS THE LIMIT OF FLAT PROJECTIVE PLANES

REPRESENTED ON EXPANDING DISKS. Let 5 = (P,K.) be a spherical circle plane. A
circle J in K. bounds two compact disks on P. If we let J shrink to a point p, then
one of the disks gets arbitrarily small and the other one tends to fill out the whole of
P minus this point. Let continuous fixed-point-free involutions be defined (maybe in a
continuous manner) on this shrinking J. If we don't worry too much about the details,
then we get a picture of the flat projective plane VDJ,I on the disk Dj that gets bigger
tending to the derived flat aifine plane at the point p.

PARTIAL SPHERICAL CIRCLE PLANES. Let 5 = (P,£) be a spherical circle plane, let
"PDJ^ be constructed as in Theorem 1 and let ADJ,I be the flat affine plane we arrive
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at by removing the line J/j from the flat projective plane VDJ,T All the elments of
EDJ are 2-arcs in this flat affine plane and ADJ,J together with this set of 2-arcs almost
looks like the planar representation of a flat spherical circle plane. Of course, it is not,
because there are triples of points of this geometry that get connected by, for example,
elements of PDJ in the original circle plane 5 . Still, it seems worthwhile to ask the
question, whether this partial geometry can be made into a planar representation of
a flat spherical plane by adding some more simply closed curves to its circle set. The
answer to this question is 'No'. We can convince ourselves of this fact as follows: We can
easily find a sequence of triples of distinct points that correspond to connecting circles in
EDJ that converge to a triple of distinct points that corresponds to a connecting circle
k in Pr>j • Because the spherical circle plane we are looking for would be topological,
its planar representation would have to contain the intersection of k with the interior
of Dj. The resulting curve would be a Jordan arc, but all Jordan arcs have already
been accounted for by the lines in the flat affine plane AD} ,-y •

SETS OF 2-ARCS THAT DETERMINE AN R2-PLANE. Let S = (P,K.) be a spherical
circle plane and let D j , J € K be a fixed compact disk in P. For different choices
of the involution 7 we get different flat projective planes represented on this disk.
Nevertheless all these planes share a large set of 2-arcs, namely Epj U PDJ U HDJ,I-

A natural question to ask is how 'large' a set of 2-arcs in an R2-plane has to be to
determine this K2-plane uniquely. One criterion is the following:

PROPOSITION 3 . Let M be a set of 2-arcs in an R2-p7ane or Sat projective

plane V = (P,£) • If every three distinct points that are not contained in a line in C

are contained in one of the 2-arcs in M, then V is the only M.2-plane (Rat projective

plane) with point set P in which every element of M is a 2-arc.

It is easy to see why this is true: Let I be some line in C and let p and q be
two points on /. The 2-arcs in M that contain these two points cover all the points of
P\(l\ {p, q}). Hence / has to be contained in any R2-plane with point set P in which
every element of M is a 2-arc. Hence any such R2-plane contains all the lines of V,

which of course implies that V is the only such plane.

Let V be an R2-plane or a flat projective plane. Using the construction in [11], it
is possible to construct a topological oval in V through any three given points of the
plane that are not contained in a line in V. This shows that

COROLLARY 1. The set of topological ovals in an R2-plane or a fiat projective

plane determines the plane.

Also

COROLLARY 2 . If S = (P, K.) is a spherical circle plane and p a point in P, then

the set of all circles in K. that do not pass through p determine the derived R2-plane
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of S in the point p.

2 CYLINDER CIRCLE PLANES

2.1 INTRODUCTION. A cylinder circle plane S = (P,/C, ||) consists of a point set P
which is the cylinder S1 x R, a circle set K whose elements are graphs of continuous
functions S1 —> R, and an equivalence relation || on the point set, the equivalence classes
(parallel classes) of which are the verticals in S ' x R , that is, the sets {(a,y) | y 6 R},
a £ S1. Furthermore, the incidence structure has to satisfy the axiom

(LI) Three pairwise non-parallel points are contained in a uniquely determined
circle.

A cylinder circle plane is called a flat Laguerre plane if it satisfies the axiom

(L2) For two non-parallel points p, q and a circle c through p there exists
a uniquely determined circle through q that touches c at p, that is,
intersects c only in the point p, or coincides with c.

Examples of cylinder circle planes are (via some homeomorphism of the point sets
onto the cylinder S1 x R) the geometries of non-vertical hyperplane sections of a vertical
cylinder in R3 over a strictly convex simply closed curve in the xy-plane. If the curve
is differentiable, the corresponding cylinder circle plane is a flat Laguerre plane.

Like spherical circle planes, cylinder circle planes are topological: The common
point set S1 x R of cylinder circle planes is a metrisable 2-dimensional topological space.
Circles are homeomorphic to the unit circle S1. When the circle sets are topologised by
the Hausdorff metric with respect to a metric that induces the topology of the point set,
then the operations of joining three points by a circle and, in the case of flat Laguerre
planes, touching are continuous. This has been proved for flat Laguerre planes by Groh
(see [6, 3.10]). For general cylinder circle planes this is a consequence of [3, Theorem

1]-
The standard references for flat Laguerre planes are [5, 6] and [15]. General

cylinder circle planes have been investigated in the literature in the guise of periodic
3-unisolvent.sets (see [3, 10]).

2.2 CONSTRUCTING FLAT PROJECTIVE PLANES FROM CYLINDER CIRCLE PLANES. Let

5 = {P,K, ||) be a cylinder circle plane, let J G /C and let 7 : J —» J be a fixed-point-
free continuous involution. We 2-point compactify the cylinder by two points pu , pd
(one for each of the two open ends). This 2-point compactification P is a topological
space homeomorphic to the 2-sphere. Let Dj be one of the two compact disks on P
bounded by J. The involution 7 induces an involution 7|| on the set of parallel classes.
If p is the point of intersection of a vertical v with J, then 7||(v) is the vertical through
the point 7(p). Now, for every vertical v, we define a vertical circle that is the union
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of v, 7||(f) and {pu,pd}- As a subset of P such a vertical circle is homeomorphic to
the unit circle S1. Let K, be the union of K. and the set of vertical circles. Let Kj,-, be
the set of all circles in K that contain one of the pairs of points p, f(p), p £ J • Notice
that all vertical circles are contained in this set. Let CD3,I be the set of intersections
of elements in K.Dj,~f with Dj, and for any point p & P let JCDJI7IJ, be the set of all
those elements in CDJ,-, that come from circles in K that contain p. Finally, let EDJ

be the set of all circles in K. that are contained in the interior of Dj, let PDJ be the
set of all circles in K. that are contained in Dj and that touch J in exactly one point,
and let HDJ,I consist of all sets Dj D k where k £ K intersects J in two points that
are not exchanged by 7.

We prove

THEOREM 2 . Let S = {P,IC, ||) be a cylinder circle plane, J e JC, Dj be one of
the compact disks in P bounded by J and 7 : J —> J be a fixed-point-free continuous
involution. Then:

(1) Vt)j,-i — iP3•> £D 1 ,-i) ls a ^a* projective plane represented on Dj.
(2) If p 6 P\J, then £uJ ) 7 l P is a spread of pseudotines in DJ/J .
(3) All elements of EDJ, PDJ

 and HDJ,I are 2-arcs in the fiat projective
plane VDJ,I-

Let S be a fiat Laguerre plane. Then:

(4) All elements of Ejjj and Pjjj are topological ovals in the fiat projective
plane Voj,y

PROOF: The disk Dj contains only one of the points pu and p<j. We may assume
that it contains p u . To be able to illustrate some of our arguments, we want to think
of the cylinder plus the point pu as being identified with R2 such that pu becomes the
origin, and the verticals on the cylinder become the rays emanating from the origin.
In this representation every circle in K turns into a simply closed curve that has the
origin in its interior and that intersects every single one of the rays exactly once (see
Figure 6.1).

Essentially, the same arguments as in the proof of Theorem 1 can be used to prove
Theorem 2. We only sketch how the different arguments have to be modified. As in
the case of spherical circle planes, two circles in a cylinder circle plane that intersect
each other in two points intersect each other transversally, they don't just touch in the
points of intersection.

(2) If p is either pu or p<j this is clearly the case. Let p G P\J and q £ J. By axiom
LI, there is exactly one circle in K. that contains the points p, q and f(q) if neither
q nor 7(9) is parallel to p. If either q or 7(9) is parallel to p, then the vertical circle
through p contains all three points. So, there is a unique connecting circle of the three
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Figure 6.1 Figure 6.2

points in )C. This circle corresponds to an element l(q) in £ D J J 7 I P . TWO different lines
in CDJ,I,P intersect in exactly one point in the interior of the disk Dj. Furthermore,
l(q) depends continuously on q. This follows from the fact that S is topological and
the fact that l(q) tends to the line that corresponds to the vertical circle through p as
q (or j(q)) tends to the point of intersection of the vertical circle through p with J.
This last fact is a consequence of a certain extension of the continuity of connecting
points by circles, usually referred to as coherence (see [6, Paragraph 3]. Actually, Groh
proves coherence of cylinder circle planes only in the case of flat Laguerre planes, but
his proof carries over to general cylinder circle planes). Summarising, we conclude that
£DJ,7,P is a spread of pseudolines in Dj/f.

(1) We use the same argument as in the proof of Theorem 1 to prove this fact.
(3) This is an immediate consequence of axiom LI.
(4) Note that pu is never contained in any of the circles under consideration. Here

we only have to modify the construction of the involution 7' of J as follows (see Figure
7): Let C be the set of all circles that touch A; in p. Let q be a point on J that is not
parallel to p and let / be the unique circle in C that contains q (by L2). Then / either
touches J in q or it intersects J in a second point. In the first case, let 7'(g) = q. In
the second case, let "f'(q) be the second point of intersection. If q is the unique point
on J parallel to p, then 9 is fixed by 7'. That 7' is really continuous follows from the
fact that in flat Laguerre planes touching is a continuous operation. U

Similar remarks as at the end of Section 1 can be made at this point. Here are just
two examples.

As in the spherical case it is possible to construct the real Desarguesian plane
from the classical flat Laguerre plane as described in Theorem 2: Remember that this
flat Laguerre plane is the geometry of non-trivial hyperplane sections of the vertical
cylinder over the unit circle in the sy-plane. In particular, this unit circle is also a
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Figure 7

circle in the Laguerre plane and we choose it to be J. We choose the involution 7
to be the antipodal map of this unit circle. Then VDJ,I is easily seen to be the real
Desarguesian projective plane. Using the same idea as in Section 1 we can then leave
/ unchanged and distort 7 slightly to arrive at a non-Desarguesian projective plane.

Planar representations of partial spherical circle planes can be constructed in very
much the same manner as in Section 1. Using similar arguments as there, it can also
be shown that these partial planes cannot be extended to planar representations of
spherical circle planes.

2.3 PAIRS OF VERTICALS AS CIRCLES. A vertical cylinder in R3 with the unit circle
in the xy-plane as a base can be considered as the limit of the family of ellipsoids
{(x,y, z) e E 3 I x2 + y2 + az2 = 1} as a tends to 0. The geometries of non-trivial
hyperplane sections of the ellipsoids give examples of flat Mobius planes. The geometry
of non-vertical hyperplane sections of the cylinder is the classical model of a flat Laguerre
plane. If a vertical hyperplane intersects any of the ellipsoids non-trivially, it intersects
the cylinder in a pair of vertical lines. This suggests that a pair of verticals in a cylinder
circle plane can play a similar role as a circle in the construction described above. This
is indeed the case, as we shall see.

Let S = (P,IC, ||) be a cylinder circle plane, let {a} x R and {6} x R, a,b G S1 be
two distinct verticals in P and let V be one of the two closed vertical strips bounded
by the two verticals. The 2-point compactification of V by the two points pu and pd is
a compact disk Da<b with boundary JO|(, = ({a} x K)U({6} x R)U{pu,pd}. A vertical
in the interior of V to which the two points pu and p<j have been adjoined will be
called a pseudovertical. Let 7 : Ja,b ~~* Ja,b be a fixed-point-free continuous involution
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with 7(?ti) = Pd • Let K.ja bt~, be the set of all circles in K. that contain one of the pairs

of points p , 7(p), p € Ja,b- Let £Dab,-i be the set that consists of all pseudoverticals,

and the intersections of elements in Koa b,t with Da>b.

THEOREM 3 . Let S — (P,IC, ||) be a cylinder circle plane, and let Jo,&, Da,b and

7 : Ja,b —* Ja,b be defined as above. Tien Voa h,-i ~ \Da,bi£-Da h,i)
 l s a ^a* projective

plane represented on Da,b •

Essentially, a generalisation of this result to flat n-OAs has already been proven

in [10, Proposition 2.5]. Nevertheless the general setting of this result is quite different

from the one we use in this paper. We therefore include a sketch of a proof.

PROOF: We call the elements of £Dab,-f lines. By [12, Theorem 2.5], we only

have to show that two distinct points p and q in £>o,fc/7 are connected by a unique

line. If p and q axe both contained in Ja,b/f or a pseudovertical, then Ja,b/f or this

pseudovertical is clearly the only line containing both points. If p is a point in the

interior of -DOlj, and q one of the points on Jo,i>/7, then Ll guarantees that there is

a unique connecting line of the two points in £DO 6,-Y. Let p and q be interior points

of Da,b that are not contained in the same pseudovertical and let C be the set of

circles in K. that contain both points. We define a function g : R —> R that maps

x to y if and only if there is a circle in C that intersects the verticals {a} x M. and

{6} x R in the points (a, x) and (b,y), respectively. Since S is a flat cylinder plane

this map is an orientation-preserving homeomorphism. The involution 7 induces a

orientation-reversing homeomorphism h : M. —* R as follows: The point x is mapped to

y if and only if -y((a,x)) = (b,y). It is clear that there is exactly one so £ R such that

g(xo) = h(xo). Therefore the line through (a,x0), p and ~f((a,xo)) is the unique line

in Coai,,i that connects the two points p and q. U
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