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Abstract

Khintchine’s (necessary and sufficient) slowly varying function condition for the weak
law of large numbers (WLLN) for the sum of n nonnegative, independent and identically
distributed random variables is used as an overarching (sufficient) condition for the case
that the number of summands is more generally [cn], cn → ∞. Either the norming
sequence {an}, an → ∞, or the number of summands sequence {cn}, can be chosen
arbitrarily. This theorem generalizes results from a motivating branching process setting
in which Khintchine’s sufficient condition is automatically satisfied. A second theorem
shows that Khintchine’s condition is necessary for the generalized WLLN when it holds
with cn → ∞ and an → ∞. Theorem 3, which is known, gives a necessary and sufficient
condition for Khintchine’s WLLN to hold with cn = n and an a specific function of n; it
is extended to general cn subject to a growth restriction in Theorem 4. Section 6 returns
to the branching process setting.
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1. Introduction
1.1. Necessary and sufficient conditions

Let {Wi, i = 1, 2, . . .} be independently and identically distributed (i.i.d.) nonnegative
random variables with cumulative distribution function F(x), x ≥ 0. Introduce the notation

Sn =
n∑

i=1

Wi, ν(x) =
∫ x

0
(1 − F(u)) du, μ(x) =

∫
[0,x]

u dF(u), x ≥ 0. (1)

Khintchine (1936) showed that there exists a sequence {an, an > 0}, such that

Sn

an

P−→ 1 as n → ∞

(this is known as relative stability), if and only if

x(1 − F(x))

ν(x)
→ 0 as x → ∞. (2)

Khintchine’s (1936) proof of necessity under the condition that F(x) is continuous, is a proof
by contradiction: it is long, technically intricate, and necessarily masterful, since it uses
characteristic functions in this setting of nonnegative random variables.
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242 E. SENETA

It was recognized later (see Feller (1966)) that (real-variable) Laplace transform approaches
make development simpler in settings of nonnegative random variables.

The condition at (2) implies that ν(x) is a slowly varying function (SVF) at ∞ as noted by
Csörgő and Simons (2008, Section 1), but around 1936 when Khintchine wrote, Karamata’s
concept of a regularly varying function (RVF) was very new, as was the related and famed
Karamata Tauberian theorem which was to be later used effectively in this setting (SVFs are
not mentioned in Khintchine (1936)).

In place of (2), Feller (1966, Theorem 3, p. 233; 1971, Theorem 2, p. 236) gave the necessary
and sufficient condition

x(1 − F(x))

μ(x)
→ 0 as x → ∞. (3)

Feller mentions that this condition is equivalent to μ(x) being an SVF at ∞.
Feller’s (1966) text effectively introduced RVF theory to probability theory. His proof that

(3) is necessary and sufficient is based on elegant probability inequalities, and the proof of
necessity is partly by a contradiction argument. Feller does not allude to Khintchine (1936),
the adaptation of which in Gnedenko and Kolmogorov (1954, p. 139) masks both its original
nature, and that it is a necessary and sufficient condition.

The Khintchine weak law of large numbers (WLLN) as expressed by Csörgő and Simons
(2008) states that there exists a sequence {an, an > 0} such that

Sn

an

P−→ 1 as n → ∞, (4)

if and only if

ν(x) =
∫ x

0
(1 − F(u)) du is SVF as x → ∞. (5)

For each fixed n, the norming constant an can be chosen as the unique solution of nν(an) = an.
Any choice of constants {an, an > 0} satisfying

nν(an)

an

→ 1

will do. For any such set of norming constants, an+1/an →1 and an → ∞.
Csörgő and Simons (2008) call this result the Khintchine–Feller theorem, and, hence, we

refer to it as the KF theorem. The necessary and sufficient condition (5) appears to have a more
general and more natural form than (2) and (3), although all must be equivalent.

In fact, Rogozin (1971), temporally simultaneous in appearance with Feller (1971), is aware
of Khintchine’s (1936) result, and in an elegantly and concisely proved Theorem 2 using results
from Feller (1966), shows the equivalence of (5) and of relative stability, and of a number of
other results. Rogozin’s (1971) approach, via Laplace transforms, is centred on the equivalence
of (4) and

lim
n→∞ n log

(
φ

(
s

an

))
= −s, s ≥ 0, (6)

where φ(s) = E(exp(−sW1)). This theorem was later expressed as ‘Theorem 8.8.1 (Relative
Stability Theorem: Rogozin (1971)’ in Bingham et al. (1987, pp. 372–374), where the emphasis
is on SVFs.

We first prove the following ‘branching process inspired’ extension of the sufficiency part
of the Khintchine–Feller–Rogozin results.
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Theorem 1. Assume that (5) holds, and denote ν(x)byL(x), the classical notation for an SVF.

(a) Given a sequence {an, an > 0} for which an → ∞, define the sequence {cn}, cn → ∞,
by

cn = an

L(an)
. (7)

Then
S[cn]
an

P−→ 1. (8)

(b) Conversely, given a sequence {cn}, cn → ∞, a sequence {an} is defined uniquely by (7).
Then (8) holds.

(c) In (a), if (8) holds with an → ∞ and with {c′
n}, c′

n → ∞, in place of {cn}, then c′
n ∼ cn,

where cn = an/L(an). If (8) holds then it holds with {c′
n} in place of {cn}, where c′

n ∼ cn.

(d) In (b), if (8) holds with {a′
n}, a′

n → ∞, in place of {an}, then a′
n ∼ an, where an =

cnL(an). If (8) holds then it holds with {a′
n} in place of {an}, where a′

n ∼ an.

In both the above and the sequel, all asymptotics are as n → ∞.
In our original branching process setting for this theory (see Seneta (1975)), the underlying

assumption that (5) holds was automatically fulfilled. The original branching process results
are now given in Section 6 as applications of Theorem 1. But, at least to the author, it is a
striking feature of this theorem and expressed in part (a), assuming the overarching condition
(5), that, for an arbitrarily chosen norming sequence {an}, an → ∞, there exists a ‘balancing’
sequence {cn}, cn → ∞ to give (8).

1.2. Approach to Theorem 1

The classical (KF) sufficiency result, where cn = n, is a special case of part (b), and so
parts (b) and (d), at least, may plausibly be perceived as corollaries of that special case. Thus,
presuppose the (apparent, but nontrivial) result (which in any case we need to prove in our
Section 3 as one of the keystones of our own approach), that, for sufficiently large x, the
function u(x) = x/L(x) is continuous and strictly increasing to ∞, and so has an inverse
function w(x), where w(x) is strictly increasing to ∞ with x.

Next, replace {cn}, cn → ∞, by supposing a priori that [cn] is strictly monotone increasing.
Then parts (b) and (d) above may follow by application of the Khintchine–Feller (KF) result
(as formulated by Csörgő and Simons (2008)), by the use of subsequences and elementary
probabilistic arguments. For example, from KF, there is a unique solution An to n = u(An),
that is, An = w(n), and An ↑ ∞.

Since, by present supposition, {cn}, cn > 0, is a sequence such that [cn] is strictly increasing,
it follows that [cn] = u(A[cn]), and {A[cn]} is clearly a subsequence of {An}, and so, by KF,
S[cn]/A[cn]

P−→ 1. So the above is a version of part (b), with an = A[cn].
To refine such arguments however to encompass properties such as cn → ∞ as n → ∞,

and asymptotic equalities (‘∼’), and indeed to cope with parts (a) and (c), we have found it
easier to adopt a Laplace transform approach; this proceeds by equating (8) with

lim
n→∞ cn log

(
φ

(
s

an

))
= lim

n→∞[cn] log

(
φ

(
s

an

))
= −s, s ≥ 0,

in imitation of (6), since cn → ∞. That is, we proceed by generalizing slightly Rogozin’s
(1971) approach. It will be seen from the brief proofs of parts (a) and (b) in Section 4, that in
the sense of this approach, these may be regarded as corollaries of the sufficiency part of the
classical KF result.
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2. Three more theorems

In Theorem 1, (5) is a sufficient condition for the existence of positive sequences {cn} and
{an}, where cn → ∞ and an → ∞ as n → ∞ such that (8) holds.

We need first to say something about necessity for this extension of Khintchine’s WLLN.

Theorem 2. Suppose that (8) holds for some positive sequences {cn} and {an}, where cn → ∞
and an → ∞ as n → ∞, and an+1/an < C for some C in 1 < C < ∞. Then ν(x) defined in
(1) is an SVF L(x).

This is enough to cover both the classical case where cn = n and an → ∞, and as we shall
see, the original setting for branching processes.

In fact, the proof of our Theorem 2 is a generalization of Rogozin’s (1971) elegant proof of
necessity in the classical case which uses a sequential criterion for regular variation of Feller
(1966, p. 270), which criterion was generalized in Seneta (1971).

An inspiration for this paper was the comprehensive and scholarly paper by Csörgő and
Simons (2008), who generalized the classical Khintchine-type results above in a different
direction. In their dominating ‘Theorem’ (p. 34), they gave a necessary and sufficient group of
conditions for the existence of a sequence of norming constants {dn, dn > 0} such that

Tpn

dn

P−→ 1,

where Tpn = p1,nW1 + · · · + pn,nWn, with the {Wi} as before, and {pn} = {(p1,n, . . . , pn,n)},
n≥1, a sequence of probability distributions, so that pi,n ≥ 0, i = 1, . . . , n, and

∑n
i=1pi,n = 1.

One of the results of that paper (it occurs as Corollary 5 of their ‘Theorem’, and is proved in
that paper very briefly) fits in neatly with our Theorem 1. We express it here as follows.

Theorem 3. For the function ν(x) defined in (1),

Sn

nν(n)

P−→ 1 as n → ∞, (9)

if and only if
ν(xν(x))

ν(x)
→ 1 as x → ∞. (10)

Csörgő and Simons (2008) call (10) the ‘Bojanić–Seneta condition’, from its origin in Bojanić
and Seneta (1971).

A key step in proving the sufficiency of (9), where ν(x) is defined in (1), is the immediate
deduction of (5) by the classical KF theorem as stated in Section 1. Otherwise, Theorem 3 is a
special case of the following result.

Theorem 4. For the function ν(x) defined in (1), if cn → ∞, (10) implies that ν(x) is SVF,
and

S[cn]
cnν(cn)

P−→ 1 as n → ∞. (11)

If cn → ∞ and cn+1/cn < C < ∞, where C is a constant, and ν(x) defined in (1) is SVF,
then (11) implies (10).

When I was asked to join in honouring my friend and academic twin Peter Jagers by a
contribution to this Festschrift, I needed something which had to do with branching processes:
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the probabilistic area (Jagers (1975)) in which we both made our early careers; and had Russian,
Austro-Hungarian, and Australian colour, all appropriate to Peter’s life. It was time to develop
the WLLN themes of Seneta (1975) free of their branching process context, in the light of
Csörgő and Simons (2008).

I was pleased to find recognition of the related work of my former student Ross Maller
(1978) in Csörgő and Simons (2008); and included citation of Khintchine (1936) and Csörgő
and Simons (2008) in a tricentenary review of the WLLN (see Seneta (2013)).

3. Tools

Lemma 1. For ν(x) defined in (1) for W a nonnegative random variable with distribution
function F(x) = P(W ≤ x), x ≥ 0, and Laplace transform φ(s) = E(e−sW ), s ≥ 0,∫ ∞

0
(1 − F(u))e−su du = 1 − φ(s)

s
(12)

and

ν(x) ∼ L(x) as x → ∞ if and only if
1 − φ(s)

s
∼ L

(
1

s

)
as s → 0+, (13)

where L(x) is SVF as x → ∞.

Proof. Equation (12) follows from integration by parts, while (13) is an application of Feller
(1966, Theorem 2, p. 421), essentially an application of Karamata’s Tauberian theorem. �

The result is well known (see, e.g. Rogozin (1971, p. 577) and Seneta (1974, p. 410)).
Since in Theorem 1 we make the blanket assumption that the left-hand side of (13) is satisfied,

we may write, for occasional use,

1 − φ(s)

s
= L̄

(
1

s

)
∼ L

(
1

s

)
, s → 0+, (14)

where L̄(x) is clearly slowly varying at ∞.

Lemma 2. If ν(x) satisfies (5), so we may conveniently write ν(x) = L(x), for sufficiently
large x, the function u(x) = x/L(x) =: xL1(x) is continuous and strictly increasing (to ∞),
so has an inverse function w(x), strictly increasing to ∞. Furthermore, w(x) = xL2(x), where
L2(x) is SVF as x → ∞.

Proof. The function ν(x) is clearly positive and continuous on x > 0, and is concave on
x ≥ 0 (see Csörgő and Simons (2008, Lemma 4, p. 50)). Hence, ν(x)/x is nonincreasing with
increasing x, x > 0 (see Krasnoselskii and Rutickii (1961, p. 3)). Since ν(x) = L(x) is SVF,
ν(x)/x = L(x)/x → 0 as x → ∞ from properties of SVFs (see, e.g. Seneta (1976, p. 18)).

For any fixed x0 > 0, write y0 = ν(x0)/x0, so y0 > 0. Since cn → ∞, for sufficiently large
n0, y0 > 1/cn0 , it follows that

ν(x0)

x0
− 1

cn0

= y0 − 1

cn0

> 0. (15)

Since ν(x)/x → 0 as x → ∞, for sufficiently large x,

ν(x)

x
− 1

cn0

< 0, (16)

so, by continuity, (15), and (16), there is at least one point an0 > x0 where ν(an0)/an0 = 1/cn0 .
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Since ν(x)/x is nonincreasing with x by the concavity of ν(x), for x ≥ an0 , ν(x)/x ≤ 1/cn0 .
Now suppose that, for some a, b with an0 ≤ a < b,

ν(a)

a
= ν(b)

b
= 1

c

(
≤ 1

cn0

)
. (17)

But, from above,

0 <
ν(x0)

x0
− 1

cn0

≤ ν(x0)

x0
− 1

c
,

so ν(x0) > x0/c, whence, from (17),

ν(a) − ν(x0)

a − x0
<

a/c − x0/c

a − x0
= 1

c
= ν(b) − ν(a)

b − a
,

again a contradiction to the concavity of ν(x). Thus, for x ≥ an0 , ν(x)/x is strictly decreasing
to 0 with increasing x, so u(x) = x/ν(x) is strictly increasing to ∞ with x ≥ an0 , and since it
is also continuous in x, it has an inverse function w(x), x ≥ u(an0). In particular, w(x) ↑ ∞
as x ↑ ∞. That w(x) = xL2(x), where L2(x) is SVF as x → ∞, follows from Seneta (1976,
p. 23). �
Lemma 3. For any function ν(x) > 0, nondecreasing for sufficiently large x,

ν(xν(x))

ν(x)
→ 1 as x → ∞ 	⇒ ν(cx)

ν(x)
→ 1 for each c > 0, (18)

so ν is SVF.

Proof. If ν(x) → constant < ∞ as x → ∞, (18) clearly holds. If ν(x) → ∞ for fixed
c > 0 and sufficiently large x, then ν(x) > c, so, by the monotonicity of ν(x),

ν(cx)

ν(x)
≤ ν(xν(x))

ν(x)
.

So, if c ≥ 1 and x is sufficiently large,

1 ≤ ν(cx)

ν(x)
≤ ν(xν(x))

ν(x)
,

and letting x → ∞, (18) holds.
If 0 < c < 1, putting y = cx,

lim
x→∞

ν(cx)

ν(x)
= lim

y→∞
ν(y)

ν(y/c)
= 1,

since 1/c > 1. �

4. Proof of Theorem 1

Since we are making the blanket assumption that ν(x) defined by (5) is SVF at ∞, we write
L(x) for ν(x) in this section.

(a) Writing φ(s) = E(e−sW ), s > 0, and noting that cn = u(an) → ∞ by Lemma 2,

ln E(e−sS[cn]/an) = ln

(
φ

(
s

an

))[cn]

= [cn] ln

(
φ

(
s

an

))
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∼ an

L(an)
ln

(
1 −

(
1 − φ

(
s

an

)))
(from (7))

∼ − an

L(an)

(
1 − φ

(
s

an

))
(since an → ∞)

= − s

L(an)

1 − φ(s/an)

s/an

∼ − s

L(an)
L

(
an

s

)
(from (13) of Lemma 1)

∼ −s,

since L(an/s)/L(an) → 1 as n → ∞ because L is SVF. Thus, E(e−sS[cn]/an) → e−s , s > 0,
which is tantamount to (8).

(b) Given cn → ∞, by Lemma 2, for sufficiently large n, an = w(cn), where w(x) is the
inverse function to u(x) = x/L(x), so an = w(cn) → ∞ as n → ∞. Hence, by (a), the result
follows.

(c) We have

c′
n

(
s

an

)
1 − φ(s/an)

s/an

→ s,

and, from Lemma 1,

c′
n

(
s

an

)
L

(
an

s

)
→ s.

But, by assumption, an = cnL(an), so

c′
n

cn

L(an/s)

L(an)
→ 1,

so, since L(x) is SVF,
c′
n

cn

→ 1, (19)

as asserted.
Now suppose that (8) and (19) hold. Then

cn

c′
n

c′
n

(
1 − φ

(
s

an

))
→ s,

and, by (19), c′
n(1 − φ(s/an)) → s, so (8) holds with c′

n in place of cn.
(d) We have, as in (c), for s > 0,

cn

(
s

a′
n

)
L

(
a′
n

s

)
→ s,

that is,
cn

a′
n

L(a′
n/s)

L(a′
n)

L(a′
n) → 1.

Thus, since L is SVF,

cn

L(a′
n)

a′
n

→ 1. (20)
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Writing c′
n = a′

n/L(a′
n), (20) asserts that c′

n ∼ cn. Now, from Lemma 2, recalling that w(x) is
the inverse function of u(x) = x/L(x),

a′
n = w(c′

n)

= w(c′
n)

w(cn)
w(cn)

∼ w(cn) (by the Uniform Convergence theorem since w is an RVF of index +1)

= an

= cnL(an),

as asserted.
Suppose now that (8) holds, so, as n → ∞, using the notation in (14),

cn

(
s

an

)
1 − φ(s/an)

s/an

= cn

(
s

an

)
L̄

(
s

an

)
→ s. (21)

Now consider, as n → ∞,

cn

(
s

a′
n

)
1 − φ(s/a′

n)

s/a′
n

= cn

(
s

a′
n

)
L̄

(
s

a′
n

)
= cn

(
s

an

)
L̄

(
s

an

)
an

a′
n

L̄(s/a′
n)

L̄(s/an)
→ s,

using (21), a′
n ∼ an, and the Uniform Convergence theorem of SVFs. Therefore, cn(1 −

φ(s/a′
n)) → s, so that (8) holds with a′

n in place of an, as asserted.

5. Proofs of Theorems 2 and 4

Proof of Theorem 2. In the notation of Lemma 1 and in view of (8), it follows that, for s ≥ 0
and n → ∞, (

φ

(
s

an

))[cn]
→ e−s .

Hence, for s > 0, cn ln(φ(s/an) → −s and cn(1 − φ(s/an)) ∼ s, so that then

lim
n→∞ cnU

(
an

s

)
= s,

where U(y) = 1 − φ(1/y), y > 0. Then, putting t = 1/s,

U(ant)

U(an)
→ 1

t
as t → ∞,

where U(y) is monotone in y. Hence, by Seneta (1971, Theorem A, Corollary), U(y) is
regularly varying with index −1 as y → ∞, that is, U(y) = 1 − φ(1/y) = y−1L3(y), where
L3(y) is an SVF at ∞. Then putting 1/y = λ gives

1 − φ(λ)

λ
= L3

(
1

λ

)
as λ → 0 + .

Hence, from Lemma 1 and (13), ν(x) ∼ L3(x) as x → ∞, so ν(x) = L(x), where L(x) is an
SVF. �
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In the classical case when we suppose that (8) holds with cn = n and some sequence {an},
the condition an+1/an < C for some C in 1 < C < ∞ is implied by (8) itself. Feller (1971,
p. 237) remarked that this is ‘obvious’: to see it, observe that

Sn+1

an+1
= an

an+1

(
Sn

an

+ Wn+1

an

)
,

and since, as an → ∞, Wn+1/an
P−→ 0, we have simultaneously

Sn

an

+ Wn+1

an

P−→ 1 and
Sn+1

an+1

P−→ 1,

from which a contradiction results if lim supn→∞ an+1/an = ∞.

Proof of Theorem 4. First suppose that (10) holds. Then, for arbitrary cn → ∞,

ν(cnν(cn))

ν(cn)
→ 1, (22)

and, from Lemma 3, ν(x) is an SVF. Now write a(n) = cnν(cn), and define

c′
n = u(an) = an

ν(an)
= cnν(cn)

ν(cnν(cn))
, (23)

so that, by Theorem 1(a),
S[c′

n]
cnν(cn)

P−→ 1 as n → ∞. (24)

But, from (22) and (23), c′
n ∼ cn, so Theorem 1(c) applied to (24) yields (11), as asserted.

Now suppose, conversely, that (11) holds for a sequence {cn} such that cn+1/cn < C < ∞
and cn → ∞, where ν(x) satisfies (5), and we can write L(x) in place of ν(x). First, repeat
steps (23) and (24). Since (11) is assumed to hold, by Theorem 1(c), c′

n ∼ cn, so, from (23),
(22) holds.

Let {θ(i)} be the subsequence of successive maxima of {cn}. Then, from the assumptions on
{cn},

θ(i) ↑ ∞ and
θ(i+1)

θ(i)

< C. (25)

Now, for x > 0 select r = r(x) such that

θ(r) ≤ x ≤ θ(r+1) (≤ Cθ(r)),

using (25), so that θ(r) → ∞ as x → ∞. Note also that

1 ≤ δ(r):=θ(r+1)

θ(r)

≤ C. (26)

Now, by the monotonicity of ν,

ν(θ(r)ν(θ(r)))

ν(θ(r))

ν(θ(r))

ν(θ(r+1))
≤ ν(xν(x))

ν(x)
≤ ν(θ(r+1)ν(θ(r+1)))

ν(θ(r+1))

ν(θ(r+1))

ν(θ(r))
. (27)

Furthermore,
ν(θ(r)ν(θ(r)))

ν(θ(r))
→ 1 as x → ∞

by (11), (22), and
ν(θ(r+1))

ν(θ(r))
= L(δ(r)θ(r))

L(θ(r))
→ 1 as x → ∞,
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by the Uniform Convergence theorem of SVFs, on account of (26). Thus, from (27), (10) holds,
as asserted. �

6. Branching process applications

Let {Zn} denote an ordinary nondegenerate Bienaymé–Galton–Watson branching process
generated by a probability generating function F(s), s ∈ [0, 1]. As usual, put m = F ′(1−).
It is slightly more convenient for this section to use the notation

∑[cn]
i=1 Wi/an in place of the

earlier notation S[cn]/an.
6.1. The supercritical case

In the case 1 < m < ∞ write hn(s) for the inverse function of kn(s) = − log E(e−sZn).

Theorem 5. If 1 < m < ∞,
Zn

cn

a.s.−−→ W (= W(s0)),

with cn = 1/hn(s0) for some fixed s0 ∈ (0, − ln q), where 0 ≤ q < 1 is the extinction
probability of a single ancestor and − ln q = ∞ if q = 0, and

hn(s0) = K(m−nK−1(s0)), where K(s) = − ln E(e−sW )

and K−1(s) is the inverse function of K(s). Furthermore,

cn ∼ mn

L(mn)
, where L(x) =

∫ x

0
P(W > y) dy (28)

is an SVF as x → ∞.

Conclusion (28) is Theorem 1 of Seneta (1994). It shows that the overarching condition of
our present paper, (5), is satisfied. This condition for the supercritical branching process setting
was announced in Seneta (1970), and communicated to K. B. Athreya (1971). See Seneta
(1994) for details.

Using (28), Seneta (1995, pp. 252–253) proved that

[cn]∑
i=1

Wi

mn

P−→ 1, (29)

where Wi, i = 1, 2, . . . , are i.i.d. copies of W .
We show that this as a consequence of our general Theorem 1. Take an = mn. Then if we

put c′
n = mn/L(mn) = u(mn), by Theorem 1(a), (29) holds with c′

n in place of cn. But c′
n ∼ cn

from (28), so (29) follows from Theorem 1(c).
Let us now take cn = mn. Then take an = w(cn), where w(x) = xL2(x) is the inverse

function of u(x) = x/L(x) = xL1(x), by Lemma 2. Hence, by Theorem 1(b),

[mn]∑
i=1

Wi

w(mn)
=

[mn]∑
i=1

Wi

mnL2(mn)

P−→ 1. (30)

6.2. The subcritical case

Theorem 6. If 0 < m < 1 then, for j = 1, 2, . . . ,

P(Zn = j | Zn > 0) → dj and
∞∑

j=1

dj = 1.
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Writing D(s) = ∑∞
j=1 dj s

j , s ∈ [0, 1]; f (s) = 1 − F(1 − s), φ(s) = 1 − D(1 − s), fn(s)

for the nth functional iterate of f (s), W for a random variable with distribution {dj }, and Wi ,
i = 1, 2, . . ., for i.i.d. copies of W , then

an = 1

fn(1)
= 1

φ−1(mn)
= m−nL′

2(m
−n) = w′(m−n), (31)

∫ x

0
P(W > y) dy ∼ 1

L′
1(x)

. (32)

Here w′(x) = xL′
2(x) = 1/φ−1(1/x) is the inverse function of u′(x) = 1/φ(1/x) = xL′

1(x),
where L′

1(x) is an SVF as x → ∞, and an = 1/P(Zn > 0).

The conclusions at (31) and (32) are Theorem 2 of Seneta (1994); (32) shows that the
overarching condition (5) of our present paper is satisfied.

Now write, consistent with our previous notation in Lemma 2,

L(x) =
∫ x

0
P(W > y) dy, u(x) = x

L(x)
= xL1(x), w(x) = xL2(x).

We have from (32) that L′
1(x) ∼ L1(x) as x → ∞, so that u′(x) ∼ u(x). With an = 1/fn(1)

as in (31),
cn = u(an) ∼ u′(an) = u′(w′(m−n)) = m−n (= c′

n, say).

Hence, from parts (a) and (c) of Theorem 1,

[c′
n]∑

i=1

Wi

an

=
[m−n]∑
i=1

Wi

1/fn(1)

P−→ 1.

Now put an = m−n. Then cn = u(an) = u(m−n) = m−n/L(m−n), so, by Theorem 1(a),

[cn]∑
i=1

Wi

m−n

P−→ 1,

paralleling (29) for m > 1.
As a final application to the subcritical case, we prove that

[cn]∑
i=1

Wi

a
′
n

P−→ 1, (33)

where cn = 1/fn(1) is now the number of summands, and a′
n = 1/φ−1(fn(1)).

We need to prove that w(x) ∼ w′(x) as x → ∞. Now x = w′(u′(x)) ∼ w′(u(x)) since, as
above, u′(x) ∼ u(x), and w′ is an RVF, so the Uniform Convergence theorem applies. Since
w(x) → ∞ as x → ∞, substitute w(x) for x in x ∼ w′(u(x)) to obtain w(x) ∼ w′(x).
Now put cn = 1/fn(1) = w′(m−n), so that the corresponding an = w(cn) ∼ w′(cn) =
w′(1/fn(1)) = 1/φ−1(fn(1)) = a′

n. Then (33) follows from parts (b) and (d) of Theorem 1.
The analogy to (33) in the supercritical case, achievable by analogous reasoning to the

subcritical case, is to augment (30) by (33) with cn = mn and a′
n = 1/K−1(m−n).
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7. Recollections

Sandor Csörgő mentioned that he was working with Gordon Simons on generalizing Khint-
chine’s theorem in an email to me of September 2005, and that they were using Bojanić and
Seneta (1971). I replied that this ‘reminded me of a paper published in an obscure place that
I wrote long ago about the WLLN for sums of non-negative random variables … Harry Cohn
proposed the problem, and by some quirk, I managed to solve it.’ The paper was Seneta (1975).
Sandor tried to find it digitally. He knew of some of Harry Cohn’s work on the WLLN in the
context of branching processes. But Seneta (1975) had not been reviewed for MathSciNet. It
had a title which had nothing to do with the WLLN, was a book chapter, and remained truly
obscure. I have a note that I finally sent a photocopy of it to Sandor by airmail on February 9,
2006. Csörgő and Simons (2008) was ready for publication in May 2006. It was submitted to
Periodica on October 18, 2007, and accepted March 10, 2008. Sandor Csörgő died February
14, 2008.
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