
psychometrika—vol. 80, no. 4, 968–994
December 2015
doi: 10.1007/s11336-015-9458-9
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Dual scaling (DS) is a multivariate exploratory method equivalent to correspondence analysis when
analysing contingency tables. However, for the analysis of rating data, different proposals appear in the
DS and correspondence analysis literature. It is shown here that a peculiarity of the DS method can be
exploited to detect differences in response styles. Response styles occur when respondents use rating
scales differently for reasons not related to the questions, often biasing results. A spline-based constrained
version of DS is devised which can detect the presence of four prominent types of response styles, and
is extended to allow for multiple response styles. An alternating nonnegative least squares algorithm is
devised for estimating the parameters. The new method is appraised both by simulation studies and an
empirical application.
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1. Introduction

A major issue in questionnaire-based research is the presence of response styles. A response
style, sometimes also known as response bias or scale usage heterogeneity, can be described as
systematic bias due to a respondent’s tendency to respond to survey items regardless of its content
(Van Rosmalen, Van Herk, & Groenen, 2010). Paraphrasing, a response style is the manner in
which a person uses a rating scale, an example being extreme response style where the respondent,
for no substantial reason, prefers to use the endpoints of the Likert scale more often than the
intermediate rating categories.

Response styles can invalidate statistical analyses since they are completely confounded
with the substantial information contained in the data and hence biases results in nontrivial
ways (Baumgartner & Steenkamp, 2001). The problem manifests itself when different respon-
dents resort to different response styles within the same data set. Advanced methods, such as
the latent-class multinomial logit model of Van Rosmalen et al. (2010), the multidimensional
ordinal IRT model of De Jong and Steenkamp (2010), or the ordinal regression model with het-
erogeneous thresholds of Johnson (2003), have been developed to deal with the data analysis when
response style contamination is relevant. None of these appear to have achievedmuch popularity in
practice.

Existing models often require a substantial investment of resources for its implementation,
estimation and/or interpretation. As an alternative, the method presented in this paper results
in a data set cleaned of the effects of response styles so that any analyses appropriate for the
continuous nature of this cleaned data can be conducted. Furthermore, this method has three
additional purposes, namely to (i) determine whether different response styles are present in
categorical data; (ii) identify the respondents associated with each response style; and to (iii)
classify the identified response styles into four different types. Software which implements
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the method in the R software environment (R Core Team, 2014) is available from the first
author.

The proposed method is a variant of dual scaling (DS) for rating data (Nishisato, 1980a),
also referred to as successive categories data in the DS literature. DS is an exploratory multi-
variate method, akin to correspondence analysis or CA (e.g. Greenacre, 2007). In the special
case of rating data, DS however differs from CA in a manner that implicitly caters for response
styles by including parameters for the Likert scale categories in an innovative way. These para-
meters allow for the detection of frequent (or infrequent) usage of certain ratings since the
optimal scores assigned by DS to these parameters depend on how often each rating occurs
in the data. The new method builds on this aspect of DS by including monotone spline func-
tions to model the response styles and by allowing for multiple response styles through latent
classes.

The literature on response styles (also known as scale-usage bias or heterogeneity) can be
traced back at least to the work of Cronbach in the 1940s (e.g. Cronbach, 1941, 1942, 1946,
1950). For an overview of the early work, see for example Rorer (1965). A more recent set of
references can be found in Baumgartner and Steenkamp (2001). Krosnick (1999) discusses the
origins of response styles as a shift in the procedure whereby a response is formulated; this is
also known as satisficing in the literature (e.g. Krosnick, 1991). The use of so-called personal
equations with double coding, as known in the French school of CA, is a related method of dealing
with differences in the interpretation of rating scales at the respondent level (e.g. Benzécri, 1992;
Murtagh, 2005).

The next section focuses on a closer discussion of response styles. Section 3 introduces spline
functions for modelling response styles, explains the new methodology and details an alternating
least squares (ALS) algorithm for solving an extended version of the DS problem. A simulation
study is conducted in Section 4 to assess the strengths and weaknesses of the method. Finally, an
application (Section 5) is presented.

2. Overview of Response Styles

It is assumed that the process of formulating a response to a survey item requires the respon-
dent to map a latent opinion, preference or some similar concept to a Likert scale. For example,
the respondent may be asked howmuch she agrees with a certain statement using a scale with cat-
egories ranging from “1—Totally Disagree” to “5—Totally Agree.” During the cognitive process
of formulating the answer, the respondent first forms an opinion about the survey item and sub-
sequently needs to decide how to transform or map this opinion to the presented rating scale (see
for example Weijters and Baumgartner (2012)). The mathematical properties of this response
mapping from the latent to the Likert scale determines whether a respondent exhibits a response
style or not.

Specifically, a response style can be defined as a monotone nonlinear response mapping (Van
de Velden, 2007). If this transformation is linear, no response style is present. Consequently,
once a method is available to estimate response mappings, the presence of response styles can be
assessed by looking at the curvature properties of the estimated mappings. These steps are carried
out in subsequent sections. In the case where Likert scales are used these transformations are step
functions, but for the moment it is more intuitive to consider continuous transformations.

Four different response styles are considered here, as depicted in Figure 1. This figure shows
different possible inverse mappings from the rating supplied by the respondent on the horizontal
axis to the respondent’s true latent opinion on the vertical axis. The inverse transformations are
shown since these must be estimated from the observed data.
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(a) (b) (c) (d)

Figure 1.
Examples of (inverse) response style functions mapping the true item content scale (vertical axis) into the observed
measurement scale (horizontal axis).

Thedifferent styles canbe characterizedbywhichparts of the latent opinion scale are stretched
and which parts are shrunk. These are shown by the rug plots on the respected axes in Figure 1.
For ease of exposition, it is assumed here that the true latent opinion comes from a uniform
distribution. The rug on the horizontal axis partitions the axis into intervals of equal length, with
each interval receiving a rating on the Likert scale. Here a seven-point scale is employed. The rug
on the vertical axis shows the effect that the response style transformation has on the intervals of
equal length. Hence these transformations characterize the following four response styles:

• Acquiescence (ARS) shrinks the lower part of the latent scale and stretches the upper part
indicating that higher ratings are favoured (panel (a));

• Disacquiescence (DRS) in contrast favours lower ratings by stretching and shrinking the lower
and upper parts of the latent scale, respectively (panel (b));

• Midpoint responding (MRS) reflects a tendency to frequent the middle categories of the rating
scale (panel (c)); and

• Extreme responding (ERS) in contrast means that the endpoints of the rating scale is used more
often than the middle categories (panel (d)).

A critical concept is that the boundaries dividing the latent preference scale into the different
rating categories, that is the tick marks on the vertical axes in Figure 1, determines which response
style is present. If these boundaries are equally spaced, no response style is present. Any significant
deviations however give a cause to believe that a response style is present.

The methodology outlined in the next section makes use of these boundaries to provide an
estimate of the response mappings of groups of individuals.

3. Methodology

Consider the situation where a set of m objects or survey items are being rated on a q-point
Likert scale, enumerated as 1 to q. Due to the ordinality, this is sometimes known as successive
categories data (Nishisato, 1980b, 1994). It is supposed that n individuals are asked to rate the
objects according to their preference. Objects may receive equal ratings, and it is assumed that
there exists a fixed but unknown preference structure for the set of objects, such as a population
mean. Let X denote the n×m data matrix. Note that the method detailed below requires all items
to use a common rating scale.

The next subsection discusses using DS for analysing successive categories data in gen-
eral, making use of the method’s relationship with correspondence analysis. Monotone quadratic
splines for modelling response styles are introduced in Section 3.2. Subsequently the DS method
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is modified to utilize these splines together with latent classes to allow for multiple response
styles. An alternating nonnegative least squares algorithm is described for fitting the model in
Section 3.4. Selecting the number of latent response style groups (Section 3.5) and creating a data
set purged of the effects of response styles (Section 3.6) are also discussed.

3.1. Dual Scaling of Successive Categories Data

Dual scaling is a multivariate exploratory statistical technique which is equivalent to corre-
spondence analysis (CA) when analysing contingency tables (Van de Velden, 2000). For such
cases, it is used to visualize departures from the independence assumption in the two-way con-
tingency table in a low dimensional space, akin to principal components analysis (PCA) for
continuous data (Nishisato, 1980a; Greenacre, 2007). However, for the successive categories data
dealt with here there are important differences.

Both DS and CA deal with non-contingency table data by typically applying the standard
procedure to a specific recoding of the data, designed to transform the data into a form that
resembles a contingency table (Greenacre, 2007). This recoding requires the original data matrix
X to be transformed before analysis, and for successive categories data in particular the recod-
ing schemes differ in an important way. The usual CA method uses a doubling of columns
(that is, adding an additional column to X for each object) to construct scales with “positive”
and “negative” poles before applying ordinary CA (see Greenacre, 2007). However, Nishisato
(1980b) proposes the following alternative method. This involves augmenting rating scale cat-
egory thresholds or boundaries to the data, which increases the number of columns from m to
m + q − 1, and then converting this to rank-orders. Although Nishisato’s original DS formu-
lation focuses on a so-called dominance matrix (see Nishisato, 1980a), it has been shown that
DS applied to these rank-orders are equivalent to doubling the rows (instead of the columns)
of the matrix of rankings before applying CA (Van de Velden, 2000; Torres & Greenacre,
2002).

The method is perhaps best illustrated by an example. Consider transforming the following
data matrixX, where three objects A, B and C are rated by n = 4 respondents on a 5-point Likert
scale (thus, q = 5). The first step requires augmenting 4 (= q − 1) columns to X, one column
for each of the boundaries between the pairs of adjacent ratings. Let the boundaries be called
b1, . . . , b4, where b1 falls between ratings 1 and 2, and so forth up to b4 which falls between
categories 4 and 5. It suffices to assign scores midway between the rating categories to each
boundary, to arrive at the augmented data matrix:

X =

⎛
⎜⎜⎝

A B C

4 3 1
2 2 5
3 2 2
1 5 4

⎞
⎟⎟⎠ ⇒ Xaug =

⎛
⎜⎜⎝

A B C b1 b2 b3 b4
4 3 1 1.5 2.5 3.5 4.5
2 2 5 1.5 2.5 3.5 4.5
3 2 2 1.5 2.5 3.5 4.5
1 5 4 1.5 2.5 3.5 4.5

⎞
⎟⎟⎠. (1)

Secondly, each row is converted to rankings, starting with a lowest rank of 0 and a highest rank
of 6 (= m+q −2) in this case. For ties the total ranking assigned to the tied objects is distributed
equally. This yields the following result for the example:
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Xaug ⇒ T =

⎛
⎜⎜⎝

A B C b1 b2 b3 b4
5 3 0 1 2 4 6
1.5 1.5 6 0 3 4 5
4 1.5 1.5 0 3 5 6
0 6 4 1 2 3 5

⎞
⎟⎟⎠. (2)

Note that in general T has n rows and m + q − 1 columns. DS also requires construction of the
matrix S that would have resulted if q was the lowest and not the highest rating of the Likert scale.
This is easily achieved as

S = (m + q − 2)11
′ − T. (3)

Using the CA formulation of DS of Van de Velden (2000), a row-doubled ratings matrix Fr :
2n × (m + q − 1) is constructed as

Fr =
(
T
S

)
. (4)

This matrix is subjected to CA, which assigns optimal scores in the vectors a and b to the rows
and columns of Fr , respectively. Since the aim is to assign to the boundaries ordered scores which
are sensitive to rating scale use, a one-dimensional solution is used. This assignment is achieved
by minimizing a least squares criterion L(a,b) through the singular value decomposition (Van
de Velden, Groenen, & Poblome, 2009). In the present context L is given by

L(a,b) = c‖Fr − 1

2
(m + q − 2)(11

′ + ab
′
)‖2 (5)

where c is a proportionality constant, 1 denotes vectors of ones of the appropriate lengths and
1
2 (m + q − 2)11

′
centres the rankings in Fr . For identifiability, a constraint such as ‖a‖ = 1 is

imposed. The method is discussed in more detail in Section 3.3.
Note that an important consequence of the data recoding scheme is that the DS procedure

provides coordinates for the boundaries. The effect of the boundaries is to retain the information
on how different the original ratings assigned to the objects were before the rankings were con-
structed. The coding scheme also imposes ordinality on the object and the boundary scores in b
by constructing rankings.

The optimal scores assigned to the boundaries can be used to detect response styles since they
estimate the thresholds of the response mapping of the group of respondents, as was discussed
in relation to Figure 1. Intuitively optimal scores assigned to the boundaries work as follows.
If a specific rating category j is used very often, the boundaries b j−1 and b j will often receive
rankings which differ substantially since the category is often filled. Consequently, the optimal
scores assigned will differ significantly, indicating that respondents use the category very often.
The same reasoning illustrates that when rating j is used very infrequently, the optimal scores for
b j−1 and b j will be very similar. Therefore, when a group of respondents have the same response
mapping, the method will be able to tell which type that mapping is.

In Section 3.3, latent classes will be introduced for the boundary scores which allows for
multiple response styles. First, however, using monotone quadratic splines with the dual scaling
method is discussed.

3.2. Modelling Response Styles by Monotone Quadratic Splines

From Figure 1, it is evident that the four response styles considered can be completely
described in terms of its curvature properties. By dividing the horizontal axes into two equal
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Table 1.
Curvature properties of the four response styles.

Response style Lower curvature Upper curvature

No response style None None
Acquiescence Convex Convex
Disacquiescence Concave Concave
Extreme responding Concave Convex
Midpoint responding Convex Concave

lower and upper parts, the four response styles are characterized by either concavity or convexity
in the lower and upper parts of its domain. This is summarized in Table 1.

For inferential and response style classification purposes, it will prove useful to parameterize
the response style transformations considered here. Furthermore, using smooth functions will
improve model parsimony and the stability of parameter estimation, as well as facilitate the
process of purging the response styles from the data by interpolation (see Section 3.6). The family
of monotone quadratic splines with a single interior knot is ideal for this purpose as it combines
two quadratic polynomial functions in the adjacent intervals of the domain, subject to continuity
and differentiability restrictions at the interior knot. These splines are either concave, convex or
linear in the lower and upper halves of the domain and therefore reproduce all the curves described
in Figure 1 and Table 1.

The splines have three non-constant basis functions (the so-called I-spline basis) derived by
appropriately integrating the basis functions of theM-spline basis (seeRamsay, 1988). A quadratic
monotone spline with a single interior knot t ∈ [L , U ] and intercept μ is of the form

f (x) = μ +
3∑

i=1

αi Mi (x | t). (6)

In the proposed model, t = L + 0.5(U − L) is chosen to lie halfway between the lower and
upper limits L and U , respectively. Monotonicity requires that αi ≥ 0 for i = 1, 2, 3. The basis
functions M1, M2 and M3 are constructed to ensure continuity and first-order differentiability at
t , and their formulae are as follows (Ramsay, 1988):

M1(x | t) =
{

2t (x−L)−(x2−L2)

(t−L)2
, if L ≤ x < t;

1, if t ≤ x ≤ U ;

M2(x | t) =
⎧⎨
⎩

(x−L)2

(t−L)(U−L)
, if L ≤ x < t;

t−L
U−L + 2U (x−t)−(x2−t2)

(U−t)(U−L)
, if t ≤ x ≤ U ;

(7)

M3(x | t) =
{
0, if L ≤ x < t;
(x−t)2

(U−t)2
, if t ≤ x < U ;

Hence (6) is simply a linear combination of these three piecewise quadratic functions with an
intercept.

The spline functions are built into the column scores b in (5) by using the (q − 1) × 4 design
matrixM to collect the basis functions corresponding to μ, α1, α2 and α3, respectively. The basis
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Figure 2.
The three I-spline basis functions for quadratic monotone splines with a single interior knot t .

functions are evaluated at the midpoints between rating categories, for example at 1.5, 2.5 up to
6.5 for a 7-point Likert scale. Hence b can be written as

b =
(
b1
b2

)
=

(
b1
Mα

)
(8)

with b1 the m-vector of unrestricted object scores and b2 the (q − 1)-vector of spline-restricted
boundary scores. The spline parameters are collected in α = (μ, α1, α2, α3)

′
.

The basis functions M1, M2 and M3 in (7), as depicted in Figure 2, are piecewise quadratic,
with only two of them nonconstant in each of the intervals [L , t) and [t, U ]. This is convenient
because it means the second derivative of f , and hence the curvature, depends only on two
parameters in each interval. Rescaling without loss of generality so that L = 0 and U = 1, the
curvature of f (not necessarily defined at t = 1/2) is given by

d2

dx2
f (x) =

{
−8α1 + 4α2, if 0 ≤ x < 1/2;
−4α2 + 8α3, if 1/2 < x ≤ 1; (9)

The function f (x) is either convex, concave or linear in a given interval depending onwhether
the second derivative (9) is positive, negative or zero, respectively, which does not depend on x . In
fact, assuming that α1 and α3 are larger than zero, the curvature can be measured solely in terms
of the ratios α2/α1 and α2/α3, referred to henceforth as the curvature parameters. For example,
the requirement for convexity in both the lower and upper domain is

d2

dx2
f (x) > 0 ⇔

{
α2
α1

> 2, if L ≤ x < t;
α2
α3

< 2, if t < x < U.
(10)

When one or both of α1 and α3 are zero, one or both of these curvature parameters may be
undefined. This can cause problems for its graphical representation, some of which will be shown

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:18:46, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


PIETER C. SCHOONEES ET AL. 975

Figure 3.
Classifying response styles graphically using the curvature properties of monotone quadratic splines.

below. In such cases, a continuity adjustment through the addition of a small positive constant to
both the numerator and denominator in (10) can be useful.

It is possible to rewrite Table 1 wholly in terms of the curvature parameters, but more impor-
tantly using the curvature parameters it is possible to visualize the curvature of an estimated
response style in a single plot. Figure 3 illustrates the situation by plotting α2/α3 against α2/α1,
as well as incorporating the response style classification regions derived from Table 1. When
both curvature parameters equal two, no response style is present. Due to the fact that both cur-
vature parameters has the range [0,∞), a more symmetric plot is arrived at by using the base-2
logarithmic transform and centring—this is illustrated in Section 5.

3.3. Dual Scaling Method for Multiple Response Styles

To allow for multiple response styles, suppose that each of the n individuals belongs to one of
K response style groups, the exact membership being unknown. Let the n × K matrix G contain
as columns the group indicator vectors {gk}Kk=1, each indicating which individuals belong to that
specific group. The column scores {bk}Kk=1 are of the same form as b in Equation (8), but are
now group-specific by replacing b2 with b2k = Mαk . This allows for the different groups to
have different response mappings by letting the spline parameters αk = (μk, α1k, α2k, α3k)

′
vary

between groups. The object scores b1 and the row scores a remain fixed across all response style
groups.

The group membership G needs to be estimated, together with the 2n-vector a of optimal
scores for the individuals and the column score vectors bk of length (m + q − 1) contained in the
K columns of B. It is required for monotonicity that αik ≥ 0 for all i and k. The loss function in
Equation (5) must be adjusted to allow for the multiple response styles as well as for the spline
restrictions. This constrained DSmethod for the detection of response styles can be formulated as

min
a,B,G

L(a,B,G)

subject tobk =
(
b1
b2k

)
and αik ≥ 0, i = 1, 2, 3, k = 1, 2, . . . , K . (11)
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The adjusted loss function (compare Equation (5)) is

L(a,B,G) = c‖Fr − 1

2
(m + q − 2)(11

′ +
K∑

k=1

Dgkab
′
k)‖2. (12)

Again, c is a proportionality constant, and the diagonal matrices Dgk are constructed as

Dgk =
(
diag(gk) 0

0 diag(gk)

)
. (13)

In this context, diag(x) denotes the diagonal matrix with x on the main diagonal. Through using
the {Dgk }Kk=1 in (12), individuals are associated with the corresponding bk for their group. As K
increases, the number of parameters in the model increases and consequently the loss function L
decreases as well. Therefore, when considering how the value of L changes for different values
of K in a scree plot, it is convenient to standardize these values to the unit interval [0, 1].

An algorithm for minimising L is discussed in the next section.

3.4. An Alternating Nonnegative Least Squares Algorithm

Solving the optimization problem in (11) requires finding a,B, and G under the appropriate
restrictions. The approach discussed here alternates over two steps:

1. The algorithm combines ALS and nonnegative least squares (NNLS; Lawson and Hanson,
1974) to approximate the optimal a and B for a given group membership matrix G. This
involves fixing the value of a, estimating the optimal B with NNLS, and then updating a by
ordinary least squares (OLS) based on the estimate of B. This ALS process is repeated for a
given G until numerical convergence is observed.

2. For fixed a and B,G is updated by a K -means type algorithm given the values determined for
a and B. This step simply allocates each individual sequentially to the group which minimises
the loss function.

The algorithm alternates between steps one and two until the loss function L changes by less
than a small positive constant. Note that starting values for both a and G are required. For the a
vector standard normal random numbers are simulated, while random assignment to K groups
is used for G. Block-relaxation algorithms such as this is guaranteed to converge monotonically,
albeit to a local minimum; therefore multiple random starts are required (De Leeuw, 1994).
The related issues of local optima in K -means clustering and categorical principal components
analysis are discussed in Hand and Krzanowski (2005) and Kooij (2007, Chapter 2), respectively.
In Appendix 2 an overview of these local optima is given in the context of the empirical example
(Section 5).

The optimization process is described in more detail in Algorithm 1, with an exposition of
its derivation deferred to Appendix 1. The formulation is for a single starting configuration ofG,
and needs to be repeated for multiple such configurations. Parameters that need to be specified
include na , the number of (random) starts used for a, themaximumnumber of iterationsmaxita and
maxitG for the ALS and K -means phases, respectively, and also the numerical tolerances ε1 > 0
and ε2 > 0 for these two steps. Note that the spline restrictions are sufficient as normalization
constraints in the ALS part of the algorithm, and hence the vector a is only standardized to
‖a‖2 = 2n after convergence.

To updateG, the algorithm cycles through all respondents in turn. For the current respondent
i , it calculates for each class what the loss function would be if respondent i were assigned to
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that class, given the current classification of all other respondents. This respondent is then moved
to the class with minimum loss (or stays in the same class if this is already the best choice). The
algorithm then proceeds to the next respondent i + 1, and starts again with respondent 1 once
the last respondent is reached. Once a complete pass over all respondents are made where no
change in classification occurs, the updating ofG terminates and the algorithm returns to the ALS
updating step.

Algorithm 1
Alternating Nonnegative Least Squares Algorithm

1: set i = 0, h = 0 and na , maxita , maxitG , ε1 > 0 and ε2 > 0
2: initialise G0, set F∗

r = Fr − 1
2 (m + q − 2)11

′

3: while Lh−1 − Lh > ε2 and h ≤ maxitG do
4: construct Dh

gk from Gh according to Equation (13)
5: for all j = 1, 2, . . . , na do (iterate over different starts for a)
6: if i = 0 and h = 0, generate a starting configuration a j for a
7: while Li−1, j − Li j > ε1 and i ≤ maxita do
8: update (indices i and h are omitted for readability)
9: wk j ← (a′

jD
h
gk a j )

−1/2 for all k

10: (v1k j , v2k j )
′ ← 2

m+q−2wk j (F∗
r )

′
Dh
gk a j for all k

11: b1 j ← (a
′
ja j )

−1 ∑K
k=1 wk jv1k j

12: αk j ← argminαk j ‖w−1
k j Mαk j − v2k j‖2 s.t. α1k j , α2k j , α3k j ≥ 0 for all k

13: b2k j ← Mαk j for all k so that bk j = (b1 j ,b2k j )
′

14: a j ← 2
m+q−2 (

∑K
k=1 b

′
k jbk jD

h
gk )

−1 ∑K
k=1 D

h
gkF

∗
r bk j

15: i ← i + 1
16: calculate Li j = L(a j ,B j , Gh)

17: end while
18: end for
19: if na > 1, set (a1,B1) ← argmin(a j ,B j ) Li j and na ← 1
20: update h ← h+1 andGh−1 toGh by reassigning each individual to the group which minimises

L
21: calculate Lh = L(a1,B1,Gh)

22: end while
23: return â = a1, B̂ = B1 and Ĝ = Gh , and repeat for different starting values G0

3.5. Selecting the Number of Response Style Groups

To select the number of groups K , a scree plot of the loss function for different values of
K can be used. The aim is to choose the smallest K such that larger values do not significantly
reduce the loss. This method was introduced by Cattell (1966) and has been widely adopted. The
DS method also separates individuals based on the shape of the response transformations and
rating frequencies in the groups. This supplementary information can be helpful for choosing K
in cases where the scree plot is not conclusive. This will be illustrated in the empirical application
of Section 5.

3.6. Purging Response Styles

Once the estimates â, B̂ and Ĝ have been obtained, these can be used to create a version of
the original data X which is purged of response styles. All that is needed is to use the splines
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estimated for each response style group to assign optimal scores to the rating scale. Then these
scores are substituted in X by replacing every rating with the appropriate optimal score.

Determining the optimal scores of the ratings proceeds by evaluating the splines as before,
but now at the ratings themselves and not at the boundaries. This simply requires constructing
a design matrix from the spline basis functions evaluated at the rating categories 1 to q, where
for categories 1 and q, respectively, L and U are used in the notation of Section 3.2. As before,
a single interior knot t at the middle of the domain [L ,U ] of the splines are assumed. Let this
matrix beM∗. The optimal scores are then simply determined asM∗αk . In Section 4.3 a simulation
experiment is conducted to assess how accurately this method can reproduce a known underlying
correlation structure from contaminated data.

4. Simulation Results

4.1. Simulation Model

The simulated data was generated in a three-step procedure. First, the true underlying pref-
erence structure for the m objects is obtained by simulating m random numbers from a U (0, 1)-
distribution. These are gathered into them-vectorμ. Second, individual preferences are generated
by simulating n times from each of m truncated normal distributions respectively centred at the
elements of μ. The individual preferences are given by δi = μ + εi , with εi , i = 1, . . . , n,
representing the individuals deviation from the mean.

Truncation is done at 0 and 1 so that response styles can be defined on the closed interval
[0, 1]. Note that the use of truncation avoids overflow problems at the lower and upper ends
of the response style mapping, and hence improves on the original approach of Van de Velden
(2007). The truncated normal draws are done independently and with error variance σ 2, which is
an important parameter because it determines how pronounced the multi-modality of the mixture
of truncated normals over [0, 1] is. An increase in the value of σ implies that it easier to detect
response styles as the actual preference structure plays less of a role in forming the ratings.

The resultant true preferences are randomly divided into different response style groups.
Finally, these data are discretized tom categorical variables with q-point Likert-scales, according
to the cut points on [0, 1] implied by the chosen K response styles. These response styles are
parameterized to come from the family of monotone quadratic splines outlined in Section 3.2.

In the simulations, choices must be made regarding the following: the number of objects m,
the number of rating categories q, the underlying standard deviation σ , the number of response
styles K , as well as their shapes defined by αk, k = 1, . . . , K , the sample size n and how this is
divided among the K groups, namely nk, k = 1, . . . , K .

4.2. Assessing Classification Performance

The first simulation study assesses the classification accuracy of the DSmethod. It is assumed
in this experiment that the number of groups K is known beforehand. For each of the experimental
conditions, 50 simulated data sets were constructed and the DS method applied. For each data set
estimation was based on 15 random starts for G, and for each of these starts the ALS procedure
was initialised from 50 different random configurations for the row scores a.

The 108 experimental conditions consisted of the following. The number of objects m was
varied over 10, 20 and 30 items. The rating scales employed were either q = 5 or 7-point scales.
Sample sizes of n = 200, 1000 and 5000, respectively, were used. The number of groups K were
either 3 or 5. For each of these K , it was assumed that one of the groups has a linear response
mapping (that is, a group with no response style). The additional K −1 groups exhibited response
styles through nonlinear mappings. For K = 3, these additional groups were acquiescence and
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(a) (b)

Figure 4.
Response styles used in the simulation study. Each curve represents a different style.

extreme responding, sinceBaumgartner and Steenkamp (2001) found that these aremost prevalent
in survey data. For K = 5, groups for disacquiescence and midpoint responding were also added.
The corresponding spline functions used to simulate from are shown in Figure 4. The sample
of n respondents was assigned to the groups by allocating either 20, 50 or 80 % of respondents
equally among the K − 1 response style groups. These percentages represent the amount of
contamination in the simulated data. The remaining percentage of respondents was assigned to
the group exhibiting no response style. The latent standard deviation σ was fixed at 0.1 for all
experiments.

To assess the classification performance of the method, the adjusted Rand index as well as
the percentage correctly classified (the so-called hit rate) were computed. The adjusted Rand
index (ARI) of Hubert and Arabie (1985) assesses the similarity between two partitions, adjusted
for chance correspondences between these partitions. The upper limit of the ARI is one, and
indicates perfect agreement. An ARI of zero indicates that the method does not improve on
random assignment, with all positive values indicating an improvement. Negative ARI values are
also possible, and indicate poorer performance than random assignment. The ARI is in general
lower than the hit rate, and can be considered as a more objective measure of performance.

For each of the 108 experimental conditions, Tables 2 and 3 show the average values over
the 50 simulated data sets. It is apparent that the sample size n does not have a large influence
on the ARI and hit rate. The number of groups K is very important for performance when
the contamination percentage is low (20 %). This is because for K = 5 groups the 20 % of
contaminated data points must be divided into four groups instead of 2 when K = 3, which
results in groups with very low proportions nk/n of the total sample. The low performance here
is somewhat compensated for by using more items, such as m = 30, but for K = 5 groups even
more items are needed. In general, using more items increases the classification accuracy. Using a
larger number of rating categories q also increases performance, but mostly so with fewer groups
(K = 3). The method improves on random assignment—especially in cases with higher response
style prevalence and 20 or more items the improvement is substantial.
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(a) (b) (c)

(d) (e) (f)

Figure 5.
The effect of response styles on the underlying uncorrelated objects: estimated Pearson correlations before and after
contamination, as well as after cleaning the data. The number of rating categories is q = 5 for (a)–(c) and q = 7 for
(d)–(f), with m = 20 items in all cases.

4.3. Recovering Underlying Structure through Data Cleaning

The simulation model of Section 4.1 assumes that, given the expected value of the object
scoresm, the objects are independently distributed as truncated normal distributions. Although the
true correlation matrix between the objects thus is the identity matrix I, the observed correlations
after the response style contamination is often inflated. To show improvement, the cleaned data
derived as in Section 3.6 should have correlations resembling independencemore closely. A visual
example is given in Figure 5 for simulated data (m = 20, K = 3 similar to the conditions used in
Tables 2 and 3), where the colours indicate the magnitude of the Pearson correlations. It is evident
that the response styles artificially inflate the correlations. When q = 7, the cleaned data to some
extent succeeds in removing the spurious correlations, but when q = 5 the situation is not much
improved.

The conditions underwhich the cleaned data can be expected to provide a better representation
of the underlying correlation matrix was studied further through simulations. For the different
values of K , n, q, and the proportion of response style contamination used in Section 4.2, 50
simulated data sets were constructed and cleaned through the DS method. Herem = 20 was fixed
for simplicity. For each of these data sets, the root mean square error (RMSE) between I and the
empirical Pearson correlation matrix for the contaminated data was calculated, where

RMSE(V,W) =
√∑

i

∑
j

(vi j − wi j )2 (14)

for commensurable matrices V and W. Similarly, the RMSE comparing I with the empirical
Pearson correlations of the cleaned data can be computed.A reduction in theRMSEwhen using the
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(a) (b) (c)

Figure 6.
An example of the correlation structure imposed by the Clayton copula’s, in terms of Kendall’s τ .

cleaned data as opposed to the contaminated data indicates that the cleaned data has a correlation
structure which matches the true correlation structure more closely.

A two-sample Wilcoxon test, also known as the Mann–Whitney test, (e.g. Rice, 2007) was
used to test the null hypothesis that the RMSE is equal for the contaminated and cleaned data
against the one-sided alternative that the RMSE for the contaminated data is greater than that of
the cleaned data. The results are quite clear: when q = 7 the null hypothesis is always rejected
(p < 0.001) in favour of the alternative, whilst when q = 5 the null hypothesis cannot be rejected
even once (all p > 0.2). It can therefore be deduced that when a sufficient number of rating
categories q are used, the correlation structure of the cleaned data is more representative of the
true underlying structure of the data.

A related question concerns the performance of the method in the presence of a nontrivial
correlation structure. To impose such a structure whilst retaining truncated normal marginal dis-
tributions for the objects, a copula is used (note that the truncated multivariate normal distribution
does not guarantee truncated normal marginals). A copula is a multivariate distribution function
C(u1, u2, . . . , um) with uniform marginals (Hofert &Mächler, 2011). According to Sklar’s theo-
rem (Sklar, 1959; Hofert & Mächler, 2011) a multivariate distribution function F with marginals
{Fj }mj=1 can be constructed as

F(x1, x2, . . . , xm) = C(F1(x1), F2(x2), . . . , Fm(xm)). (15)

The marginal truncated normal distributions can be achieved by the inverse probability integral
transform. The dependence structure between the variables is solely determined by the copula.
Here two independent Clayton copula (Clayton, 1978) functions will be used to impose a corre-
lation structure in terms of Kendall’s τ , a well-known measure of rank correlation (see Kendall,
1938; Hofert & Mächler, 2011). The structure induced here for m = 20 is as follows: the first ten
objects are correlated with τ = 0.2, independent of the other ten objects which are correlated with
τ = 0.35. These τ values amount to Pearson correlations of approximately ρ = 0.3 and ρ = 0.5,
respectively (an approximate relationship is ρ ≈ sin(τπ/2)—see Kendall and Gibbons (1990)).
It is also possible to introduce negative correlations by using 1 − U instead of U in the inverse
probability integral transform. In the application here these reversals are made randomly with
differing probability γ . The theoretical, observed and cleaned correlations given by Kendall’s τ

for one such copula is illustrated in Figure 6, with m = 20 and q = 7.
The difference in RMSE can again be used to evaluate the effect of the data cleaning on the

correlation structure, now using Kendall’s τ since the Clayton copula’s use this measure directly.
A simulation studywas conducted form = 20 objects with the other parameters varying as before.
For each combination of the parameters, the RMSE was calculated for 50 randomly generated
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data sets according to the copula model described above. Then for each data set the constrained
DS model was fit as before, and a cleaned data set constructed. The difference in the RMSE for
the contaminated data as compared to the cleaned data was recorded.

Table 4 presents the average reduction in RMSE as a result of cleaning the data with the DS
procedure. As before the two-sample Wilcoxon test was performed. Significant improvements
were found in all cases except those printed in italic in Table 4. It is apparent that the cleaned
data improves the RMSE in all cases, except where both q and K are small and the proportion of
contamination is moderate (50%) to large (80%). Except for these circumstances, the constrained
DS method improves the estimation of the true correlation structure by removing the response
styles effects.

4.4. Recovering the Parameters in Principal Components Analysis

It is possible to examine how well the method can recover parameters after the contaminated
data have been cleaned of response styles. For simplicity, PCA (e.g. Johnson & Wichern, 2002)
was used as analysis method, a well-knownmultivariate dimension reduction technique that seeks
to summarize the majority of the variation in the data by a few uncorrelated linear combinations
of the original variables (the so-called principal components). Subsequent principal components
each account for as much variation in the data as possible, subject to being uncorrelated with the
previous components. PCA relies on the eigendecomposition of the covariance (or correlation)
matrix, where the eigenvalue-eigenvector pairs give the variance accounted for and the linear
combination (also known as the principal component loadings), respectively, for each component.

The following procedure was used to compare the PCA conducted on the true correlation
matrix to those conducted on the correlation matrices of the cleaned and contaminated data,
respectively. First, a matrix of standard normal random numbers of dimensionm×r is simulated,
with r denoting the required rankof thePCAsolution.The rows are then standardized to lengthone;
denote thismatrix byL. The simulated correlationmatrix is thenR = LL′, with the corresponding
covariance matrix assumed to be 	 = σ 2R. Here σ 2 is the same error variance as assumed in
Section 4.1. Since the decompositionR = LL′ is not unique, the eigendecomposition ofR is used
to re-express R as R = LrL

′
r , where Lr is constructed from the first r eigenvectors and singular

values of R.
Second, a populationmean vectorμ for them items is simulated as uniform random numbers.

The true underlying data for the respective respondents are then simulated from the multivariate
normal distribution with mean vector μ and covariance matrix 	. The resultant matrix represents
the uncontaminated data. Subsequently, response styles are added to arrive at the contaminated
data. The same response styles as in Section 4.2 were used, the only difference being that the range
[L ,U ] of the splines was set to be the 1st and 99th percentiles of the sampled values, respectively.
Any spillovers outside the range of the splines are then added to the lowest or highest rating
category. The interior knot t was fixed at the mean of the sampled values.

Finally, the constrained DS method was applied to the contaminated data, assuming that
the correct number of response styles K are known and using 15 and 50 random starts for G
and a, respectively. Based on this, a cleaned data set was constructed, from which the cleaned
empirical correlation matrix, R̂c is obtained. Similarly, let R̂o be the empirical correlation matrix
of the observed (i.e. the contaminated data). To compare the PCA solutions on these correlation
matrices to that of R, the decompositions R̂c ≈ LcL

′
c and R̂o ≈ LoL

′
o are constructed as before

assuming that the researcher is able to identify the correct rank r of R. The RMSE between Lr

and Lc is then compared to that between Lr and Lo to determine whether the PCA structure of
the cleaned data reflect the actual structure better or worse than the contaminated data.

For this simulation study, it was assumed that all groups are of equal size. The total sample
size was varied over n = 200, 1000 and 5000 respondents as before, with either K = 3 or 5
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response styles added. Again, either q = 5 or 7 response categories were studied, with m = 10,
20 or 30 items. The rank of 	 was either r = 2, 3 or 4. For each combination of these factors,
100 simulated data sets were analysed.

The results are shown in Table 5, which displays the average relative improvement in the
RMSE of the cleaned over the contaminated data. It is evident that the PCA structure is better
reflected by the cleaned data when q = 7. From the table it can therefore be concluded that rating
scales of more than five categories are ideal for the method. For rating scales with q = 5, marginal
improvements are seen only for small numbers of items. It is reassuring that the method does not
yield significantly worse result for less refined rating scales such as q = 5. The improvement
of the method is greatest for small values of m. The number of segments K does not influence
performance. Finally, the method performs best for low values of r , which corresponds to simpler
underlying structures.

5. Application

To illustrate the method in an empirical application, consider data obtained from an anony-
mous multinational food and beverage conglomerate regarding an investigation of product per-
ceptions for 20 similar products. These include in-house products as well as those of competitors.
Data were collected from n = 268 panellists, who scored each product on seven different sensory
attributes using a 9-point Likert scale. Each product is rated on all seven attributes (or, equivalently,
items), so that there are 140 items collected in a data matrix with 268 rows andm = 140 columns.
The Likert scale ranges from 1 (“low”) to 9 (“high”), and hence q = 9. Since these products are
generally liked by consumers, acquiescence can be expected. The data set is available in coded
form as part of the cds package (Schoonees, 2015) for the statistical computing environment R
(R Core Team, 2014). This can be obtained online from the Comprehensive R Archive Network.
The package contains the software used for all computations in the present paper.

The first step is to select K by inspecting the loss function through a scree plot. Consideration
is also given to the curvature properties of the splines as well as how well the method separates
groups of panellists who exhibit different distributions of rating scale use. It is expected that once
spurious clusters are added at least two of the estimated response curves will be very similar,
and/or that two groups will on aggregate use the rating scale in a very similar fashion. For each of
K = 1, 2, . . . , 8 groups, the algorithm was run from 50 different random starts for the grouping
matrix G, where appropriate. Also, 50 random starts for the ALS part of the algorithm was used.
Appendix 2 gives insight into the effect of local optima for these data.

Figure 7 shows the resulting (rescaled) scree plot. There does not seem to be a clear “elbow”
in the plot, although it is apparent that K = 3, 4 and 5 are the options requiring closer scrutiny.
As K increases beyond 5 not much improvement in the loss function is observed.

The responsemappings for the solutions K = 1, . . . , 8 are displayed in Figure 8. In these plots
the horizontal axis contains the original rating scale, while the vertical axis denotes the optimal
scores assigned to the Likert scale. The area of the bubbles superimposed on the transformation
plots indicate howoften each rating category is used, aiding in the interpretation.Afirst observation
is that (strictly, almost) all the detected response mappings have the characteristic convex shape
of acquiescence. This means that all panellists have a tendency to use positive ratings frequently.
The groups differ with respect to the intensity of the acquiescence.

Furthermore, the range of optimal scores that is assigned to each group, namely
∑3

i=1 αik

in terms of the spline parameters set out in Sections 3.2 and 3.3, depends on the within-group
variability of rating scale use. Groupswhere individual panellists’ rating scale use showmore vari-
ability from the group’s aggregate rating scale use are assigned optimal scores with a wider range.
Hence the method treats such groups, i.e. groups containing more individualistic respondents, as
more informative as opposed to groups with more uniform response behaviour.
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Figure 7.
Scree plot for the sensory data.

A closer look at the distribution of the rating scale use in the identified groups reveal that all
groups in the solutions K = 3, 4 and 5 show visually different distributions, except group I and
group III when K = 5. The relative frequencies with which each rating is used in each of the
groups when K = 5 are shown in the barplots in Figure 9. It is obvious that groups I and III have
very similar aggregate behaviour when K = 5 . This is however not immediately apparent from
the spline functions displayed in Figure 8, which assign different optimal scores to these groups.

A more formal comparison can also be made by using the Kullback–Leibler divergence
(KL; e.g. Lehmann & Casella, 1998) between the distributions of different groups. This is also
known as entropy distance and is often employed in the construction of classification trees (e.g.
Breiman, Friedman, Stone, & Olshen, 1984). It is an asymmetric measure of the dissimilarity
between two density functions, the reference density f and another density g, which is defined
as E f [log( f (X)/g(X))]. When f = g, the entropy is zero; otherwise it is positive. For discrete
distributions the integral is replaced by a summation. In the present context, let f̂1, . . . , f̂q and
ĝ1, . . . , ĝq denote the observed proportion of all answers in two different groups that use ratings
1, . . . , q, respectively. The observed KL divergence between these groups, with respect to f̂ , is
then

∑q
h=1 f̂h log( f̂h/ĝh).

Assessing the pairwise KL divergence for all pairs of groups (and using both f and g as
reference) show that indeed the abovementioned two groups diverge the least among all pairs
when K = 5—see Table 6. Since the method is designed to detect groups with different aggregate
rating scale use it can be concluded that the addition of a fifth group is spurious and therefore
K = 4 is selected. The findings of Figure 9 are therefore supported by this analysis.

Consider the results for K = 4 groups. These four groups consist of 67, 71, 61 and 69
panellists, respectively. The rating scale usage of these groups are displayed in Figure 10, panels
(a)–(d). Figure 11 displays the optimal scores assigned to the ratings in the different groups as
well as their curvature chart. The curvature chart includes an approximate 95% confidence ellipse
constructed for the parameter estimates of 5000 data sets simulated under the assumption that no
response styles exist. Any group falling outside this band therefore has a significantly nonlinear
response mapping and hence a response style.

Group I represents acquiescence as mainly ratings 6–9 are used by panellists. There is a slight
boundary effect, as also with the other groups, in that category 9 is used less often than category 8.
Because the ratings 6–9 are frequently used, the optimal scores assigned to these are close to zero.
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Figure 8.
The estimated response mappings for K = 1 (top left) to 8 (bottom right) groups, respectively. The area of the bubbles are
proportional to how often that particular rating is used. The group sizes are also shown in a legend. Groups are labelled
sequentially; the legend should be read vertically and then horizontally.

Table 6.
The Kullback–Leibler divergence between the groups when K = 5, based on the rating scale use per group.

Group I II III IV V

I – 0.158 0.009 0.187 0.234
II 0.161 – 0.138 0.699 0.701
III 0.008 0.134 – 0.224 0.297
IV 0.166 0.606 0.202 – 0.053
V 0.231 0.680 0.317 0.065 –

The distributions of the groups in the rows are treated as the respective reference distributions, f .

(a) (b) (c) (d) (e)

Figure 9.
Relative aggregate frequencies of rating scale use in the identified groups when K = 5.

The most meaningful optimal scores are assigned to the lower categories since when these are
used it contains more information for this group of panellists. Overall the information provided
by this group is low since the range of optimal scores assigned is very narrow. This is because the
group members display low variability with respect to their rating scale use. This is evident from
Figure 10(e), which plots the frequency with which each rating is used per individual. Group
II represents a more extreme acquiescence where categories 7–9 are often used. The range of
assigned optimal scores, and hence information, is similarly narrow, but shifted further to the left
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10.
a–d Relative frequencies of rating scale use for the chosen solution K = 4; and e–h Variability of rating scale use within
these groups, with each line representing a single individual.

(a) (b)

Figure 11.
a Optimal scores assigned to the K = 4 response style groups, from rating 1 (left) to rating 9 (right). b Curvature plot
similar to Figure 3 for the four groups, with the axes now transformed to obtain a more symmetrical plot. The ellipse in
the centre is an approximate 95 % confidence ellipse for no response style.

since the upper categories are used even more frequently. Since the response mapping is concave
in the lower part of the domain there is a slight deviation from acquiescence towards an extreme
response style.

Groups III and IV both exhibit amix of acquiescence andmidpoint responding. This is evident
from the relative frequencies in Figure 10 and the curvature chart in Figure 11(b). In these groups
generally ratings 4–8 are preferred. Based on the range of optimal scores assigned to them these
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Figure 12.
Optimal scores for each of the seven questions, separated by product and with similar items depicted by the same colours.

consist of the panellists providing the most information. Especially Group III is endowed with
the most meaningful spread of optimal scores, and can be seen in Figure 10(g) to exhibit the most
within-group variation.

Finally, consider the optimal scores assigned to the items as displayed in Figure 12. It is
evident that Product R, and to a lesser extent Products N, D, E and F, received the lowest ratings.
In contrast, Product P was the best performing one. By using a cleaned data set constructed by
replacing the ratings by optimal scores further analyses can be conductedwhich are less influenced
by the presence of the response styles.

6. Conclusions

A method that relies on the properties of DS for successive category data to detect response
styles in categorical data was presented. It combines newly suggested spline models for four main
types of response styles with the original DSmethod to construct optimal scores for the boundaries
between rating categories. These optimal scores are sensitive to the presence of response styles.
The method was adapted to allow for multiple response style groups by utilizing a k-means type
procedure, which is combined with a constrained ALS algorithm using NNLS to fit the model.

Both the ability of the method to detect response styles and the improvement in correlation
structure that results from a cleaned data set where ratings are replaced by optimal scores were
studied. It was found that using 30 or more items and a rating scale of 7 or more categories
yields great improvements in the classification of individuals to different response style groups.
When fewer rating categories are used other factors become important, such as the extent to
which response styles are present in the data. Also, when using a 7-point scale or more, the
resulting cleaned data provide a more accurate description of the true substantial content in the
data, after accounting for different response styles. The use of the method to identify respondents
who provide similar amounts of information in their responses to a survey was illustrated on an
empirical data set.

The number of response style groups to retain was selected on the grounds of a scree plot
of the loss function, combined with the distribution of rating scale use in the different response
style groups. It remains to be seen whether a more formal selection method can be derived. Other
grounds for further research include alternatives for or additional restriction to the spline functions,
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and whether more freedom is needed by allowing for differences between the m object scores in
different groups.
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Appendix 1

Here an overview of the derivation of Algorithm 1 is provided (specifically, steps 9–14). Consider
expanding the criterion of Equation (12), assuming without loss of generality that the proportion-
ality constant c = 1:

L(a,B,G) = ‖F∗
r − 1

2
(m + q − 2)

K∑
k=1

Dgkab
′
k‖2

= tr F∗
r
′F∗

r + 1

4
(m + q − 2)2

K∑
k=1

b
′
kbka

′
Dgka − (m + q − 2)

K∑
k=1

b
′
kF

∗′
r Dgka. (16)

This derivation uses F∗
r = Fr − 1

2 (m + q − 2)11
′
, the fact that Dgk is idempotent and that

DgkDgl = 0 ∀ k �= l, as well as the properties of the matrix trace operator. Note that the first term
does not depend on the model parameters and hence are not used in the optimization algorithm.
Now, consider optimizing a and B when G is fixed. It follows from Equation (16) that, given
a starting configuration of a, the relevant loss function to be minimized for finding a new B is
proportional to

L(B | a,G) =
K∑

k=1

[
1

4
(m + q − 2)2b

′
kbka

′
Dgka − (m + q − 2)b

′
kF

∗′
r Dgka

]

= 1

4
(m + q − 2)2

K∑
k=1

‖(a′
Dgka)

1/2bk − 2

m + q − 2
(a

′
Dgka)

−1/2F∗′
r Dgka‖2 + c1

(17)

where the constant c1 depends only on K and F∗
r . Hence B, and, more specifically, the parameters

b1 and αk, , k = 1, 2, . . . , K , are updated by minimizing:
K∑

k=1

‖(a′
Dgka)

1/2bk − 2

m + q − 2
(a

′
Dgka)

−1/2F∗′
r Dgka‖2. (18)

Now, recall that bk = (b
′
1,b

′
2k)

′
with b2k = Mαk , so that the relevant parameters in the {bk}Kk=1

is b1 and {αk}Kk=1. These parameters must therefore be updated using the loss function in Equa-

tion (18). Let wk = (a
′
Dgka)

−1/2 and 2
m+q−2wkF∗′

r Dgka = (v
′
1k, v

′
2k)

′
. Since
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Figure 13.
The spread of the loss values (scaled by a constant) for K = 2, . . . , 8 in the empirical example, for 50 different starting
configurations of G.

‖(x′
1, x

′
2)

′ − (y
′
1, y

′
2)

′ ‖2 = ‖x1 − y1‖2 + ‖x2 − y2‖2,

it follows that

L(b1,α1, . . . ,αK | a,G) =
K∑

k=1

‖w−1
k b1 − v1k‖2 +

K∑
k=1

‖w−1
k Mαk − v2k‖2. (19)

Therefore b1 can be updated by minimizing the first summation in Equation (19) by OLS inde-
pendently of {αk}Kk=1. Since αik ≥ 0 for all i and k, the latter vectors are updated for each k by
using NNLS to minimize each of the individual elements of the second summation.

Appendix 2

Here a short exposition is given of the spread of local optima for the empirical example. Specifi-
cally, the variability of the loss function for the 50 random starts ofG is shown in Figure 13. The
curves are ordered from K = 2 at the top to K = 8 at the bottom. It is evident that only a single
random start typically produces the best result. In general, the local optima is less stable for larger
values of K , as can be expected. It is evident from this example that attention must be paid to the
number of random starts used in empirical applications of such algorithms. These results suggest
that the “best of 20 random starts” rule often favoured by practitioners of K -means clustering
may not suffice (Hand and Krzanowski, 2005); a pragmatic approach is required.
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