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Abstract

The development of complex software requires tools promoting fail-fast approaches, so that bugs
and unexpected behavior can be quickly identified and fixed. Tools for data validation may save
the day of computer programmers. In fact, processing invalid data is a waste of resources at
best, and a drama at worst if the problem remains unnoticed and wrong results are used for
business. Answer Set Programming (ASP) is not an exception, but the quest for better and
better performance resulted in systems that essentially do not validate data. Even under the
simplistic assumption that input/output data are eventually validated by external tools, invalid
data may appear in other portions of the program, and go undetected until some other module
of the designed software suddenly breaks. This paper formalizes the problem of data validation
for ASP programs, introduces a language to specify data validation, and presents valasp, a
tool to inject data validation in ordinary programs. The proposed approach promotes fail-fast
techniques at coding time without imposing any lag on the deployed system if data are pretended
to be valid. Validation can be specified in terms of statements using YAML, ASP and Python.
Additionally, the proposed approach opens the possibility to use ASP for validating data of
imperative programming languages.

KEYWORDS: Answer Set Programming, data validation, secure coding, fail-fast

1 Introduction

A popular Latin saying starts with errare humanum est (translated, to err is human), and

clarifies how making mistakes is part of human nature. Computer programmers, being

humans, are inclined and not indifferent to errors (Ko and Myers 2003; 2005). Whether

a typo in notation, a misspelled word, or a wrong or fragile representation of data, errors

in source code files may result in substantial delays in developing an application. Even

worse, errors may stay unknown for a long time, until something happens that stimulates

the error to cause a crash of the system or some other unwanted and unexpected behavior.

In the worst scenario, unknown errors may lead to wrong results that are used to take

some business decision, which in turn may ruin a company. (Refer to the paper by Natella

et al. 2020 for examples of typical errors in software systems.)
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Fail-fast systems are designed to break as soon as an unexpected condition is detected

(refer to the paper by Padhye and Sen (2019) for an example of fail-fast type checking

in Java). As often it is the case, the idea is not limited to computer programming, and

definitely not originated in software design. For example, many electrical devices have

fail-fast mechanisms to provide overcurrent protection – it is better to melt an inexpensive

fuse, than to burn a control board. Even if technically an electrical device operating with

a fuse replaced by a wire works as expected in most cases, no professional electrician

would suggest to tamper with the system in this way. In fact, in case the replaced fuses

melt again and again, it is usually evidence that the system has some malfunction that

must be detected and fixed.

Computer programming should follow a similar fail-fast approach. Errors must be

detected as soon as possible, and reported to the programmer in a non-skippable way, so

that the malfunction can be quickly detected and fixed. Data validation is the process of

ensuring that data conform to some specification, so that any process in which they are

involved can safely work under all of the assumptions guaranteed by the specification.

In particular, immutable objects are usually expected to be validated on creation, so

that their consistency can be safely assumed anywhere in the system – this way, in

fact, an invalid immutable object simply cannot exist because its construction would

fail. Guaranteeing validity of mutable objects is usually more difficult and tedious, and

almost impossible if there is no invariant on the validity of immutable objects that are

part of the mutable objects. (Refer to the papers by (Johnsson et al. 2019) and (Vernon

2016) for details on how to tackle the complexity of a business domain in terms of domain

primitives and entities.)

Answer Set Programming (ASP; Gelfond and Lifschitz 1991; Niemelä 1999; Marek and

Truszczyński 1999) should not be an exception when it comes to errors. However, the

language offers very little in terms of protection mechanisms. No static or dynamic type

checking are available, and programmers can rely on a very limited set of primitive types,

namely integers, strings and alphanumeric constants, with no idiomatic way to enforce

that the values of an argument must be of one of these types only – refer to the paper

by Calimeri et al. (2020) for details of the ASP-Core-2 format. More structured data

types are usually represented by uninterpreted function symbols (Lierler and Lifschitz

2009; Eiter and Simkus 2009; Baselice and Bonatti 2010; Calimeri et al. 2011; Alviano

et al. 2010), but again there is no idiomatic way to really validate such structures. Sim-

ilarly, there is no idiomatic way to specify that input relations satisfy some properties

(often expressed in comments, to document the usage of ASP encodings). Even integrity

constraints may be insufficient to achieve a reliable data validation, as they are cheer-

fully satisfied if at least one of their literals is false; in fact, integrity constraints are

very convenient for discarding unwanted solutions, but not very effective in guaranteeing

data integrity – invalid data in this case may lead to discarding some wanted solution

among thousands or more equally acceptable solutions, a very hard-to-spot unexpected

outcome.

The lack of data validation in ASP is likely due to the quest for better and better

performance. After a significant effort to optimize the search algorithms that are one of

the main reasons of the success of ASP systems and solvers like clingo (Gebser et al.

2018), dlv (Leone et al. 2019) and wasp (Dodaro et al. 2011), to sacrifice a few machine

instructions just to validate data that are almost always valid sounds like a blasphemy.
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Someone may argue that ASP is not intended to be a general purpose programming

language, and therefore input and output are eventually validated by external tools.

However, this is a very simplistic assumption, and invalid data may appear in other

portions of the program, causing the loss of otherwise acceptable solutions. Everyone

is free to follow their own path, but at some point in their life, perhaps after spending

hours looking for a typo in the name of a function, any programmer will regret not

having had an idiomatic way to specify the format of their data. Quoting the Latins,

errare humanum est, perseverare autem diabolicum – to err is human, but to persist (in

error) is diabolical.

This paper aims at rescuing ASP programmers from some problems due to data val-

idation by proposing a framework called valasp, written in Python and available at

https://github.com/alviano/valasp. Specifically, a first contribution of this paper

is the formalization of the problem of data validation for ASP programs by combining

ASP rules with Python exceptions (Section 3.1). A second contribution of this paper is

a language based on the YAML serialization format to specify data validation for ASP

programs (Section 3.2), and its compilation into Python code that can be processed by

the ASP system clingo (Section 3.3). The proposed approach is to specify the format

of some data of interest, leaving open the possibility to work with unspecified data types

(Section 3). Moreover, the specification can be separated from the ASP program, and the

fail-fast approach is achieved by injecting constraints that are guaranteed to be imme-

diately satisfied when grounded, unless data are found to be invalid and some exception

is raised. Such a behavior is obtained thanks to interpreted functions, briefly recalled in

Section 2, where their use for data validation is also hinted. Finally, a few use cases are

discussed in Section 4, among them the possibility to take advantage of ASP declarativity

for validating complex Python data structures, and related work from the literature is

discussed in Section 5 – in particular, differences with sort typed systems like IDP (Cat

et al. 2018) and SPARC (Marcopoulos and Zhang 2019).1

This paper extends a previous work presented at PADL 2021 (Alviano et al. 2021) by

providing more detailed examples of the implemented approach, by presenting additional

use cases of the proposed validation framework, by showing how valasp can be used to

validate Python data structures, and by reporting an extended empirical assessment.

2 Background

ASP programs are usually evaluated by a two-steps procedure: first, object variables

are eliminated by means of intelligent grounding techniques, and after that stable mod-

els of the resulting propositional program are searched by means of sophisticated non-

chronological backtracking algorithms. Details of this procedure, as well as on the syntax

and semantics of ASP, are out of the scope of this work. Therefore, this section only

recalls the minimal background required to introduce the concepts presented in the next

sections.

ASP is not particularly rich in terms of primitive types, and essentially allows for using

integers and (double-quoted) strings. (We will use the syntax of clingo Gebser et al.

1 An extended abstract of this work was presented at the International Conference on Logic Program-
ming (ICLP) 2020 (Alviano and Dodaro 2020).
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2018.) More complex types, as for example dates or decimal numbers, can be represented

by means of (non-interpreted) functions, or by the so called @-terms ; in the latter case,

the @-term must be associated with a function (written in an imperative programming

language like Python) mapping different objects to different symbols in a repeatable way

– for example, by populating a table of symbols or by using a natural enumeration.

Example 2.1 (Primitive types and @-terms)

Dates can be represented by strings, functions (tuples as a special case) or @-terms,

among other possibilities. Hence, "1983/09/12", date(1983,9,12) and @date(1983,9,12)

can all represent the date 12 Sep. 1983, where the @-term is associated with the following

Python code:

def date(year, month, day):

res = datetime.datetime(year.number, month.number, day.number)

return int(res.timestamp())

Each representation comes with pros and cons, discussed later in Section 3. �

Intelligent grounding may process rules in several orders, and literals within a rule can

also be processed according to different orderings. A safe assumption made here is that

all object variables of an @-term must be already bound to some ground term before the

grounder can call the associated (Python) function.

Example 2.2 (@-term invocation)

Consider the following program:

birthday(sofia, date(2019,6,25)).

birthday(bigel, date(1982,123)). % Oops! I missed a comma, but where?!?

:- birthday(Person,Date), @is_triple_of_integer(Date) != 1.

The Python function associated with the @-term is called two times, with arguments

date(2019,6,25) and date(1982,123), so that some invariant can be enforced on the

second argument of every instance of birthday/2. �

Data validation is the process of ensuring that data conform to some specification, so

that any process in which they are involved can safely work under all of the assumptions

guaranteed by the specification. Data can be found invalid because of an expected error-

prone source (for example, user input from a terminal), or due to an unexpected misuse

of some functionality of a system (this is usually the case with bugs). While in the first

case it is natural to ask again for the data, in the second case failing fast may be the

only reasonable choice, so that the problem can be noticed, traced, and eventually fixed.

The fail-fast approach is particularly helpful at coding time, to avoid bug hunting at a

later time, but it may also pay off after deployment if properly coupled with a recovery

mechanism (for example, restart the process).

Example 2.3 (Data validation)

The @-term from Example 2.2 can be associated with the following Python code:

def is_triple_of_integer(value):

if value.type != Function: raise ValueError('wrong type')
if value.name != 'date': raise ValueError('wrong name')
if len(value.arguments) != 3: raise ValueError('not a triple')
if any(arg for arg in value.arguments if arg.type != Number):
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raise ValueError('arguments must be integers')
return 1

Indeed, the presence of birthday(bigel, date(1982,123)) will be noticed because of

abrupt termination of the grounding procedure. Adopting a fail-fast approach is the cor-

rect choice in this case, and any attempt of sanification is just a dangerous speculation

on the invalid data – should it be date(1982,1,23), or date(1982,12,3)? �

3 A data validation framework for ASP

Data validation can be used in ASP programs thanks to @-terms. However, the resulting

code is likely to be less readable due to aspects that are not really the focus of the prob-

lem aimed to be addressed. We will illustrate our proposal to accomplish data validation

without cluttering an ASP encoding in this section. First, the problem of data validation

for ASP programs is formalized in Section 3.1, and a few minimal examples are pro-

vided. After that, a language based on the YAML serialization format is introduced in

Section 3.2 to specify data validation for ASP programs. Finally, Section 3.3 illustrates

how the YAML format is compiled into Python code that can be processed by the ASP

system clingo.

3.1 Data validation for ASP programs

Let us fix a set R of predicate and function names (or symbols), a set U of field names,

and a set T = {Integer, String, Alpha, Any} of primitive types. Each type is associated

with a set of facets, or restrictions. The facets of Integer are enum to specify a list of

acceptable values, min (by default −231) and max (by default 231−1) to specify (inclusive)

bounds, and finally count, sum+ and sum- to specify bounds on the number of values, the

sum of positive values and negative values. The facets of String and Alpha are enum

and count as before, min and max to bound the length, and pattern to specify a regular

expression. Other types have only the facet count.

A user-defined symbol s is any name in R. A field declaration is a tuple of the form

(f, t, F ), where f is a field name in U , t is a type in T or a type defined by the user (i.e.

a user-defined symbol), and F is a set of facets for t. A field comparison is an expression

of the form f � f ′, where � is a comparison operator among ==, !=, <, <=, >=, and >.

A user definition is a tuple of the form (s,D,H, b, c, a), where s is a user-defined

symbol, D is a set of field declarations, H is a set of field comparisons (also called having

properties), and b, c, a are code blocks to be executed respectively before grounding,

after the creation of an instance of the user-defined symbol, and after grounding. A data

validation specification is a tuple of the form (P,A,U), where P is a code block, A is an

ASP program, and U is a set of user definitions.

Example 3.1 (Validation of dates)

Let date be a ternary predicate representing a valid date, and bday be a binary pred-

icate whose arguments represent a person and a date. A user definition udate of date

could be (date, {(year, Integer, ∅), (month, Integer, ∅), (day, Integer, ∅)}, ∅, ∅,
c, ∅), where c is the following (Python) code block:

datetime.datetime(self.year, self.month, self.day).
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A user definition ubday of bday could be (bday, {(name, Alpha, ∅), (date, date, ∅)},
∅, ∅, ∅, ∅). A data validation specification could be the triple (P, ∅, {udate, ubday})
where P is the (Python) code block

import datetime �

Example 3.2 (Ordering of elements)

Let ordered_triple be a ternary predicate representing a triple of integers in descendent

order. A user definition could be (ordered_triple, {(first, Integer, ∅), (second,

Integer, ∅), (third, Integer, ∅)}, {first < second, second < third}, ∅, ∅, ∅). �

Example 3.3 (Overflow on integers)

Let income be a binary predicate representing incomes of companies, which are summed

up in an ASP program. A user definition of income could be uincome := (income,

{(company, String, ∅), (amount, Integer, {min: 0, sum+: 2147483647})}, ∅, ∅, ∅, ∅),
specifying that valid amounts are nonnegative and their sum must not overflow. A data

validation specification could be (∅, ∅, {uincome}). �

Example 3.4 (Validation of complex aggregates)

Consider the constraint

:- bound(MAX), #sum{B-B',R : init_budget(R,B), budget_spent(R,B')} > MAX.

It bounds the total amount of residual budget, for example for researchers involved

in a project. The above constraint can be part of a broader ASP program where

budget_spent/2 depends on some guess on resources and services to purchase. The aggre-

gate above may overflow, and we are interested in detecting such cases and stopping the

computation on such unreliable data. To this aim, we can introduce auxiliary predicates

in the ASP program A of a data validation specification (∅, A, U):

residual_budget(B-B',R) :- init_budget(R,B), budget_spent(R,B').

Hence, we can provide a user definition (residual_budget, {(value, Integer, {min: 0,

sum+: 2**31-1}), (id_res, Integer, {min: 0})}, ∅, ∅, ∅) in U . �

Specification application. Given an ASP program Π, and a data validation specification

(P,A,U), the application of (P,A,U) to Π amounts to the following computational steps:

1. The code block P is executed.

2. For all (s,D,H, b, c, a) ∈ U , the code block b is executed.

3. The ASP program Π ∪A is grounded.

4. For all produced instances of a predicate s such that (s,D,H, b, c, a) ∈ U , all types

and facets in D and all field comparisons in H are checked, and the code block c is

executed. If a check fails, an exception is raised.

5. For all (s,D,H, b, c, a) ∈ U , the code block a is executed.

Example 3.5

The application of the data validation specification from Example 3.1 to an ASP program

whose intelligent grounding produces bday(bigel, date(1982,123)) raises an exception

due to the wrong type of the second argument, that is, function date is expected to have

arity 3, but only 2 arguments are found.
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The application of the data validation specification from Example 3.3 to an

ASP program comprising facts income("Acme ASP",1500000000) and income("Yoyodyne

YAML",1500000000) raises an exception due to the facet sum+: 2147483647 of amount. This

way, an overflow is prevented, for example in

total(T) :- T = #sum{A,C : income(C,A)}.

which would otherwise produce total(-1294967296) in clingo and dlv. �

3.2 A YAML language for data validation

YAML is a human friendly data serialization standard, whose syntax is well-suited for

materializing the notion of data validation specification provided in Section 3.1. The

YAML files processed by our framework are essentially dictionaries associating keys to

other dictionaries, values, and lists. The key valasp is reserved, and cannot be used as a

symbol or field name. Finally, code blocks are written in Python.

More in details, a data validation specification (P,A,U) is represented by a YAML file

comprising the following lines:

valasp:

python: |+

<Python code block P>

asp: |+

<ASP program A>

and a block of lines for each user definition (s,D,H, b, c, a):

s:
<field declarations D>

valasp:

having:

- <field comparison h1>

- ...

- <field comparison hn>

before_grounding: |+

<Python code block b>
after_init: |+

<Python code block c>
after_grounding: |+

<Python code block a>

Above, h1, . . . , hn are the field comparisons in H (for some n ≥ 0), and a field declaration

(f, t, F ) is represented by

f:
type: t
<facets F>

where facets are written as key-value pairs.

Example 3.6

Below is a YAML file to validate predicate bday of Example 3.1.

valasp:

python: |+

import datetime
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date:

year: Integer

month: Integer

day: Integer

valasp:

after_init: |+

datetime.datetime(self.year, self.month, self.day)

bday:

name: Alpha

date: date

The following, instead, is a YAML file to validate predicate ordered_triple of

Example 3.2:

ordered_triple:

first: Integer

second: Integer

third: Integer

valasp:

having:

- first < second

- second < third

Note that YAML lists can be written as multiple lines starting with a dash, or in square

brackets. Regarding predicate income of Example 3.3, its YAML file is the following:

income:

company: String

amount:

type: Integer

min: 0

sum+: Integer

Here, sum+: Integer is syntactic sugar for specifying that the sum of positive values must

fit into a 32-bits integer – nicer than writing max: 2147483647 or max: 2**31-1 inside

sum+. �

3.3 The Python compilation

The specification for data validation expressed in YAML is compiled into Python code

that can be processed by the ASP system clingo. The compilation injects data valida-

tion in the grounding process by introducing constraint validators of two kinds, namely

forward and implicit, depending on the arity of the validated predicates and on how terms

are passed to @-terms: for unary predicates, their unique terms are forwarded directly

to the functions handling @-terms; for other predicates, instead, terms are grouped by

functions with the same name of the validated predicate. Hence, for a predicate pred of

arity 1, the (forward) constraint validator has the following form:

:- pred(X1), @valasp_validate_pred(X1) != 1.
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Similarly, for a predicate pred of arity n ≥ 2, the (implicit) constraint validator has the

following form:

:- pred(X1,...,Xn), @valasp_validate_pred(pred(X1,...,Xn)) != 1.

In both cases, @-terms are associated with the Python function

def valasp_validate_pred(value):

Pred(value)

return 1

where Pred is a class whose name is obtained by capitalizing the first lowercase letter of

pred, and whose constructor raises an exception if the provided data are invalid. In fact,

class Pred is also an outcome of the compilation process, and materializes all validity

conditions specified in the data validation specification in input.

In a nutshell, given a data validation specification (P,A,U) (represented in YAML

and whose code blocks are written in Python), and an ASP program Π, the compilation

produces a Python script with the following content:

1. The Python program P .

2. A Python class S for every (s,D,H, b, c, a) ∈ U materializing all validity conditions:

field declarations in D map to Python class annotations (and added as instance

attributes on instance creation); field comparisons in H and the Python code block

c are added to the __post_init__ method (and executed after any instance cre-

ation); the Python code blocks b and a are respectively added to the class methods

before_grounding and after_grounding.

3. Calls to any before_grounding method introduced in the previous steps.

4. Calls to clingo’s API to ground the ASP program Π ∪A ∪ C, where C is the set

of constraint validators associated with U .

5. Calls to any after_grounding method introduced in the previous steps.

Example 3.7 (Continuing Example 3.6)

The YAML file to validate predicate bday of Example 3.1 is mapped to the following

Python code:

import datetime

context = Context(wrap=[])

@context.valasp

class Date:

year: Integer

month: Integer

day: Integer

def __post_init__(self):

datetime.datetime(self.year, self.month, self.day)

@context.valasp

class Bday:

name: Alpha

date: Date
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The two Python classes, Date and Bday, are decorated with the decorator @context.valasp,

which is in charge for interpreting the annotations used to declare fields: the constructor

of (the decorated) Date class checks the presence of three integer arguments, namely

year, month and day, and calls the __post_init__ method to ensure that they form a

valid date; the constructor of (the decorated) Bday class checks that the first argument

is alphanumeric and the second argument is a valid instance of Date.

The YAML file to validate predicate ordered_triple of Example 3.2 is mapped to the

following Python code:

@context.valasp

class Ordered_triple:

first: Integer

second: Integer

third: Integer

def __post_init__(self):

if not self.first < self.second:

raise ValueError("Expected first < second")

if not self.second < self.third:

raise ValueError("Expected second < third")

Note that the two having constraints are mapped to two conditional statements, and

comprehensive messages are provided in case of violation.

Finally, the YAML file to validate predicate income of Example 3.3 is mapped to the

following Python code:

@context.valasp

class Income:

company: String

amount: Integer

def __post_init__(self):

if self.amount < 0:

raise ValueError(f"Should be >= 0, but received {self.amount}")

if self.amount > 0:

self.__class__.sum_positive_of_amount += self.amount

@classmethod

def before_grounding_init_positive_sum_amount(cls):

cls.sum_positive_of_amount = 0

@classmethod

def after_grounding_check_positive_sum_amount(cls):

if cls.sum_positive_of_amount > 2147483647:

raise ValueError('sum of amount in income may exceed 2147483647')

Above we can observe that the min constraint is enforced in the first line of

__post_init__, while the sum+ constraint requires to initialize the class variable

sum_positive_of_amount (in method before_grounding_init_positive_sum_amount), to

update its value for each positive amount (in __post_init__), and a final check (in method

after_grounding_check_positive_sum_amount). Note that integers in Python do not have

fixed byte length. Therefore, there is no overflow in sum_positive_of_amount.
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The decorated classes are then used for validation by means of the following code:

control = clingo.Control()

control.load("-")

try:

context.valasp_run(control,

on_validation_done=lambda: print("ALL VALID!\n=========="),

on_model=lambda m: print(f"Answer: {m}\n=========="),

)

except RuntimeError as e:

raise ValueError(context.valasp_extract_error_message(e)) from None

Code similar to the above snippet is also produced by the translation of YAML files. As

an alternative, validation can be specified directly in terms of the above Python classes,

and the programmer can customize the invocation of valasp. �

4 Use cases and assessment

This section reports a few use cases on two encodings from ASP competitions (Gebser

et al. 2020). Each use case focuses on the validation of parts of an encoding, showing

how the proposed framework can identify invalid data. Note that tuning of the encoding

is out of the scope of this paper. Moreover, the overhead introduced by data validation

is empirically assessed. Finally, an application of valasp for validating complex Python

data structures is shown.

4.1 Video streaming – 7th ASP competition

Video streaming amounts to selecting an optimal set of video representations, in terms

of resolution and bitrate, to satisfy user requirements. User requirements and solution

are respectively encoded by user(USERID, VIDEOTYPE, RESOLUTION, BANDWIDTH, MAXSAT,

MAXBITRATE) and assign(USER_ID, VIDEO_TYPE, RESOLUTION, BITRATE, SAT). The overall

satisfaction of users is maximized by the following weak constraint:

:∼ assign(USER_ID,_,_,BITRATE,SAT_VALUE), user(USER_ID,_,_,_,BEST_SAT,_).

[BEST_SAT-SAT_VALUE@1, USER_ID, assign]

According to the official description, available online at http://aspcomp2015.dibris.

unige.it/Video_Streaming.pdf, instances of user/6 can be validated with the following

YAML specification:

user:

userid:

type: Integer

min: 0

videotype:

type: String

enum: [Documentary, Video, Cartoon, Sport]

resolution:

type: Integer

enum: [224, 360, 720, 1080]

bandwidth:

type: Integer

min: 0
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maxsat:

type: Integer

min: 0

maxbitrate:

type: Integer

min: 150

max: 8650

valasp:

after_init: |+

if self.maxbitrate % 50 != 0: raise ValueError("unexpected bitrate")

According to the above specification, the arguments userid, bandwidth and maxsat are

non-negative integers; videotype is a string among Documentary, Video, Cartoon, and

Sport; argument resolution is an integer among 224, 360, 720, and 1080; and maxbitrate

is an integer between 150 and 8650, and it is divisible by 50.

The official encoding and instances do not have errors, as expected. However, the

encoding is quite fragile and relies on several assumptions on the input data and on ASP

internals – ASP systems use 32-bits integers for everything but the cost of a solution. To

show how dangerous such assumptions are, consider a decision problem where a partial

solution and a target satisfaction are given. Accordingly, the weak constraint is replaced

by the following constraint:

:- target(T), #sum{BEST_SAT-SAT_VALUE, USER_ID :

assign(USER_ID,_,_,BITRATE,SAT_VALUE), user(USER_ID,_,_,_,BEST_SAT,_)} > T.

In this case, the execution of clingo on the instances of the competition may lead

to the error message "Value too large to be stored in data type: Integer overflow!",

produced while simplifying the sum. However, whether the message is shown or not

depends on the partial solution provided in input. In fact, if the overflow is only due to the

assign/5 instances in input, the subsequent simplification step cannot notice the problem

and a wrong answer is produced. For example, if BEST_SAT=1500000000 and the input

contains two assign/5 instances with SAT_VALUE=1 and SAT_VALUE=2, then the grounder of

clingo will simplify the aggregate by communicating to the solver that the minimum

value is (1500000000-1+1500000000-2) mod 231=852516349, which is interpreted as 231

-852516349=-1294967299; at this point, if the other values associated to the undefined

instances of assign/5 are not sufficient to overflow the sum, then the previous overflow

is unnoticed. The following YAML specification can help to detect these overflows:

target:

value:

type: Integer

min: 0

sum_element:

value:

type: Integer

min: 0

sum+: Integer

userid: Integer

valasp:

asp: |+

sum_element(BEST_SAT-SAT_VALUE,UID) :-

assign(UID,_,_,BITRATE,SAT_VALUE), user(UID,_,_,_,BEST_SAT,_).
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4.2 Solitaire – 4th ASP competition

Solitaire represents a single-player game played on a 7× 7 board where the 2× 2 corners

are omitted. We focus on the following rules defining the board:

range(1).

range(X+1) :- range(X), X < 7.

location(1,X) :- range(X), 3 <= X, X <= 5.

location(2,X) :- range(X), 3 <= X, X <= 5.

location(Y,X) :- range(Y), 3 <= Y, Y <= 5, range(X).

location(6,X) :- range(X), 3 <= X, X <= 5.

location(7,X) :- range(X), 3 <= X, X <= 5.

Those rules are interesting since an error in this point might be propagated all over the

encoding. The YAML specification of range and location is the following:

range:

value:

type: Integer

enum: [1, 2, 3, 4, 5, 6, 7]

location:

x: range

y: range

valasp:

after_grounding: |+

pos = [1,2,6,7]

if self.x.value in pos and self.y.value in pos:

raise ValueError("Invalid position")

In particular, note that this example shows the usage of the after_grounding statement

to check the valid positions after that all grounding instances of location have been

created.

4.3 Qualitative spatial reasoning – 4th ASP competition

Qualitative spatial reasoning consists of deciding whether a set of spatial and temporal

constraints is consistent with respect to a composition table. Membership in qualitative

relations is encoded by 169 rules, similar to the following:

label(X,Z,rp) :- label(X,Y,rp), label(Y,Z,rp).

label(X,Z,req) | label(X,Z,rp) | label(X,Z,rpi) | label(X,Z,rd) |

label(X,Z,rdi)

| label(X,Z,rs) | label(X,Z,rsi) | label(X,Z,rf) | label(X,Z,rfi)

| label(X,Z,rm) | label(X,Z,rmi) | label(X,Z,ro) | label(X,Z,roi)

:- label(X,Y,rp), label(Y,Z,rpi).

The third argument of label/3 is a qualitative relation. The following YAML specification

can be used to validate such rules:

rel:

value:

type: Alpha

enum: [req, rp, rpi, rd, rdi, ro, roi, rm, rmi, rs, rsi, rf, rfi]

node:

value:

type: Integer
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min: 0

max: 49

label:

x: node

y: node

l: rel

valasp:

having: [x < y]

The above example shows the usage of the having statement to compare the values of

the two fields of the predicate label.

4.4 Knight’s Tour – 3rd ASP competition

The knight’s tour problem aims at finding a sequence of moves of a knight on a chessboard

of size N such that the knight visits every square exactly once and comes back to the

origin. We focus on a short excerpt of the encoding2:

size(8). givenmove(7,5,8,7). givenmove(1,7,3,6).

number(X) :- size(X).

number(X) :- number(Y), X=Y-1, X>0.

even :- size(N), number(X), N = X+X.

:- not even.

:- size(N), N < 6.

Those rules are particularly interesting from the point of view of the validation. First of

all, the first line contains a test case, probably this was a test used by a programmer that

was not commented out before publication. Note that atoms of the form givenmove/4

are part of the input, therefore the ones added in the encoding might lead to incorrect

results. Moreover, remaining rules are used to check that the size of the chessboard must

be an even number greater than 6, which we argue should not be part of the encoding.

The YAML specification of size is the following:

size:

value:

type: Integer

min: 6

max: 100

count: 1

valasp:

after_init: |+

if self.value %2 != 0:

raise ValueError('Size must be an even number')
self.__class__.value = self.value

In this case the validation will fail since there are two different atoms of the form

size/1. In addition, the following YAML specification of move and givenmove can be used

to validate knight’s moves:

2 The full version can be found at http://www.mat.unical.it/aspcomp2011/files/KnightTour/knight_
tour-full_package.zip.
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valasp:

asp: |+

__in_range(X1, givenmove(X1,Y1,X2,Y2)) :- givenmove(X1,Y1,X2,Y2).

__in_range(Y1, givenmove(X1,Y1,X2,Y2)) :- givenmove(X1,Y1,X2,Y2).

__in_range(X2, givenmove(X1,Y1,X2,Y2)) :- givenmove(X1,Y1,X2,Y2).

__in_range(Y2, givenmove(X1,Y1,X2,Y2)) :- givenmove(X1,Y1,X2,Y2).

__in_range(X1, move(X1,Y1,X2,Y2)) :- move(X1,Y1,X2,Y2).

__in_range(Y1, move(X1,Y1,X2,Y2)) :- move(X1,Y1,X2,Y2).

__in_range(X2, move(X1,Y1,X2,Y2)) :- move(X1,Y1,X2,Y2).

__in_range(Y2, move(X1,Y1,X2,Y2)) :- move(X1,Y1,X2,Y2).

__in_range:

x:

type: Integer

min: 1

source: Any

valasp:

before_grounding: |+

cls.post_check = []

after_init: |+

self.__class__.post_check.append(self)

after_grounding: |+

for el in cls.post_check:

if el.x > Size.value:

raise ValueError(f'Value out of bound in {el.source}: {el.x}')

(Note that the above example uses f-strings; https://www.python.org/dev/peps/

pep-0498/.)

4.5 Empirical assessment

The overhead introduced by valasp to validate instances of the discussed problems was

measured by running clingo with and without validation. The experiment was run on a

2.4 GHz Quad-Core Intel Core i5 with 16 GB of memory. valasp was executed with the

command-line option --valid-only, and clingo was executed with its Python interface;

in both cases we disabled the computation of stable models since valasp has no impact

on the solving procedure. We remark here that the running time of valasp includes

grounding time. For each benchmark, we considered all available instances. Results are

reported in Table 1.

Concerning video streaming, the average running time of clingo is 0.06 s, and the

average running time of valasp is 0.18 s. As for Solitaire, the average running time

of clingo and valasp is respectively 0.07 and 0.13 s. Concerning qualitative spatial

reasoning, the average running time of clingo is 3.23 s, and the average running time

of valasp is 3.45 s. Finally, on knight’s tour, the average running time of clingo and

valasp is respectively 0.27 and 0.50 s.

We can conclude that no significative overhead is eventually introduced by valasp on

these test cases.
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Table 1. Average running time (in seconds) of clingo and valasp on tested

benchmarks

Benchmark # clingo valasp

Video streaming 43 0.06 0.18
Solitaire 27 0.07 0.13
Qualitative spatial reasoning 159 3.23 3.45
Knight tour 10 0.27 0.50

4.6 Application: valasp to validate Python data

valasp is not only a framework for the validation of ASP data, but also brings the

declarative power of ASP to validate complex Python data. For example, consider a

Python function F receiving in input a partially ordered set, that is, a binary relation

being reflexive, symmetric, and transitive. The binary relation is stored in a Python data

structure, for example a list of pairs or a sparse matrix. The Python function F works on

the provided data under the assumption that it represents a partially ordered set. If input

data is properly validated, the Python function should verify that the binary relation is

actually reflexive, symmetric, and transitive. Usually, such a validation is achieved by

implementing Python functions, with imperative and error-prone code. valasp provides

an alternative: the relation in input R can be mapped to ASP facts of the form r(a,b),

for all (a, b) ∈ R, for example with the help of a library like clorm (https://github.

com/potassco/clorm), and the following data validation specification can be used:

valasp:

asp: |+

element(X) :- r(X,Y).

element(Y) :- r(X,Y).

lost("reflexivity", X) :- element(X), not r(X,X).

lost("symmetry", (X,Y)) :- r(X,Y), not r(Y,X).

lost("transitivity", (X,Y,Z)) :- r(X,Y), r(Y,Z), not r(X,Z).

lost:

property: String

reason: Any

valasp:

after_init: |+

raise ValueError(f"Lost {self.property} on {self.reason}")

If relation R is not a partially ordered set, then it misses at least one property among

reflexivity, symmetry, and transitivity. Such a knowledge is encoded in the ASP program

above, which eventually produces an instance of lost/2. According to the above data

validation specification, valasp will then execute the Python code block given in the

after_init, thus raising an exception to inhibit the execution of function F on invalid

data.

As another example of this kind, consider a Python function receiving in input an

undirected graph and working under the assumption that the graph is connected. In order
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to validate such a precondition, the input graph can be mapped to the ASP predicates

vertex/1 and edge/2, and the following data validation specification can be used:

valasp:

asp: |+

connected(FIRST) :- FIRST = #min{X : node(X)}.

connected(Y) :- connected(X), edge(X,Y).

unconnected(X) :- node(X), not connected(X).

unconnected:

node: Any

valasp:

after_init: |+

raise ValueError(f"Unconnected node {self.node}")

If the input graph is not connected, an exception is raised, pointing to the unconnected

node.

Empirical assessment. In order to evaluate the performance of valasp to validate

Python data we considered an implementation of the Prim’s algorithm for computing

a minimum spanning tree (Prim 1957). Indeed, a minimum spanning tree can be com-

puted only for connected graphs, therefore we can use the validation presented above

to check whether the input graph of the Python function is connected. We executed

the experiment on instances of the problem Graceful Graphs submitted to the 7th ASP

Competition, since they all contain connected graphs. Moreover, we associated each edge

of the graph with a positive weight. For each instance, we executed the Python func-

tion with and without validation. In the first case, the average running time was 0.06 s,

whereas in the second case it was 0.05 s.

5 Related work

The use of types in programming languages eases the representation of complex knowl-

edge, favors the early detection of errors and provides an implicit documentation of source

codes (Pierce 2002). For example, by stating that the arguments of predicate bday are

of types person_name and date, there is no need to document the way these elements are

represented, and any attempt to instantiate this predicate with different types is blocked.

ASP-Core-2 (Calimeri et al. 2020), on the other hand, is untyped: there is no way to state

that arguments of a predicate must be of a specific type, the language offers a very limited

set of primitive types, and there is no idiomatic way to declare user-defined types. This

work targets ASP-Core-2, the standardized language implemented by clingo (Gebser

et al. 2018) and dlv2 (Adrian et al. 2018), aiming at providing the missing idioms to

specify types and to validate data.

Types are not new in logic-based languages, and in particular order-sorted logic has

been formalized as first-order logic with sorted terms, where sorts are ordered to build

a hierarchy (Kaneiwa 2004). idp3 (Cat et al. 2018) and sparc (Marcopoulos and Zhang

2019) are two systems with languages close to ASP-Core-2 and supporting sorted terms.

There are many differences between these systems and the framework proposed in this

work. First of all, valasp is designed to be smoothly integrated with ASP-Core-2

projects: the programmer is free to choose what to validate and what to leave unchecked,
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and the original encoding can still be used as it is in case validation is not required in the

deployed software. Sorted terms are also used to bound object variables in rules, while

this is not possible with valasp because it only deals with the aspect of data validation.

The framework uses @-terms to perform data validation by means of Python functions

that are called during the grounding process. In the literature, @-terms and non-Herbrand

functions (Balduccini 2013) were used to enrich ASP with functionality that are otherwise

not viable (if not in the Turing tarpit). External atoms in hex (Eiter et al. 2018) extend

the notion of externally interpreted function to externally interpreted relations, and can

be also used to achieve some form of data validation (Redl 2017).

Intuitively, the constraints

:- pred(X1), @valasp_validate_pred(X1) != 1.

:- pred(X1,...,Xn), @valasp_validate_pred(pred(X1,...,Xn)) != 1.

can be replaced by the following HEX rule:

:- &valasp_validate_pred[pred]().

The implementation of the external atom valasp_validate_pred is similar to the

implementation of the @-term valasp_validate_pred: it must call the constructor of the

(decorated) class Pred produced by valasp and return the empty relation; if the con-

struction of Pred fails, valasp raises an error and blocks the grounding of the program,

and otherwise the empty relation returned by the external atom is such that the above

constraint is satisfied. Hence, external atoms can be used as an alternative to @-terms

for implementing the validation constraints defined in Section 3.3.

Finally, there are works in the literature that introduce data validation in Prolog

systems (Kiel and Schader 1991) and that implement data validation for Constraint

Logic Programming by means of Prolog systems (Hermenegildo et al. 2002; Puebla et al.

2000). The goal of those works is clearly related to this paper, but they differ on the way

data validation is specified, on the target language and on the underlying implementation.

Similarly, debugging techniques for ASP (Fandinno and Schulz 2019; Gebser et al. 2008;

Oetsch et al. 2010; Dodaro et al. 2019) share the goal to identify errors, but with a

different approach. valasp aims at blocking data validation errors in a very early stage,

at coding time and by implementing fail-fast techniques to point to the source of the

problem. Debugging techniques instead are useful to localize the origin of unintended

behavior, and usually require interaction with the programmer. If valasp is properly

used, a debugger is still a useful software in the tool belt of an ASP programmer, but

on the other hand it is likely that the number of debugging sessions will be reduced.

Moreover, valasp is non-intrusive, since it does not require any change to the tested

ASP program, differently from other recently-proposed techniques (Amendola et al. 2021;

Lifschitz 2017).

6 Conclusion

ASP programmers do mistakes, there is no shame in this. valasp aims at early detection

of data validity errors, and promotes a fail-fast approach so that the origin of the problem

can be quickly identified and fixed. The proposed approach follows the separation of

concerns design principle: validation rules are specified in YAML with Python and ASP

snippets, and are separated from the business logic represented in ASP encodings. Such
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a design is useful to smoothly introduce data validation in ASP, as validation rules can

be specified externally without the need to deeply change the way programs are written.

If after deployment data can be safely assumed valid, valasp can be easily discharged

because the original encoding stays unchanged. Moreover, valasp opens the possibility

to take advantage of ASP declarativity for validating complex Python data structures,

bringing the expression of data validation specifications at a higher level of abstraction.

Finally, albeit valasp has a tight integration with the state-of-the-art solver clingo,

it can already be used in combination with other ASP solvers based on the ASP-Core-2

standardized language, for example, dlv. In particular, a user can:

• use valasp for validation, and dlv for execution during the development phase; or

• use valasp for validation and grounding, and dlv for stable model search (e.g. by

using the option --mode=wasp) during the deployment phase; or

• use valasp only during the development phase for early detection of bugs, and

then use dlv without validation during the deployment phase.

Moreover, it is important to observe that valasp is mainly based on @-terms, a feature

that is implemented in clingo but still unavailable in dlv. This is currently the most

difficult technical aspect to overcome in order to integrate valasp in dlv.
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ging and validation using semantic approximations and partial specifications. In Proceedings
of ICALP. LNCS, vol. 2380. Springer, 69–72.

Johnsson, D. B., Deogun, D. and Sawano, D. 2019. Secure by Design. Manning Publications.

Kaneiwa, K. 2004. Order-sorted logic programming with predicate hierarchy. Artificial Intelli-
gence 158, 2, 155–188.

Kiel, R. and Schader, M. 1991. A tool for validating prolog programs. In Classification, Data
Analysis, and Knowledge Organization. Springer, 183–188.

Ko, A. J. and Myers, B. A. 2003. Development and evaluation of a model of programming
errors. In Proceedings of HCC. IEEE Computer Society, 7–14.

Ko, A. J. and Myers, B. A. 2005. A framework and methodology for studying the causes of
software errors in programming systems. Journal of Visual Languages and Computing 16, 1-2,
41–84.

Leone, N., Allocca, C., Alviano, M., Calimeri, F., Civili, C., Costabile, R.,
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