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Abstract

Objective: Compare the effectiveness of multiple mitigation measures designed to protect nursing home residents from infectious disease
outbreaks.

Design: Agent-based simulation study.

Setting: Simulation environment of a small nursing home.

Methods: We collected temporally detailed and spatially fine-grained location information from nursing home healthcare workers (HCWs) using
sensor motes. We used these data to power an agent-based simulation of a COVID-19 outbreak using realistic time-varying estimates of infectivity
and diagnostic sensitivity. Under varying community prevalence and transmissibility, we compared themitigating effects of (i) regular screening and
isolation, (ii) inter-resident contact restrictions, (iii) reduced HCW presenteeism, and (iv) modified HCW scheduling.

Results: Across all configurations tested, screening every other day and isolating positive cases decreased the attack rate by an average of 27% to
0.501 on average, while contact restrictions decreased the attack rate by an average of 35%, resulting in an attack rate of only 0.240,
approximately half that of screening/isolation. Combining both interventions impressively produced an attack rate of only 0.029. Halving the
observed presenteeism rate led to an 18% decrease in the attack rate, but if combined with screening every 6 days, the effect of reducing
presenteeism was negligible. Altering work schedules had negligible effects on the attack rate.

Conclusions: Universal contact restrictions are highly effective for protecting vulnerable nursing home residents, yet adversely affect physical
and mental health. In high transmission and/or high community prevalence situations, restricting inter-resident contact to groups of 4 was
effective and made highly effective when paired with weekly testing.

(Received 8 June 2023; accepted 20 February 2024; electronically published 15 March 2024)

Introduction

Residents of nursing homes and long-term care facilities are at high
risk of being severely impacted by infectious disease outbreaks due to
both age and comorbidities.1 Additionally, the relatively dense
connections among both residents and healthcare workers (HCWs)
can lead to unusually rapid diffusion of infectious pathogens. This
has been evident throughout the COVID-19 pandemic, where there
have been over 1.6 million cases and 166 thousand deaths amongUS
nursing home residents, as well as over 2,000 deaths among staff/
HCWs.2 Residents’ mortality rate has been over 100 times greater
than that of the general population and over 20 times greater than
that of the population over 65 years of age.3

Current documented strategies aimed at mitigating the risk of
COVID-19 to nursing home residents include isolation and

contact restrictions, personal protective and hygienic measures,
health education and information sharing, monitoring, screening,
and entry regulation measures.4,5 However, direct evidence
connecting such interventions to outcomes is lacking, so high-
quality modeling studies are necessary to provide more confidence
in the effects of various mitigation measures.5,6

Unlike observational studies, modeling studies have the advantage
of avoiding logistical and ethical hurdles when evaluating various
strategies and comparing counterfactual scenarios. For example, the
impact of varying surveillance strategies has received much
attention,6–9 and this is also true in modeling studies.10–14 Rarely
have surveillance and isolation been compared against othermeasures
in a nursing homeor long-term care facility setting, with the exception
of vaccination11 and at least one form contact restriction based on
disease status/history10. These studies’ results varied widely, from very
effective when the diagnostic test sensitivity is very high11,13 to
potentially counterproductive in other settings such as incarceration
facilities with highly seasonal disease incidence.14
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The goal of this work is to evaluate and compare the efficacy of
strategies including (i) screening and isolation, (ii) structured
resident contact restrictions, (iii) reduced HCW presenteeism, and
(iv) modified HCW scheduling over a wide variety of community
prevalence and disease transmissibility parameters. Toward this
aim, we used spatially and temporally fine-grained HCW location
data obtained from sensor motes in a small nursing home setting to
support an agent-based model (ABM) that compares various
counterfactual scenarios related to the spread of COVID-19 like
respiratory disease.

Methods

Overview

We deployed a sensor mote system of our own design in a 32-room
residential care facility in July of 2019. The system consists of
rechargeable badges worn by HCWs and line-powered beacons
placed in fixed locations to act as geographical markers and data
aggregators. Badges periodically broadcast an identifying packet;
when a beacon detects such a message, it logs (i) the sender’s id, (ii)
the received signal strength index (an observable proxy for physical
distance), and (iii) the time the packet was received. Fifteen
beacons were placed in hallways, 4 at the nursing station, 2 in the
two dining/commons, and 32 in residents’ rooms (all rooms are
single occupancy). By fusing beacon data, we can pinpoint when a
badge and its associated HCW entered/exited a room.

Because the 32 residents had limited mobility, we were able to
reliably infer their location (either their assigned room or one of
the common areas) by observing HCW behavior; for example,
the data clearly show when HCWs escort residents to the dining
rooms for meals or back to their rooms after dinner. For this
study, we leveraged 8 hours of data (7:00–15:00) collected from
the badges of the 17 HCWs working on July 17, 2019. The
data were partially replicated to recreate a full day’s HCW/
resident interactions in a manner that reflects the facility’s
dining and activity schedule when staffed by 34 HCWs working
in shifts.

Contact networks

Using the timestamps and locations of each HCW or resident, we
constructed an empirical contact network consisting of nodes
representing agents (HCWs or residents) and weighted edges
representing the cumulative time the agents spent in the same
location for the day. Three alternate contact networks were also
constructed from the empirical contact network in a manner
consistent with a specified type of infection control intervention:

1. (Lockdown network) No resident-resident interactions were
allowed, that is, all the residents remain in their assigned rooms
throughout the day.

2. (Homogeneous network) Every resident is relocated to a single
common area for a prespecified number of social interaction

Figure 1. Illustration of how contact networks were constructed from sensor mote data. (a) Empirical contact network based on HCW and inferred resident locations at each time
point. (b) No contact between residents was imposed, keeping all residents in their own room (corresponding to lockdown network). (c) Contact between residents was
constrained to be between those assigned to the same bubble; residents within same bubbles went to dining hall at same time, as did the HCWs who were in their rooms in
empirical network. The bubble network was generated based on this. Note: HCW, healthcare worker.

Infection Control & Hospital Epidemiology 873

https://doi.org/10.1017/ice.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/ice.2024.43


hours each day: pertinent resident/HCW interactions are also
remapped accordingly.

3. (Bubble network) Each resident is randomly assigned to one of
N equal sized social “bubbles.” Each bubble is assigned to a
distinct common area for a prespecified number of
social interaction hours each day: pertinent resident/HCW
interactions are also remapped accordingly (see Figure 1 for an
example). Note that the homogeneous network is itself a bubble
network with N= 1.

Simulation

Each of the above contact networks can be used as the basis for an
ABM and corresponding simulations. In our simulations, each
individual agent (HCW or resident) will be denoted as susceptible,
infected, or recovered.15 Once the parameters of a simulation are
established, a randomly selected on-duty HCW is infected and all
other agents are susceptible. We then perform a series of operations
on the selected contact network 50 times, once for each simulated
day, changing each agent’s status as the simulation demands. Infected
agents infect susceptible agents according to a prespecified trans-
mission model. Once infected, some agents will exhibit symptoms,
while others will remain asymptomatic: both will progress through a
prespecified infection model where the transmissibility varies over
time, until they progress to the recovered state after a random-length
interval. Because our simulations are short, we do not allow recovered
agents to be reinfected. At the end of the simulation, we compare the
resident attack rates (percentage of resident agents infected over the
course of the simulation) to assess differences between simulation
conditions.

For each simulated day:
1. (Permute the contact network) Randomly permute the

mapping of HCW identities to HCW nodes; while the pattern of
interactions is replayed each day, the HCWs replaying each role
changes randomly on a daily basis, thereby ensuring that HCWs
were not constrained to interact with the same residents each day.

2. (Reallocate work) For each resident–HCW contact involving
an isolated HCW (see steps 3 and 4), reassign the contact to the
HCW with the lowest workload among those available at the time
of contact.

3. (Testing and mandatory isolation) Selected HCWs and
residents are tested on a fixed prespecified schedule, where we
assume the test has perfect specificity, but its sensitivity depends on
time since infection. Any agent with a positive result is mandatorily
isolated for 10 days until recovered according to the infec-
tion model.

4. (Self-isolation) Non-isolated infected agents who become
symptomatic may self-isolate with a certain probability.

5. (Internal transmission) Susceptible agents may contract the
disease during contact with a non-isolated infected agent according
to the contact network edge weight (duration of contact) and how
long the infected agent has been infected.

6. (Community transmission) Non-isolated susceptible HCWs
have a certain probability of becoming infected through external
sources based on the community risk value.

7. (External transmission) Each non-isolated resident will have
2 hours of interactions with two visitors (total 4 hours) each week;
visitors may be infected, again in accordance with the community
risk value, and are not tested prior to visiting.

Model parameters and counterfactuals

The ABM parameters were divided into two groups: disease
parameters derived from the existing literature and intervention
parameters (Table 1).While the goal of our study was not exclusively
focused on COVID-19, we used this as our model disease due to the
large body of literature estimating the required parameter values.

To obtain a realistic temporally varying test sensitivity curve,
we estimated the severe acute respiratory coronavirus virus 2
(SARS-CoV-2) polymerase chain reaction (PCR) test sensitivity
as a function of time since infection by fitting a non-linear
logistic regression using natural cubic splines to data collated by
Kucirka et al.16

The community risk, that is, community disease prevalence, was
fixed at either 0.01, 0.025, 0.05, or 0.1. HCWs are randomly
infected from external sources at an incidence rate derived from
dividing the community prevalence by the number of days having
transmission rate larger than 0.01 (14 days). The probability of
visitors being infected is proportional to the prevalence, and the
infectiousness is determined by randomly selecting the number of
days since becoming infected.

Table 1. Agent-based model parameters

Disease parameters

Incubation period21 Log-normal (1.54, 0.47^2)

Probability of being
asymptomatic18

0.6

Transmission ability (R0)18,19 3.15 (wild type)

5.94 (delta variant)

Community risk 0.01, 0.025, 0.05, 0.1

Infectiousness profile17 Gamma (17, 1.3) with
location shift of 13

Intervention parameters

Contact profile No contact

Homogeneous contact

Residents contacting each other
within four bubbles

Residents contacting each other
within eight bubbles

Unrestricted contact

Screening option Screening every 6 days

Screening every other day

No screening

Sensitivity profile16 See main text

Residents bubble contact
time per day

0.5 h, 1 h, 1.5 h, 2 h

Probability of self-isolation for
HCWs with COVID-19

0

0.18

0.59

0.795

1
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The probability that an infectious individual infected a
susceptible contact was derived from assuming an exponential
distribution on the time to transmission with rate proportional to
the shedding profile in the literature17 and the time in contact.
Qualitatively, this led to a transmission rate very small up until a
week prior to symptom onset, where it rose to peak at the day
prior to symptom onset and then began to steadily decline. The
proportionality constant was derived by finding the root of the
equation R0 � E transmissionsð Þ ¼ 0. The basic reproduction
number R0 was set to be either 3.15, corresponding to the wild
strain of COVID-19,18 or 5.94, corresponding to the delta strain.19

Moreover, we also assumed that residents and HCWs would be
wearing masks, reducing the R0 of the general population by 66%.20

Upon becoming infected, an agent is given an incubation period
generated from the distribution in the literature, followed by an
additional 2 weeks until becoming recovered.21

We analyzed the following three testing strategies: all residents
and HCWs on the working shift are scheduled for PCR tests (1)
every 6 days, (2) every other day, and (3) no testing. We tested all
three strategies under restricted contacts within bubbles consid-
ering three bubble sizes (N= 1, 4, or 8) and four contact times
(t= 0.5, 1, 1.5, or 2 hours/day).

We simulated varying levels of presenteeism among HCWs by
considering five self-isolation probabilities (0, 0.180, 0.590, 0.795,
and 1) chosen based on observed presenteeism rate of 0.82 among
HCWs,22 decreasing presenteeism by both ½ and ¼, as well as the
extremes of always and never going to work ill.

Work shift arrangements were also evaluated. Assuming two
HCW shifts, each shift worked a specific number of consecutive
days ranging from 1 to 14 followed by that same number of days
off. For example, shift 1 may work 7 days and take 7 days off.

Unless stated otherwise, in each configuration described above,
we picked as default settings residents’ contacts restricted to 4
bubbles for 2 hours each day in our simulations, community
risk= 0.025, R0 = 3.15, HCWs rotated shifts every 6 days, testing
every 6 days, and 0.18 self-isolation probability after becoming
symptomatic. All total, there were 208 scenarios, and for each, we
ran 2,000 simulations.

Results

The results from the nursing homeABMare reported in terms of the
attack rate for nursing home residents, that is, the average proportion
of the 32 residents infected within the 50-day simulation window.

Figure 2 depicts the effect of different testing strategies. For all
three resident contact profiles (homogeneous (A), four bubbles
(B), and eight bubbles (C)), the attack rate decreased by 0.32, 0.37,
and 0.18, respectively, when going from no testing to testing every
6 days. However, there were much smaller additional reductions in
attack rates of 0.11, 0.076, and 0.027, respectively, when moving
from testing every 6 days to testing every other day.

Figure 3 shows the effect of changing the contact profile on the
mean attack rate across different R0 (columns) and community
prevalence values (rows). While the attack rate reduction from
homogeneous contact to the empirical contact patterns was

Figure 2. The attack rates for residents by
different screening strategy. The X axis is
the total hours of contact between
residents; Y axis is the attack rates.
(A) Residents contact each other
homogeneously. (B) Residents contact each
other within four bubbles. (C) Residents
contact each other within eight bubbles.
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generally dramatic (up to 0.82), the difference between 4 bubbles of
8 residents each and 8 bubbles of 4 residents each depended on the
amount of time residents spent with their bubble; for 0.5 hours/
day, the reduction in attack rates from 8 to 2 bubbles ranged across
our simulation settings from 0.01 to 0.07, while ranging from 0.06
up to 0.36 for 2 hours/day.

Figure 4 shows the effect of self-isolation on the attack rate. In
the absence of screening, changing the self-isolation probability
from 0 to 1 greatly reduced the attack rate (reduction of 0.64),
while this only minimally reduced the attack rate when screening
every 6 days and every other day (reductions of 0.07 and 0.01
respectively). These results match expectations, as screening
leads to HCWs who would otherwise engage in presenteeism
undergoing mandatory isolation.

Figure 4 shows the impact of different HCWs’work shift length.
There appears to be complex patterns, but within each testing
strategy, the effects appear to be marginal, not exceeding 0.051 for
any of the three testing strategies evaluated.

Discussion

Summary

Nursing home residents are older and typically frailer than the
general population in high-density contact networks and thus
potentially more susceptible to severe illness and mortality from
emerging infectious diseases. Non-pharmaceutical interventions
can be effective system-level countermeasures to mitigate the risk
of severe illness and mortality. This research implements a realistic
ABM simulation utilizing fine-grained spatiotemporal informa-
tion from a sensor mote deployment in a nursing home. We use
our simulations to evaluate the effect of four non-pharmaceutical
interventions on reducing resident infection rates: (i) screening
and isolation, (ii) inter-resident contact restrictions, (iii) reducing
HCW presenteeism, and (iv) altering HCW scheduling. By
considering all four interventions in the same modeling
framework, it becomes easier to meaningfully compare individual
or combinations of mitigation measures directly.

Figure 3. The attack rates in nursing home residents by different resident-resident contact profiles. The X axis is the total hours of daily contact between residents; the Y axis is the
attack rates among residents. (A–D) R_0 of 3.15. (E–H) R_0 of 5.94. (A, E) A community prevalence of 0.01. (B, F) A prevalence of 0.025. (C, G) A prevalence of 0.05. (D, H) A prevalence
of 0.1.
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Overall, inter-resident contact restrictions were most effica-
cious, with regular screening and isolation making further
substantial gains in reducing the attack rate. Reducing presentee-
ismwas highly effective but only in the absence of regular screening
and isolation. Regular screening and isolation alone were
insufficient to control transmission; in contrast, restricting inter-
resident contacts to bubbles of size four was quite effective alone,
although not as effective as the combination of the two strategies.

Effects of bubbling

While the contact patterns impacted the attack rate significantly,
this difference depended on the community prevalence and the
transmissibility of the disease. Doubling the size of each bubble
from 4 to 8 only increased the attack rate by 0.06 for R0 = 3.15 and
community prevalence of 0.01, whereas this increase climbed up to
0.36 for R0 = 5.94 and prevalence of 0.1, suggesting stricter contact

Figure 4. The attack rates for residents by
different willingness to self-isolate. The X axis is
the probability of self-isolation after an individ-
ual develops COVID-19 symptoms; Y axis is the
attack rates.

Figure 5. The attack rates for residents by
different working shift length (ie, number of
consecutive days working before the same
number of consecutive days off duty). The X
axis is the length of working shift; Y axis is the
attack rates.
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restrictions are necessary for highly transmissible diseases with
high prevalence.

Fully eliminating contact between residents effectively reduced
the attack rate, coming, however, at a very high cost to residents. In
a scoping review, Rodrigues et al23 found that the social isolation of
older adults during the COVID-19 pandemic increased loneliness,
worry, stress, anxiety, fear, frustration, boredom, depression, sleep
disorders, and suicide ideation. Bubbling can help lower infection
rates while diminishing the negative psychosocial effects of
isolating during an infectious disease outbreak.24 In our study,
we found that on average the attack rate from the simulated
outbreak was kept below 0.1 when bubbling groups of four
residents together for up to 1.5 hours/day in all situations except
for when the community prevalence was at 0.1 or when R0 = 5.94
with the prevalence ≥0.025; bubbling up to 1 hour/day kept the
attack rate below 0.1 unless R0 = 5.94 with the ≥0.05. These results
suggest that bubbling can be highly effective at reducing trans-
mission while potentially lowering the negative impacts of social
isolation on nursing home residents’ mental health.

Effects of presenteeism

The effect of presenteeism, a common issue with HCWs,25 was
negated in the presence of regular screening. In the absence of
screening, the attack rate was reduced from 0.49 to 0.31 by halving
the presenteeism rate from 0.82 to 0.41. These results imply that
management should prioritize presenteeism reduction only when
there is no regular screening and isolation.

Screening regularity

Our simulations revealed only small improvements when
increasing screening rates from every 6 days to every other day.
Moreover, the efficacy of screening was highly dependent upon the
contact pattern of residents. With homogeneous contact patterns
at 1 hour/day, the attack rates for testing every 6 days versus every
other day were 0.41 and 0.20, respectively, while for bubbles of size
4, the attack rates were 0.03 and 0.02, respectively. However, in all
cases, failing to screen and isolate positives led to much higher
attack rates; with the prevalence of 0.025 and R0 = 3.15, moving
from no testing to testing and isolating every 6 days decreased the
attack rate by 35%–79%, depending on the contact pattern and
time per day in contact.

Non-effect of work shift alterations

We had hypothesized that the disease characteristics (time to
symptom onset, infectiousness profile, etc), testing schedules, and
the interaction between the two may lead to different work
schedules having an effect on the attack rate. What we observed
was a complicated pattern that yielded marginal differences. This
seems to imply that a strong knowledge of disease characteristics
and transmission is required to know the effect of the work shift
schedule on the attack rate, but that even with such knowledge,
modifying shift schedules has little impact.

Implications

Bubbling in groups of 4 alongside screening and isolation every 6
days was typically sufficient to maintain a low attack rate in the
midst of an epidemic. For R0 less than or equal to that of the wild
strain SARS-CoV-2, if the community prevalence exceeds 0.05, the
time bubbles spend together ought to be restricted to 1 hour per
day. For larger R0, when the prevalence exceeds 0.025, the time

bubbles spend together ought to be restricted to 0.5 hour per day,
and when the prevalence exceeds 0.05, inter-resident contact
should be suspended until the community prevalence has reduced.

Limitations

The results from this study should be interpreted in the light of
several limitations. First, our ABMwas derived from a sensor mote
deployment in a single nursing home. This facility’s high-fidelity
HCW location/interaction data may not apply to other facilities.
Second, due to IRB considerations, we did not obtain patient
locations, instead inferring their locations fromHCWmovements.
Third, we focused on a respiratory disease characteristically similar
to COVID-19, and our results may not generalize to other
dissimilar diseases.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ice.2024.43.
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