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For linear differential systems, the Sacker–Sell spectrum (dichotomy spectrum) and
the contractible set are the same. However, we claim that this is not true for the
linear difference equations. A counterexample is given. For the convenience of
research, we study the relations between the dichotomy spectrum and the
contractible set under the framework on time scales. In fact, by a counterexample,
we show that the contractible set could be different from dichotomy spectrum on
time scales established by Siegmund [J. Comput. Appl. Math., 2002]. Furthermore,
we find that there is no bijection between them. In particular, for the linear
difference equations, the contractible set is not equal to the dichotomy spectrum. To
counter this mismatch, we propose a new notion called generalized contractible set
and we prove that the generalized contractible set is exactly the dichotomy
spectrum. Our approach is based on roughness theory and Perron’s transformation.
In this paper, a new method for roughness theory on time scales is provided.
Moreover, we provide a time-scaled version of the Perron’s transformation. However,
the standard argument is invalid for Perron’s transformation. Thus, some novel
techniques should be employed to deal with this problem. Finally, an example is
given to verify the theoretical results.
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1. Introduction

1.1. History

The well-known notion of exponential dichotomy introduced by Perron [35]
extends the concept of hyperbolicity from autonomous linear systems to nonau-
tonomous linear systems and plays a crucial role in the study of the dynamical
behaviour of nonautonomous dynamical systems, such as stable and unstable invari-
ant manifolds as well as linearization theory. Since the concept was proposed by
Perron, exponential dichotomy together with its variants and extensions has been
extensively studied [3–8, 11, 13, 14, 17, 19, 22, 23, 25, 28–30, 38].
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Based on the study of exponential dichotomy, the well-known Sacker–Sell spec-
trum was introduced by Sacker and Sell [37] for skew-product flows on vector
bundles with compact base and it plays an important role in describing the diag-
onal term. In fact, Bylov [10] introduced the concept of almost reducibility and
proved that any linear system can be almost reducibility to diagonal system. Later,
Lin [24] improved the Bylov’s work and proved that the contractible set is equal
to the Sacker–Sell spectrum of the linear system. More specifically, Lin proved that
the diagonal terms are contained in the Sacker–Sell spectrum and this spectrum is
the minimal compact set where the diagonal coefficients belong to. The main ideas
of Lin’s work are based on the roughness theory of classical exponential dichotomy
and Perron’s transformation [35] by which a linear system can be reduced to an
upper triangular system. Later, Catañeda and Huerta [12] considered Lin’s work
in a nonuniform framework. Catañeda and Robledo [15] extended Lin’s work to
difference systems. We mention that the contractible set is a powerful tool to study
the linearization with unbounded perturbations (see [16, 21]).

Recently, Pötzsche [32, 33] introduced the concept of the exponential dichotomy
on time scales. The theory of time scale or measure chain can be traced back
to Hilger [20], which allows a unified treatment of continuous systems, discrete
systems and hybrid systems. With such a framework, many properties and appli-
cations of exponential dichotomies on time scales can be studied in a certain range.
For instance, Aulbach and Pötzsche [2] studied the reducibility of linear dynamic
equation on measure chains. Pötzsche [34], Xia et al. [40] studied the linearization
of dynamic equations on measure chains and time scales, respectively. Siegmund
[39] considered the exponential dichotomy which is a specialized version of the
one studied in [32, 33] and introduced a new notion of spectrum for this specific
exponential dichotomy. Another important property of exponential dichotomy is its
roughness under perturbations. Roughness of exponential dichotomy can be traced
back to Massera and Schäffer [27] and then it has been widely studied for contin-
uous or discrete systems [1, 18, 19, 25, 31, 36] and the systems on general time
scales [41–43].

1.2. Motivations and novelties

Motivated by the works of Lin [24], Huerta [21], Castañeda and Robledo [16],
and Siegmund [39], in this paper, we consider the relationship between the con-
tractible set and the dichotomy spectrum studied in [39] on time scales. We show,
by a counterexample, that the contractible set may not only be different from the
dichotomy spectrum established by Siegmund [39], but also there is no bijection
between them. In particular, for the linear difference equations, the contractible set
is not equal to the dichotomy spectrum, which contradicts the results in [15]. Thus,
the counterexample also shows that the result of [15] is questionable. This is con-
trary to the expectation that the spectrum should be equal to the contractible set.
To counter this mismatch in expectation, we propose a new definition of generalized
contractible set and we prove that the generalized contractible set is exactly the
dichotomy spectrum. In particular, if T = R, the generalized contractible set is the
contractible set in [24] and the dichotomy spectrum is the Sacker–Sell spectrum. In
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other words, our result is consistent with the one studied in [24] when dynamical
system is reduced to the continuous case.

Our approach is based on roughness theorem and Perron’s transformation. In this
paper, a new simple method for roughness theory on time scales is provided which
is different from the method of using Lyapunov function or generalized Gröwall
inequality [41–43]. The advantages of this method are that the range of disturbance
is determined and the coefficient matrix function can be unbounded. The main steps
of this new method are listed as follows.

(i) Firstly, we prove that the roughness theorem holds for the system which
admits exponential dichotomy with the projection I or O;

(ii) Secondly, we show that the unperturbed system xΔ = A(t)x is kinematically
similar to a diagonal block system yΔ = diag(A1(t), A2(t))y, where its corre-
sponding subsystem yΔ

1 = A1(t)y1 (resp. yΔ
2 = A2(t)y2) admits exponential

dichotomy with the projection I (resp. O);

(iii) Lastly, we construct a Lyapunov transformation x = R(t)y by which the
perturbed system xΔ = (A(t) + B(t))x can be transformed into the sys-
tem yΔ = diag(A1(t) + B1(t), A2(t) + B2(t)). Moreover, sup

t∈T

‖Bi(t)‖ → 0 as

sup
t∈T

‖B‖ → 0.

However, the standard techniques to construct the Lyapunov transformation x =
R(t)y for the continuous cases are not valid for the dynamic equations on time
scales. In fact, it is more difficult to construct the matrix-valued function R(t) than
that the continuous case. Because the relation of kinematical similarity is more
complex than that in the continuous case and it is difficult to deal with the term
R(σ(t)) occurred in the relation, where σ is the forward jump operator. To see how
to overcome the difficulty, one can refer to (4.13) and (4.14).

Furthermore, in this paper, we provide a time-scaled version of the Perron’s
transformation. However, on time scales, the difficulty mentioned above still exists
in the discussion of Perron’s transformation. The standard arguments for Per-
ron’s transformation on R are not valid for the systems on time scales. In
fact, if we use the standard arguments, the transformation x = U(t)y trans-
forms system xΔ = A(t)x into yΔ = B(t)y, then it leads us to an inequality
that ‖B(t) + BT (t)UT (σ(t))U(t)‖ � ‖A(t) + AT (t)UT (σ(t))U(t)‖, where σ is the
forward jump operator and A(t) is bounded. In particular, for the continuous
case T = R, ‖B(t) + BT (t)‖ � ‖A(t) + AT (t)‖. However, in order to prove the
boundedness of B(t) on time scales, we have to overcome the troublesome term
UT (σ(t))U(t). Therefore, we employ some novel techniques to deal with this prob-
lem (see theorem 4.1). Finally, we include an example to illustrate the effectiveness
of our main result.

1.3. Organization of the paper

The rest of this paper is organized as follows. In §2, we introduce some notations
and definitions. Section 3 gives a counter example to state that the contractible
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set may not be equal to dichotomy spectrum and introduces the new definitions of
Δ-contractibility and generalized contractible set. In § 4, the main results of this
paper and an example are provided.

2. Preliminaries

For completeness, we briefly introduce some basic terminology and notations of
the calculus on time scales. More details can be found in the books [9, 20]. A time
scale T is a nonempty closed subset of R. Throughout this paper, we always assume
that a time scale T is unbounded to the right and left (two-sided time). The closed
interval on time scales is denoted by [·, ·]T. The forward jump operator σ : T → T

is defined by σ(t) := inf{s ∈ T : s > t}. A set Tκ is defined as Tκ = T − {m} if
T has a left-scattered maximum, Tκ = T otherwise. A function is said to be rd-
continuous if it is continuous at right-dense points in T and its left-sided limits
exist at left-dense points in T. The set of rd-continuous functions is denoted by
Crd. The graininess function μ is defined by μ(t) := σ(t) − t. A function p : T → R

is regressive if 1 + μ(t)p(t) �= 0 holds for all t ∈ Tκ. The set of all regressive and
rd-continuous functions is denoted by R. If p ∈ R, we define the cylinder operator
ξμ : R → Crd and the exponential function ep : T → R by

ξμ(p)(t) := lim
s↘μ(t)

log(1 + p(t)s)
s

, ep(t, s) = exp
(∫ t

s

ξμ(p)(τ)Δτ

)
,

where t, s ∈ T. The function f is said to be positively regressive if f ∈ Crd and
1 + μ(t)f(t) > 0 holds for all t ∈ T. The set of all positively regressive functions is
denoted by R+. The range of function f is denoted by Imf . The real part of a
complex number z is denoted by Re(z). The function ξμ : R → Crd is defined by

ξμ(p)(t) := Re(ξμ(p)(t)) = lim
s↘μ(t)

log |1 + p(t)s|
s

. (2.1)

Now we consider the n-dimensional linear system

xΔ = A(t)x (2.2)

on a time scale T, where A(t) ∈ R(T, Rn×n) and μ(t) is bounded. Let ΦA(t, s)
denote the evolution operator of (2.2), i.e., ΦA(·, τ)ξ solve the initial value problem
(2.2), x(τ) = ξ, for τ ∈ T and ξ ∈ Rn. Since A is regressive, ΦA(t, s) is invertible
for any t, s ∈ T with Φ−1

A (t, s) = ΦA(s, t). Another linear dynamic equation

yΔ = B(t)y (2.3)

with (not necessarily regressive) B ∈ Crd(T, Rn×n) is said to be kinematically sim-
ilar to (2.2) on an interval J ⊂ T if there exists a function Λ ∈ C1

rd(J, Rn×n) with
the following properties:

(i) Λ(·) and Λ−1(·) are bounded as functions from J to Rn×n;

(ii) the identity ΛΔ(t) = A(t)Λ(t) − Λ(σ(t))B(t) holds on Jκ.

https://doi.org/10.1017/prm.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.10


Is the Sacker–Sell type spectrum equal to the contractible set? 357

A function Λ : J → Rn×n with these properties is called Lyapunov transforma-
tion function and the transformation x = Λy is called Lyapunov transformation. It
is known that the corresponding linear change of variables x = Λ(t)y transforms
(2.2) into (2.3).

Remark 2.1. Kinematical similarity defines an equivalence relation on the set of all
linear homogeneous dynamic equation in Rn. Moreover, the regressivity is preserved
under kinematic similarity on any time scale [2].

An invariant projector of (2.2) is defined to be a function P : T → Rn×n of
projections P (t), t ∈ T such that

P (t)ΦA(t, s) = ΦA(t, s)P (s) for t, s ∈ T.

Definition 2.2 [39]. For γ ∈ R we shall say that (2.2) admits an exponential
dichotomy with growth rate γ (γ-ED) if there exists an invariant projector P :
T → Rn×n and constants K � 1 and α > 0 such that for t, s ∈ T, the dichotomy
estimates

‖ΦA(t, s)P (s)‖ � K e(γ−α)(t−s), t � s,

‖ΦA(t, s)(I − P (s))‖ � K e(γ+α)(t−s), t � s,

hold, where I is the identity matrix.

Obviously, one can see that if system (2.2) admits γ-ED and kinematical similar
to system (2.3), then system (2.3) also admits γ-ED.

Definition 2.3. The dichotomy spectrum of system (2.2) is the set

Σ(A) = {γ ∈ R : xΔ = A(t)x admits no γ-ED}.
Remark 2.4. If two systems are kinematically similar, then they have the same
dichotomy spectrum.

Definition 2.5. System (2.2) is contracted to the compact set F ⊆ R if for
any δ > 0, there exist functions Ci(t) ∈ Crd(T, R) (i = 1, 2, . . . , n) and B(t) ∈
Crd(T, Rn×n) satisfying

‖B‖ � δ,
n⋃

i=1

Im Ci(t) ⊆ F,

such that system (2.2) is kinematically similar to the system

xΔ(t) = [diag(C1(t), . . . , Cn(t)) + B(t)]x(t).

Definition 2.6. A set F is called the contractible set of system (2.2) if F ⊆ R

satisfying

(i) system (2.2) is contracted to F ;

(ii) if system (2.2) is contracted to F1, then F ⊆ F1.
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3. A counterexample and the new definition of contractibility

From the results in [24], we know that for linear differential systems, the Sacker–Sell
spectrum and the contractible set are the same. However, we claim that this is
questionable for the linear difference equations. A counterexample is given. In what
follows, we show, by a counterexample, that the contractible set may not be equal
to dichotomy spectrum for the difference equations.

Counterexample 1: Consider the 1-dimensional discrete system (seen as time
scale T = Z)

Δx = a(t)x (3.1)

where

a(t) =

{
e − 1, t � 0
e−1 − 1, t � 0.

(3.2)

A straightforward calculation leads to

Φa(t, s) = esgn(t−s)·(sgn(t)·t−sgn(s)·s),

where

sgn(t) =

⎧⎪⎨⎪⎩
1, t > 0
0, t = 0
−1, t < 0.

Then for any γ > 1, there exists a constant α satisfying γ − 1 > α > 0, such that

|Φa(t, s)| = esgn(t)·t−sgn(s)·s � e(γ−α)(t−s), for t ∈ [s,+∞)T,

which implies system (3.1) admits γ-ED if γ > 1. In a similar way, we can prove that
system (3.1) admits γ-ED if γ < −1. For any γ ∈ [−1, 1], it can be easily verified
that there are no K � 1, α > 0, such that

|Φa(t, 0)| = et � K e(γ−α)t or |Φa(−t, 0)| = |Φ−1
a (0,−t)|

= et � K e−(γ+α)t for all t � 0.

Therefore, we have Σ(a) = [−1, 1]. On the other hand, since (3.1) is a diagonal sys-
tem, we see that the contractible set of system (3.1) is {e − 1, e−1 − 1}. Therefore,
we conclude, in this example, that the contractible set is not equal to the dichotomy
spectrum. Furthermore, there is no bijection between the dichotomy spectrum and
the contractible set of this system.

On the other hand, system (3.1) can be written as

x(n + 1) =

{
ex(n) n � 0
e−1x(n) n < 0.

(3.3)

The Sacker–Sell spectrum (definition 2.2, [15]) of system (3.3) is [e−1, e]. Obviously,
system (3.3) is almost reducible (definition 1.2, [15]) to itself. Therefore, system
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(3.3) is contracted (definition 1.3, [15]) to the compact set {e−1, e}. Then the
contractible set (definition 1.4, [15]) of system (3.3) is the subset of {e−1, e}. This
contradicts to the result (theorem 2.4, [15], saying, the Sacker–Sell spectrum of
system (3.3) is the contractible set). Therefore, their assertion is questionable.

Remark 3.1. Note that proposition 5 in [15] plays an important role in prov-
ing theorem 2.4 in [15]. We now show that there is a fatal error in the proof of
proposition 5 in [15]. For the sake of clarity, we recall proposition 5 in [15] and its
proof:

“proposition 5 in [15]: If the linear system

x(n + 1) = A(n)x(n)

satisfies (P1)–(P2) and can be contracted to a compact set E ⊂ (0,+∞), then
Σ(A) ⊆ E.

Proof of proposition 5 in [15]: Let us choose λ /∈ E and notice that the com-
pactness of E allows to define α = infx∈E |λ − x| > 0. By using definition 1.4, we
have that the system x(n + 1) = A(n)x(n) is kinematically similar to

y(n + 1) = Diag(C1(n), · · · , Cd(n)){I + B(n)}y(n),

where Ci(n) ∈ E for any n ∈ Z and sup
n∈Z

‖B(n)‖ < δ/‖C‖. Now, by lemma 3.1 we

know that x(n + 1) = λ−1A(n)x(n) is δ-kinematically similar to

y(n + 1) =
1
λ

Diag(C1(n), · · · , Cd(n)){I + B(n)}y(n).

Since Ci(n) ∈ E for any n ∈ Z and i = 1, · · · , d, without loss of generality, we can
assume that

Ci(n) < λ if i = 1, · · · ,m,

Ci(n) > λ if i = m + 1, · · · , d.
(3.4)

· · · · · · ”
We claim that the above assumption (3.4) is false!

For continuous systems, it is true to assume that Ci(t) < λ, i ∈ {1, · · · ,m} (resp.
Ci(t) > λ, i ∈ {m + 1, · · · , d}) for all t ∈ R. We illustrate this point by way of con-
tradiction. Suppose that there exists t1, t2 ∈ R such that Ci(t1) � λ and Ci(t2) � λ.
Notice that Ci(t) is continuous, t ∈ R, Ci(t) ∈ E, λ /∈ E. Then by intermediate
value theorem, there exist a ∈ [t1, t2] such that Ci(a) = λ /∈ E, which contradicts
Ci(t) ∈ E for all t ∈ R.

However, for discrete systems, the assumption (3.4) is false. We claim
that Ci(n) < λ, i ∈ {1, · · · ,m} (resp. Ci(n) > λ, i ∈ {m + 1, · · · , d}) does not hold
for all n ∈ Z. It is possible that there exist n1, n2 ∈ Z such that Ci(n1) < λ and
Ci(n2) > λ, because the value of Ci(n) is discontinuous in range space. For example,
we take Ci(n) = −1 for n � 0 and Ci(n) = 1 for n > 0. Let E = {−1, 1} and λ =
0 /∈ E. Obviously, E is a compact set and Ci(n) ∈ E for n ∈ Z. However, Ci(n) < λ
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for n � 0 and Ci(n) > λ for n > 0. Therefore, the assumption (3.4) is false. This is
the fatal error in the proof in [15].

Now we consider the 1-dimensional system

xΔ = a(t)x (3.5)

on time scale T = hZ, where h > 0, h �= e
e−1 and a(t) is defined by (3.2). Then the

evolution operator of (3.5) is given by

Φa(t, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + he − h)

t−s
h , t � s � 0,

(1 + he − h)
t
h (1 + h e−1 − h)

−s
h , t � 0 > s,

(1 + h e−1 − h)
t−s

h , 0 > t � s,

Φ−1
a (s, t), t < s.

(t, s ∈ hZ)

It can be easily verified that for any γ > λ1 = h−1 log(1 + he − h), there
exists α satisfying γ − λ1 > α > 0 such that |Φa(t, s)| � e(γ−α)(t−s) for all t ∈
[s,+∞)hZ, since 1 + he − h > |1 + h e−1 − h|. Similarly, we have that for any
γ < λ2 = h−1 log |1 + h e−1 − h|, there exists β satisfying λ2 − γ > β > 0 such that
|Φa(t, s)| � e(γ+β)(t−s) for all t ∈ (−∞, s]hZ. Therefore, Σ(a) ⊆ [λ2, λ1].

For any γ ∈ [λ2, λ1] and α > 0, we have

e(γ−α)h < eγh � eλ1h = 1 + he − h and e(γ+α)h > eλ2h = |1 + h e−1 − h|.
Then we get c = e(γ−α)h(1 + he − h)−1 < 1 and for any K � 1, there exists a
positive integer k such that Kck < 1, namely, K e(γ−α)kh < (1 + he − h)k, which
implies that

K e(γ−α)kh < |Φ(kh, 0)|.
Similarly, we have that for any K � 1, there exists a negative integer l < 0 such
that K e(γ+α)lh < |1 + h e−1 − h|l, which implies that

K e(γ+α)lh < |Φ(lh, 0)|.
Therefore, we obtain that for any γ ∈ [λ2, λ1], there are no K � 1, α > 0 such that

|Φa(t, s)| � K e(γ−α)(t−s) or |Φa(s, t)| � K e(γ+α)(s−t) for all t ∈ [s,+∞)hZ.

Hence, [λ2, λ1] ⊆ Σ(a) and then [λ2, λ1] = Σ(a). However, it can be seen that the
contractible set of system (3.5) is {e − 1, e−1 − 1}.

In fact, the counterexample shows that the contractible set could be different from
dichotomy spectrum on time scales established by Siegmund [39]. Furthermore, we
find that there is no bijection between them.

To counter this mismatch in expectation, we propose a new notion of contractible
set, named by generalized contractible set. For the convenience of research, we study
the relations between the dichotomy spectrum and the contractible set under the
framework on time scales. Suppose that S is a subset of R. Let 
(S) denote the
minimal closed interval which contains S. The notion of Δ-contractibility is defined
as follows.
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Definition 3.2 Δ-contractibility. System (2.2) is said to be Δ-contracted to the

set F =
n⋃

i=1


(Fi) ⊆ R if for any δ > 0, there exist functions ci(t) ∈ Crd(T, R) (i =

1, 2, . . . , n) and B(t) ∈ Crd(T, Rn×n) satisfying

‖B‖ � δ, Im ξμ(ci)(t) ⊆ Fi,

such that system (2.2) is kinematically similar to the system

xΔ(t) = [diag(c1(t), . . . , cn(t)) + B(t)]x(t),

where ξμ is defined by (2.1) and Im(ci) denotes the range of the function ci(t).

Remark 3.3. System (2.2) is said to be almost reducible to xΔ = C(t)x if for any
δ > 0, system (2.2) is kinematically similar to xΔ = (C(t) + B(t))x with ‖B‖ � δ.
Now we use the notion of almost reducibility to explain Δ-contractibility. If there
exist sets F1, F2, · · · , Fn ⊆ R such that system (2.2) is almost reducible to a diagonal
system

xΔ = diag(c1(t), . . . , cn(t))x

with Im ξμ(ci)(t) ⊆ Fi, then we say that system (2.2) is Δ-contracted to the set F =
n⋃

i=1


(Fi). In particular, for discrete systems, if there exist sets F1, F2, · · · , Fn ⊆ R

such that the system

x(k + 1) = A(k)x(k) (3.6)

is almost reducible to a diagonal system

x(k + 1) = diag(c1(k), . . . , cn(k))x(k)

with log |ci(k)| ∈ Fi for all k ∈ Z, then system (3.6) is Δ-contracted to the set

F =
n⋃

i=1


(Fi). In [15], the authors give a concept of contractibility. In their paper,

system (3.6) is contracted to the compact subset E ⊆ (0,+∞) if it is almost
reducible to a diagonal system

x(k + 1) = diag(c1(k), . . . , cn(k))x(k)

with ci(k) ∈ E for all k ∈ Z. In our paper, we study the relation between ci(k) and
the dichotomy spectrum established by Siegmund [39] (Sacker–Sell type spectrum).
However, the authors of [15] consider the Sacker–Sell spectrum.

Definition 3.4 Generalized contractible set. A set F is called the generalized
contractible set of system (2.2) if F ⊆ R satisfying

(i) system (2.2) is Δ-contracted to F ;

(ii) if system (2.2) is Δ-contracted to F1, then F ⊆ F1.
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4. Main results

The main purpose of this paper is to prove that the generalized contractible set
is equal to dichotomy spectrum. Our approach is based on roughness theorem and
Perron’s transformation. This section is divided into three subsections. In § 4.1,
we provide a time-scaled version of Perron’s transformation. In § 4.2, a new simple
method for roughness theory on time scales is provided which is different from
the method of using Lyapunov function or generalized Gröwall inequality [41–43].
In § 4.3, we prove that the generalized contractible set is exactly the dichotomy
spectrum and we provide an example to illustrate the effectiveness of our result.

4.1. Perron’s transformation

Theorem 4.1 Perron’s transformation. If A(t) is bounded, then system (2.2) is
kinematically similar to the system xΔ = B(t)x, where B(t) is an upper triangular
bounded matrix function and B ∈ R.

Proof. Let X(t) be a fundamental matrix of system (2.2). By QR decomposition,
we obtain a real orthogonal matrix U(t) (i.e., U(t)U(t)T = U(t)T U(t) = I holds for
all t ∈ T) and a real upper triangular matrix Y (t) such that

X(t) = U(t)Y (t).

Since X(t) is rd-continuously differentiable, it is easily seen that U(t) and Y (t) are
also. The change of variables x = U(t)y replaces the equation (2.2) by

yΔ = B(t)y,

where B = (Uσ)T AU − (Uσ)T UΔ. Then we have

I + μ(t)B(t) = I + μ(t)[(Uσ)T AU − (Uσ)T UΔ]

= (Uσ)T [I + μ(t)A]U + I − (Uσ)T
(
U + μ(t)UΔ

)
= (Uσ)T [I + μ(t)A]U + I − (Uσ)T Uσ = (Uσ)T [I + μ(t)A]U,

which implies that B ∈ R since A ∈ R. Since Y (t) is a fundamental matrix of the
transformed equation, B(t) = Y Δ(t)Y −1(t) is real upper triangular. Note that

UσBUT = A − UΔUT , UσBT (Uσ)T = UσUT AT − Uσ(UΔ)T . (4.1)

and

IΔ = (UUT )Δ = Uσ(UT )Δ + UΔUT = O. (4.2)

From (4.1) and (4.2), we have

Uσ[B + BT (Uσ)T U ]UT = UσBUT + UσBT (Uσ)T = A + UσUT AT . (4.3)

We introduce the norm defined by ‖A‖ := sup
x∈Rn

|Ax|/|x|. It is well known that

‖U‖ = 1 if U is an orthogonal matrix. Then, from (4.3), we have

‖B + BT (Uσ)T U‖ � ‖A + UσUT AT ‖ � ‖A‖ + ‖AT ‖. (4.4)
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We claim that AT is bounded. In fact, let ‖A‖∞ =
∑ |aij | and we obtain

‖A‖∞ = ‖AT ‖∞. Since Mn(R) is a finite dimensional linear space, there are
positive constants c1, c2, such that c1‖ · ‖ � ‖ · ‖∞ � c2‖ · ‖. Therefore, we get
‖B + BT (Uσ)T U‖ � (1 + c2)‖A‖

Suppose that B(t) is unbounded. Then there exists a sequence {tm|m ∈ N+},
such that ‖B(tm)‖ � m. Note that

‖B‖ = ‖(Uσ)T AU − (Uσ)T UΔ‖ � ‖A‖ + ‖UΔ‖ = ‖A‖ + ‖Uσ − U

μ(t)
‖ � ‖A‖ +

2
μ(t)

,

which implies that μ(tm) → 0 as m → +∞. Let

C(t) = (Uσ)T U − I = −(Uσ)T (Uσ − U).

Thus, ‖C(tm)‖ � ‖U(tm + μ(tm)) − U(tm)‖. Since U(t) is continuous, we have
‖C(tm)‖ → 0 as m → +∞. For any n × n matrix D = (dij), we have

n−1
∑
i,j

|dij |2 � ‖D‖2 �
∑
i,j

|dij |2.

This inequality can be found in the page 88 of [19]. Since B is upper triangular,
we have

(1 + c2)‖A‖ � ‖B + BT (Uσ)T U‖ = ‖B + BT + BT C‖ � ‖B + BT ‖ − ‖C‖‖B‖

�

⎛⎝n−1
∑
j,k

|bjk + bkj |2
⎞⎠

1
2

− ‖C‖‖B‖

�
(
n− 1

2 − ‖C‖
)
‖B‖.

Thus, (1 + c2)‖A(tm)‖ �
(
n− 1

2 − ‖C(tm)‖
)
‖B(tm)‖ � m

(
2n− 1

2 − ‖C(tm)‖
)
. Since

A(t) is bounded, let m → +∞ and we have the right side of the above inequality
unbounded, which leads to a contradiction. Therefore, B(t) is bounded. �

4.2. Roughness

Lemma 4.2. Let X(t) be a fundamental matrix of system (2.2). Then system (2.2)
admits γ-ED if and only if there exist a projection matrix Q (i.e., Q2 = Q) on Rn

and constants K � 1, α > 0 such that for any t, s ∈ T,

‖X(t)QX−1(s)‖ � K e(γ−α)(t−s), t � s,

‖X(t)(I − Q)X−1(s)‖ � K e(γ+α)(t−s), t � s.

Remark 4.3. Obviously, system (2.2) has an evolution operator ΦA(t, s) =
X(t)X−1(s). In the proof of sufficiency we construct the invariant projector
P (t) = X(t)QX−1(t) and for the necessary condition we let Q = X−1(τ)P (τ)X(τ).
The proof of lemma 4.2 is simple and we omit it.
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Lemma 4.4 Theorem 1, [26]. Let −p ∈ R+(T, R) and y ∈ R(T, R). Suppose that
p(t) � 0, y(t) � 0 and α > 0. Then

y(t) � α +
∣∣∣∣∫ t

s

y(τ)p(τ)Δτ

∣∣∣∣ , ∀t ∈ T

implies

y(t) �
{

αep(t, s), for t � s,
αe−p(t, s), for t � s.

Lemma 4.5 Corollary 4.12, [2]. Let equation (2.2) admit a γ-ED with K,α, and
projection Q with rank m � n. Then system (2.2) is kinematically similar to the
block diagonal system

yΔ =
(

B1(t)
B2(t)

)
y (4.5)

which has the following properties:

(a) B1(t) ∈ Rm×m and B2(t) ∈ R(n−m)×(n−m) for all t ∈ T;

(b) there exists a constant K � 1 such that the estimates

‖ΦB1(t, s)‖ � K e(γ−α)(t−s), t � s,

‖ΦB2(t, s)‖ � K e(γ+α)(t−s), t � s,

hold for t, s ∈ T.

Lemma 4.6. Let μ(t) be bounded and the upper bound of μ(t) is denoted by μ∗.
Suppose B(t) ∈ Crd(T, Rn×n) and equation (2.2) admits γ-ED with the constants
K,α and projection Q = O (reps. Q = I). If

δ = ‖B(t)‖ � δ1 (resp. δ2),

then system

yΔ = [A(t) + B(t)]y (4.6)

also admits γ-ED with the projection Q1 = O (resp. Q1 = I), where

δ1 = min{(μ∗K e|γ+α|μ∗
)−1, α(K e|γ+α|μ∗

)−1},
δ2 = min{(μ∗K e|γ−α|μ∗

)−1, α(K e|γ−α|μ∗
)−1}.

Proof. We only prove the case Q = O and the case Q = I can be proved in a
similar way. Let Φ(t, s) and Ψ(t, s) denote the evolution operators of systems
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(2.2) and (4.6), respectively. It can be seen that

‖Φ(t, s)‖ � K e(γ+α)(t−s), t � s.

For any y ∈ Rn, we have

Ψ(t, s)y = Φ(t, s)y +
∫ t

s

Φ(t, σ(τ))B(τ)Ψ(τ, s)yΔτ,

hence for t � s,

‖Ψ(t, s)y‖ � ‖Φ(t, s)y‖ + |
∫ t

s

‖Φ(t, σ(τ))‖ ‖B(τ)‖ ‖Ψ(τ, s)y‖Δτ |

� K e(γ+α)(t−s)‖y‖ + Kδ|
∫ t

s

‖Ψ(τ, s)y‖e(γ+α)(t−σ(τ))Δτ |.

Mutiplying both sides by e−(γ+α)t, we get

e−(γ+α)t‖Ψ(t, s)y‖ � K e−(γ+α)s‖y‖ + Kδ|
∫ t

s

‖Ψ(τ, s)y‖e−(γ+α)τ e−(γ+α)μ(τ)Δτ |

� K e−(γ+α)s‖y‖ + Kδ|
∫ t

s

‖Ψ(τ, s)y‖ e−(γ+α)τ e|γ+α|μ∗
Δτ |.

It can be seen that −Kδ e|γ+α|μ∗
is positively regressive if δ < [μ∗K e|γ+α|μ∗

]−1. By
lemma 4.4, for δ < [μ∗K e|γ+α|μ∗

]−1 we have

e−(γ+α)t‖Ψ(t, s)y‖ � K e−(γ+α)s‖y‖e−Kδe|γ+α|M (t, s).

It can be seen that the function ξ(v) = log(1 − vKδ e|γ+α|μ∗
)/v is decreasing with

respect to v. Thus,

e−(γ+α)t‖Ψ(t, s)y‖ � K e−(γ+α)s‖y‖ exp{−Kδ e|γ+α|μ∗
(t − s)}.

Mutiplyng both sides by e(γ+α)t, we get

‖Ψ(t, s)y‖ � K e(γ+α)(t−s)‖y‖ exp{−Kδ e|γ+α|μ∗
(t − s)}

� K‖y‖ exp{(γ + α − Kδ e|γ+α|μ∗
)(t − s)}, t � s.

Note that α1 = α − Kδ e|γ+α|μ∗
> 0 for δ < δ1 = min{[μ∗K e|γ+α|μ∗

]−1,
α[K e|γ+α|μ∗

]−1}, therefore system (4.6) admits γ-ED with projection Q1 = O if
δ < δ1. The other assertion can be proved in a similar way. �

Remark 4.7. If T = R, then μ∗ = 0, δ1 = δ2 = α/K, which are consis-
tent with lemma 4.6 in [25]. If T = Z, γ = 0, then μ∗ = 1, δ1 = δ2 =
min{K−1 e−α, αK−1 e−α}
Theorem 4.8 Roughness theorem. Assume that μ(t) is bounded, B(t) ∈
Crd(T, Rn×n) and system (2.2) admits γ-ED with the constants K,α and projec-
tion Q. Then there exists δ > 0 such that (4.6) admits γ-ED with projection Q1

similar to Q when ‖B(t)‖ � δ.
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Proof. Let k be the rank of Q. By lemma 4.5, system (2.2) is kinematically similar
to the block diagonal system (4.5) by a Lyapunov transformation x = J(t)y, where
B1(t) ∈ Rm×m, B2(t) ∈ R(n−m)×(n−m) for all t ∈ T, and there exists a constant
K0 � 1 such that the estimates

‖ΦB1(t, s)‖ � K0 e(γ−α)(t−s), t � s,

‖ΦB2(t, s)‖ � K0 e(γ+α)(t−s), t � s,
(4.7)

hold for t, s ∈ T. Let

B0(t) =
(

B1(t)
B2(t)

)
.

Note that

JΔ(t) = A(t)J(t) − J(σ(t))B0(t)

= [A(t) + B(t)]J(t) − J(σ(t))[B0(t) + J−1(σ(t))B(t)J(t)],

which implies that system (4.6) is kinematically similar to the system

zΔ(t) = [B0(t) + J−1(σ(t))B(t)J(t)]z. (4.8)

Let

D(t) = J−1(σ(t))B(t)J(t)

and

X = {H ∈ Crd(T, Rn×n) : ‖H‖ � ∞},
where ‖H‖ := sup

t∈T

‖H(t)‖. It can be seen that X is a Banach space with the norm

‖ · ‖. Let Ek = diag(Ik, O), where Ik is the identity matrix of order k. Consider a
matrix function H ∈ X , and the mapping T defined by

TH(t) =
∫ t

−∞
ΦB0(t, σ(s))Ek(I − H(σ(s)))D(s)(I + H(s))(I − Ek)ΦB0(s, t)Δs

−
∫ ∞

t

ΦB0(t, σ(s))(I − Ek)(I − H(σ(s)))D(s)(I + H(s))EkΦB0(s, t)Δs.

Now we show that TH ∈ X . It follows from (4.7) that

‖ΦB0(t, s)Ek‖ = ‖ΦB1(t, s)‖ � K0 e(γ−α)(t−s), t � s,

‖ΦB0(t, s)(I − Ek)‖ = ‖ΦB2(t, s)‖ � K0 e(γ+α)(t−s), t � s.

Thus we have

‖TH(t)‖ �
∫ t

−∞
K0 e(γ−α)(t−s) e−(γ−α)μ(s)(1 + ‖H‖)2‖D‖K0 e(γ+α)(s−t)Δs

+
∫ ∞

t

K0 e(γ+α)(t−s) e−(γ+α)μ(s)(1 + ‖H‖)2‖D‖K0 e(γ−α)(s−t)Δs
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= K2
0 (1 + ‖H‖)2‖D‖

×
(

e|γ−α|μ∗
∫ t

−∞
e2α(s−t)Δs + e|γ+α|μ∗

∫ ∞

t

e−2α(s−t)Δs

)
. (4.9)

Let us define the map ϕ : R → R+:

ϕ(γ) := lim
s↘μ(t)

eγs − 1
s

.

It can be verified that γ � ϕ(γ) � eγμ∗−1
μ∗ . Note that∫ t

−∞
e2α(s−t)Δs �

∫ t

−∞
e−2α(t−s) ds =

1
2α

(4.10)

and∫ ∞

t

e−2α(s−t)Δs =
∫ ∞

t

eϕ(−2α)(s, t)Δs =
e−2α(s−t)

ϕ(−2α)(s)

∣∣∣∣s=∞

s=t

� μ∗

1 − e−2αμ∗ . (4.11)

Therefore, TH(t) is bounded and TH ∈ X . Let

X0 =
{

H : H ∈ X , ‖H‖ � 1
2

}
,

then for any H1,H2 ∈ X0, we have

(I − H1(σ(t)))D(t)(I + H1(t)) − (I − H2(σ(t)))D(t)(I + H2(t))

= (H2(σ(t)) − H1(σ(t)))D(t) − D(t)(H2(t) − H1(t))

+ (H2(σ(t)) − H1(σ(t)))D(t)H2(t) + H1(σ(t))D(t)(H2(t) − H1(t)).

Thus,

‖TH1(t) − TH2(t)‖

= ‖
∫ t

−∞
ΦB0(t, σ(s))Ek[(I − H1(σ(s)))D(s)(I + H1(s))

− (I − H2(σ(s)))D(s)(I + H2(s))]

· (I − Ek)ΦB0(s, t)Δs −
∫ ∞

t

ΦB0(t, σ(s))(I − Ek)

× [(I − H1(σ(s)))D(s)(I + H1(s))

− (I − H2(σ(s)))D(s)(I + H2(s))]EkΦB0(s, t)Δs‖

= ‖
∫ t

−∞
ΦB0(t, σ(s))Ek[(H2(σ(t)) − H1(σ(t)))D(t) − D(t)(H2(t) − H1(t))

+ (H2(σ(t)) − H1(σ(t)))D(t)H2(t)

+ H1(σ(t))D(t)(H2(t) − H1(t))](I − Ek)ΦB0(s, t)Δs
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−
∫ ∞

t

ΦB0(t, σ(s))(I − Ek)[(H2(σ(t))

− H1(σ(t)))D(t) − D(t)(H2(t) − H1(t))

+ (H2(σ(t)) − H1(σ(t)))D(t)H2(t) + H1(σ(t))D(t)(H2(t)

− H1(t))]EkΦB0(s, t)Δs‖

� 3K2
0‖D‖ ‖H1 − H2‖

(
e|γ−α|μ∗

∫ t

−∞
e2α(s−t)Δs + e|γ+α|μ∗

∫ ∞

t

e−2α(s−t)Δs

)
.

(4.12)

Note that ‖D‖ � ‖J‖‖J−1‖‖B‖. It follows from (4.9), (4.10), (4.11) and (4.12) that
there exists a constant δ > 0, such that ‖B‖ < δ implies that

(i) TH ∈ X0, if H ∈ X0;

(ii) ‖TH1 − TH2‖ � 1
2‖H1 − H2‖, if H1,H2 ∈ X0.

Therefore, T is a contraction mapping. Note that X0 is a closed subspace of X , then
X0 is a Banach space with the norm ‖ · ‖. By the contraction mapping principle,
there exists a unique fixed point H ∈ X0 such that

H(t) =
∫ t

−∞
ΦB0(t, σ(s))Ek(I − H(σ(s)))D(s)(I + H(s))(I − Ek)ΦB0(s, t)Δs

−
∫ ∞

t

ΦB0(t, σ(s))(I − Ek)(I − H(σ(s)))D(s)(I + H(s))EkΦB0(s, t)Δs.

(4.13)

It can be seen that EkΦB0(t, s) = ΦB0(t, s)Ek and (I − Ek)ΦB0(t, s) =
ΦB0(t, s)(I − Ek) since

ΦB0(t, s) =
(

ΦB1(t, s)
ΦB2(t, s)

)
.

Therefore, EkH(t) = H(t)(I − Ek). Then we obtain

HΔ(t)

= B0(t)H(t) +
∫ t

−∞
ΦB0(σ(t), σ(s))Ek(I − H(σ(s)))D(s)(I + H(s))(I − Ek)

× (−ΦB0(s, σ(t)))B0(t)Δs

−
∫ ∞

t

ΦB0(σ(t), σ(s))(I − Ek)(I − H(σ(s)))D(s)(I + H(s))

× Ek(−ΦB0(s, σ(t)))B0(t)Δs

+ ΦB0(σ(t), σ(t))Ek(I − H(σ(t)))D(t)(I + H(t))(I − Ek)ΦB0(t, σ(t))

+ ΦB0(σ(t), σ(t))(I − Ek)(I − H(σ(t)))D(t)(I + H(t))EkΦB0(t, σ(t))
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= B0H(t) − H(σ(t))B0(t)

+
∫ σ(t)

t

ΦB0(σ(t), σ(s))Ek(I − H(σ(s)))D(s)(I + H(s))

× (I − Ek)ΦB0(s, σ(t))B0(t)Δs

+
∫ σ(t)

t

ΦB0(σ(t), σ(s))(I − Ek)(I − H(σ(s)))D(s)(I + H(s))

× EkΦB0(s, σ(t))B0(t)Δs

+ Ek(I − H(σ(t)))D(t)(I + H(t))(I − Ek)ΦB0(t, σ(t))

+ (I − Ek)(I − H(σ(t)))D(t)(I + H(t))EkΦB0(t, σ(t))

= B0H(t) − H(σ(t))B0(t) + [Ek(I − H(σ(t)))D(t)(I + H(t))(I − Ek)

+ (I − Ek)(I − H(σ(t)))D(t)(I + H(t))Ek]ΦB0(t, σ(t))(σ(t)B0(t) + I)

= B0H(t) − H(σ(t))B0(t) + Ek(I − H(σ(t)))D(t)(I + H(t))(I − Ek)

+ (I − Ek)(I − H(σ(t)))D(t)(I + H(t))Ek

= B0(t)H(t) − H(σ(t))B0(t) + EkD(t)(I + H(t))(I − Ek)

− EkH(σ(t))D(t)(I + H(t))(I − Ek)

+ (I − Ek)D(t)(I + H(t))Ek − (I − Ek)H(σ(t))D(t)(I + H(t))Ek

= B0(t)H(t) − H(σ(t))B0(t) + EkD(t)(I + H(t))(I − Ek)

− H(σ(t))(I − Ek)D(t)(I + H(t))(I − Ek)

+ (I − Ek)D(t)(I + H(t))Ek − H(σ(t))EkD(t)(I + H(t))Ek

= B0(t)(I + H(t)) − (I + H(σ(t)))B0(t) + EkD(t)(I + H(t))(I − Ek)

+ (I − Ek)D(t)(I + H(t))(I − Ek)

− (I + H(σ(t)))(I − Ek)D(t)(I + H(t))(I − Ek)

+ (I − Ek)D(t)(I + H(t))Ek + EkD(t)(I + H(t))Ek

− (I + H(σ(t)))EkD(t)(I + H(t))Ek

= B0(t)(I + H(t)) − (I + H(σ(t)))B0(t) + D(t)(I + H(t))

− (I + H(σ(t)))[(I − Ek)D(t)(I + H(t))(I − Ek) + EkD(t)(I + H(t))Ek].

Let

R(t) = I + H(t). (4.14)

Then ‖R‖ � 3
2 since ‖H‖ � 1

2 . For any t ∈ T and y ∈ Rn, y �= 0,

‖R(t)y‖ = ‖y + H(t)y‖ � ‖y‖ − ‖H(t)‖‖y‖ � ‖y‖ − 1
2
‖y‖ =

1
2
‖y‖.

It follows from ‖R(t)y‖ �= 0 that R(t) is invertible for any t ∈ T. Then we obtain

‖y‖ = ‖R(t)R−1(t)y‖ � 1
2
‖R−1(t)y‖,
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i.e., ‖R−1(t)y‖ � 2‖y‖. Therefore, ‖R−1(t)‖ � 2. Note that

RΔ(t) = HΔ(t) = [B0(t) + D(t)]R(t)

− R(σ(t))[B0(t) + (I − Ek)D(t)R(t)(I − Ek) + EkD(t)R(t)Ek],

which implies that system (4.8) is kinematically similar to the system

uΔ(t) = [B0(t) + (I − Ek)D(t)R(t)(I − Ek) + EkD(t)R(t)Ek]u. (4.15)

Hence, system (4.6) is kinematically similar to system (4.15). It follows from lemma
4.6 that system (4.15) admits γ-ED when ‖B‖ is sufficiently small and the rank
of projection is k. Then system (4.6) also admits γ-ED and the rank of projection
is k. �

4.3. Generalized contractibility

Lemma 4.9 Theorem 11, [39]. The dichotomy spectrum Σ(A) of system (2.2) is the
disjoint union of k closed intervals where 0 � k � n, namely,

Σ(A) =
k⋃

i=1

[ai, bi]

with −∞ � a1 � b1 < a2 � b2 < · · · < ak � bk � ∞.

Lemma 4.10. Assume that Σ(A) =
k⋃

i=1

[ai, bi] with a1 � b1 < a2 � b2 < · · · <

ak � bk, then there exist functions Bi(t) (i = 1, 2, . . . , k) such that Σ(Bi) = [ai, bi]
and system (2.2) is kinematically similar to the system

xΔ = diag(B1(t), · · · , Bk(t))x. (4.16)

Proof. Let γ ∈ (bk−1, ak), then system (2.2) admits γ-ED. It follows from lemma
4.5 that system (2.2) is kinematically similar to

xΔ
1 = A1(t)x1, xΔ

2 = A2(t)x2, (4.17)

where the first equation of (4.17) admits γ-ED with the invariant projector I and
the second equation of (4.17) admits γ-ED with the invariant projector O. By

lemma 4.9, we have Σ(A1) =
k−1⋃
i=1

[ai, bi], Σ(A2) = [ak, bk]. Let B0 = A1, Bk = A2,

then

Σ(B0) =
k−1⋃
i=1

[ai, bi], Σ(Bk) = [ak, bk].

The proof is completed by repeating the above steps. �
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Lemma 4.11 Theorem 5, [26]. Suppose that A(t) is bounded on T and let L =
sup
t∈T

‖A(t)‖. Then one has

‖ΦA(t, t0)x1 − ΦA(t, t0)x2‖ �
{
‖x1 − x2‖eL(t, t0), for t ∈ [t0,+∞)T,

‖x1 − x2‖e−L(t, t0), for t ∈ (−∞, t0]T,

where ΦA(t, t0) is the evolution operator of system (2.2).

Lemma 4.12. The following statements are true.

(a) If [c, d] ⊆ R − Σ(A), then system (2.2) admits c-ED and d-ED with the same
projector;

(b) If Σ(A) ⊆ [a, b] and λ > b (resp. λ < a), then system (2.2) admits λ-ED with
the projector I (resp. O) and constants K = 1, α > 0.

Proof. (a). For any λ ∈ [c, d], system (2.2) admits λ-ED, i.e., there exist constants
αλ > 0,Kλ � 1 and a projection Qλ such that

‖ΦA(t, s)Pλ(s)‖ � Kλ e(λ−αλ)(t−s),t � s,

‖ΦA(t, s)(I − Pλ(s))‖ � Kλ e(λ+αλ)(t−s),t � s,

where ΦA(t, s) is the evolution operator of system (2.2). Obviously, system (2.2) also
admits γ-ED with the projector Pλ when γ ∈ (λ − αλ, λ + αλ). Since the family of
open intervals {(λ − αλ, λ + αλ)|λ ∈ [c, d]} covers the interval [c, d]. By Heine–Borel
theorem, there are finite open intervals (λ1 − δλ1 , λ1 + δλ1), · · · , (λm − δλm

, λm +
δλm

) that cover the interval [c, d]. Suppose λ1 � λ2 � · · · � λm. Then (λi − δλi
, λi +

δλi
) ∩ (λi+1 − δλi+1 , λi+1 + δλi+1) �= ∅ (i = 1, 2 · · · ,m − 1). Therefore, Pλi

= Pλi+1

(i = 1, 2 · · · ,m − 1), which implies Pc = Pd.
(b). Let L = sup

t∈T

‖A(t)‖ and let M = max{L, λ}. According to lemma 4.11, for

any λ > b, we have

‖ΦA(t, s)x‖ = ‖ΦA(t, s)x − ΦA(t, s) · 0‖ � ‖x‖eL(t, s) � eL(t−s)‖x‖
� eM(t−s)‖x‖, t ∈ [s,+∞)T,

which implies that ‖ΦA(t, s)‖ � eM(t−s) for t ∈ [s,+∞)T. Thus, system (2.2) admits
M -ED with the projector I. Note that [λ,M ] ⊆ R − Σ(A). From the statement (a)
in this lemma, we have system (2.2) that admits γ-ED with the projector I. The
other assertion can be proved in a similar way. �

Lemma 4.13. Assume that C(t) = (cij(t)) ∈ Crd(T, Rn×n) is a bounded upper
triangular matrix-valued function (cij(t) = 0 if i > j) satisfying Σ(C) = [a, b], then

Σ(C) =
n⋃

i=1

Σ(cii).
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Proof. Let D(t) = diag(c11(t), c22(t), · · · , cnn(t)). Obviously, for any λ /∈
n⋃

i=1

Σ(cii),

the diagonal system

xΔ = D(t)x

admits λ-ED. From theorem 4.8, there exists δ > 0, such that the system

yΔ = [diag(c11(t), c22(t), · · · , cnn(t)) + B(t)]y

also admits λ-ED if sup
t∈T

‖B(t)‖ < δ, where B(t) ∈ Crd(T, Rn×n). Let sup
t∈T

‖C(t)‖ = L

and η = δ
2n2L . Taking the transformation x = diag(1, η, · · · , ηn−1)z, we obtain

zΔ = [diag(1, η, · · · , ηn−1)]−1xΔ

= [diag(1, η, · · · , ηn−1)]−1C(t)x

= [diag(1, η, · · · , ηn−1)]−1C(t)diag(1, η, · · · , ηn−1)z

=

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

c11(t)
c22(t)

. . .
cnn(t)

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝
0 ηc12(t) η2c13(t) · · · ηn−1c1n(t)

0 ηc23(t) · · · ηn−2c2n(t)
0 · · · ηn−3c3n(t)

. . .
...
0

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ z

Δ=[D(t) + B(t)]z

It is clear that ‖B(t)‖ < δ. Therefore, zΔ = [D(t) + B(t)]z admits λ-ED. Then the

system xΔ = C(t)x also admits λ-ED, which implies Σ(C) ⊆
n⋃

i=1

Σ(cii).

On the other hand, let λ /∈ Σ(C) = [a, b]. If λ > b, by lemma 4.12, the system
xΔ = C(t)x admits λ-ED with the projector I. Then there exist constants Kλ � 1,
αλ > 0 such that

‖ΦC(t, s)‖ � Kλ e(λ−αλ)(t−s), t ∈ [s,+∞).

It can be easily verified that

ΦC(t, s) =

⎛⎜⎜⎜⎝
ec11(t, s) ∗ · · · ∗

ec22(t, s) · · · ∗
. . .

...
ecnn

(t, s)

⎞⎟⎟⎟⎠
and |ecii

(t, s)| � ‖ΦC(t, s)‖, i = 1, 2, · · · , n. Therefore,

|ecii
(t, s)| � Kλe(λ−αλ)(t−s), t ∈ [s,+∞), i = 1, 2, · · · , n,
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which implies that the system xΔ
i = ciixi admits λ-ED for any i ∈ {1, 2, · · · , n}.

Thus, λ /∈
n⋃

i=1

Σ(cii). In a similar way, we can prove that λ /∈
n⋃

i=1

Σ(cii) if λ < a.

Therefore,
n⋃

i=1

Σ(cii) ⊆ Σ(C). In conclusion, we have Σ(C) =
n⋃

i=1

Σ(cii). The proof

is completed. �

Lemma 4.14. If system (2.2) is Δ-contracted to F , then Σ(A) ⊆ F .

Proof. If λ /∈ F , then α = inf
x∈F

|λ − x| > 0 since F =
n⋃

i=1


(Fi), where Fi are closed

intervals (i = 1, 2, · · · , n). It follows from the definition of generalized contractible
set that there exist c1(t), c2(t), · · · , cn(t) ∈ Crd(T, R) and B(t) ∈ Crd(T, Rn×n), such
that sup

t∈T

‖B(t)‖ � δ, Im ξμ(ci) ⊆ Fi(i = 1, 2, · · · , n) and system (2.2) is kinemati-

cally similar to

yΔ = [diag(c1(t), c2(t), · · · , cn(t)) + B(t)]y. (4.18)

Without loss of generalization, we assume that


(Fi) < λ − α, (i = 1, 2, · · · , k),


(Fj) > λ + α, (j = k + 1, · · · , n),

which implies

ξμ(ci)(t) < λ − α, ∀t ∈ T (i = 1, 2, · · · , k),

ξμ(cj)(t) > λ + α, ∀t ∈ T (j = k + 1, · · · , n).

Therefore, we have

|eci
(t, s)| = e

∫ t
s

ξμ(ci)(s)Δs < e(λ−α)(t−s), (t � s)(i = 1, 2, · · · , k),

|ecj
(t, s)| = e

∫ t
s

ξμ(cj)(s)Δs < e(λ+α)(t−s), (t � s)(j = k + 1, · · · , n).

Since sup
t∈T

‖B(t)‖ � δ and δ can be sufficiently small, by roughness theorem, we

get system (4.18) admits λ-ED. Therefore, system (2.2) also admits λ-ED, which
implies λ /∈ Σ(A). The proof is completed. �

Theorem 4.15. Assume that A(t) is bounded and the generalized contractible set
of system (2.2) is denoted by F . Then F = Σ(A).

Proof. The proof is divided into several parts. Firstly, we prove that F ⊆ Σ(A).

Part 1: System (2.2) is kinematically similar to an upper triangular system.

Suppose Σ(A) =
k⋃

i=1

[ai, bi](1 � k � n), a1 � b1 < a2 � b2 < · · · < ak � bk. From

lemma 4.10, system (2.2) is kinematically similar to system (4.16), where Bi(t)(i =
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1, 2, · · · , k) are bounded rd-continuous functions and Σ(Bi) = [ai, bi]. Using Per-
ron’s transformation, the system

xΔ
i = Bi(t)xi (4.19)

is kinematically similar to the ni × ni upper triangular system

yΔ
i = Di(t)yi, (4.20)

where Σ(Di) = [ai, bi]. Let Di(t) = (d(i)
ij (t)). From lemma 4.13,

ni⋃
r=1

Σ(d(i)
rr ) = [ai, bi].

Then, by lemma 4.12, for any δ > 0, the system

uΔ = d(i)
rr (t)u

admits (bi + δ)-ED with projector I and (ai − δ)-ED with projector O. In conse-
quence, there exist constants K = 1, α > 0, such that

|e
d
(i)
rr

(t, s)| � e(bi+δ−α)(t−s), for t ∈ [s,+∞)T,

|e
d
(i)
rr

(t, s)| � e(ai−δ+α)(t−s), for t ∈ (−∞, s]T.
(4.21)

Part 2: We are going to construct a strictly increasing and unbounded sequence
{t(ir)p }+∞

p=0 such that for any constant M > exp{(bi + 1 − ai + δ)(1 + μ∗)}, the
estimate

M−1 � e−
∫ t

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t, t0)| � M (4.22)

holds for all t ∈ [t0,+∞)T, where hi, gi : [t0,+∞)T → R is defined by:

hi(t) =

{
ai if t ∈ [t(ir)j , t

(ir)
j+1)T,

bi if t ∈ [t(ir)j+1, t
(ir)
j+2)T,

(j = 0, 2, 4, · · · )

and

gi(t) =

{
−δ if t ∈ [t(ir)j , t

(ir)
j+1)T,

δ if t ∈ [t(ir)j+1, t
(ir)
j+2)T.

(j = 0, 2, 4, · · · )

In what follows, we denote t
(ir)
p by tp (p ∈ N0) if there is no ambiguity.

Interchanging t by s in the second inequality of (4.21), we obtain{
e−(bi+δ)(t−s)|e

d
(i)
rr

(t, s)| � e−α(t−s), t ∈ [t0,+∞)T,

e−(ai−δ)(t−s)|e
d
(i)
rr

(t, s)| � eα(t−s), t ∈ [t0,+∞)T.
(4.23)

Let

U(t, t0) = e−(ai−δ)(t−t0)|e
d
(i)
rr

(t, t0)|, V (t, t0) = e−(bi+δ)(t−t0)|e
d
(i)
rr

(t, t0)|.
Therefore, by (4.23), we have{

V (t, s) � e−α(t−s), t ∈ [t0,+∞)T,

U(t, s) � eα(t−s), t ∈ [t0,+∞)T.
(4.24)
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It can be seen that U(t, s) � 1 and V (t, s) � 1 if t � s and for any fixed t0 ∈ T,
U(t, t0) is unbounded on [t0,+∞)T since α > 0. Moreover, V (t, t0) → 0 as t → +∞.
In consequence, there is t1 � t0 such that

M−1 < 1 � U(t, t0) � M (4.25)

for any t ∈ [t0, t1] and

U(σ(t1), t0) � M. (4.26)

Meanwhile, we assert that t1 − t0 > 1. In fact, one can see that

U(t, s) � e(bi+1−ai+δ)(t−s), V (t, s) � e(bi+1−bi−δ)(t−s) for t � s

since Σ(d(i)
rr ) ⊆ [ai, bi] and |e

d
(i)
rr

(t, s)| � e(bi+1)(t−s) for t � s. From (4.26), we get

M � e(bi+1−ai+δ)(σ(t1)−t0),

which implies that

σ(t1) − t0 � ln M

bi + 1 − ai + δ
> 1 + μ∗

since M > exp{(bi + 1 − ai + δ)(1 + μ∗)}, and then t1 − t0 > 1.
On the other hand, the function U(t1, t0)V (t, t1) is convergent to zero as t → +∞.

Then, there exists t2 > t1 such that

U(t1, t0)V (σ(t2), t1) � M−1

and

U(t1, t0)V (t, t1) � M−1 for any t ∈ [t1, t2]T.

Combined with the first inequality of (4.24) and (4.25), we have

M−1 � U(t1, t0)V (t, t1) � M for any t ∈ [t1, t2]T. (4.27)

If t ∈ [t1, t2]T, by the definition of hi(t) and gi(t), we have

e−
∫ t

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t, t0)|

= e−(
∫ t1

t0
+
∫ t

t1
)(hi(τ)+gi(τ))Δτ |e

d
(i)
rr

(t, t1)||ed
(i)
rr

(t1, t0)|
= e−(ai−δ)(t1−t0)|e

d
(i)
rr

(t1, t0)|
· e−(bi+δ)(t−t1)|e

d
(i)
rr

(t, t1)| = U(t1, t0)V (t, t1).

Combined with (4.27), equation (4.22) is verified for any t ∈ [t0, t2]T. As inductive
hypothesis, we assume that there are 2m + 1 numbers t0 < t1 < · · · < t2m−1 < t2m
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such that

e−
∫ σ(t2m)

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(σ(t2m), t0)| � M−1 (4.28)

and

M−1 � e−
∫ t

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t, t0)| � M for any t ∈ [t2m−1, t2m].

Using the second inequality of (4.24), we have that

e−
∫ t2m

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t2m, t0)|U(t, t2m) (4.29)

is unbounded on [t2m,+∞)T. Then, there exists t2m+1 � t2m such that this product
is less than M for any t ∈ [t2m, t2m+1] and

e−
∫ t2m

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t2m, t0)|U(σ(t2m+1), t2m) � M. (4.30)

In addition, it follows from the inductive hypothesis and U(t, t2m) � 1 (t � t2m)
that

M−1 � e
−
∫ t2m

t0

hi(τ) + gi(τ)Δτ
|e

d
(i)
rr

(t2m, t0)|U(t, t2m) � M for any t ∈ [t2m, t2m+1]T.

Moreover, by (4.31) and (4.30), it is not difficult to verify that t2m+1 − t2m > 1.
Finally, we have that

e
−
∫ t2m

t0

hi(τ) + gi(τ)Δτ
|e

d
(i)
rr

(t2m, t0)|U(t2m+1, t2m)V (t, t2m+1)

converges to zero as t → +∞. Then there exists t2m+2 such that the product above
is greater than M−1 when t ∈ [t2m+1, t2m+2]. Since V (t, t2m+1) � 1 for t � t2m+1,
the product above is less than M . It can be easily verified that

e−
∫ t

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t, t0)| = e−
∫ t2m

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t2m, t0)|U(t, t2m)

for t ∈ [t2m, t2m+1] and

e−
∫ t

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t, t0)|

= e−
∫ t2m

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t2m, t0)|U(t2m+1, t2m)V (t, t2m+1)

for t ∈ [t2m+1, t2m+2]. This proves (4.22) and tp → +∞ as p → +∞.
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Part 3: In a similar way, we can define hi(t) and gi(t) on (−∞, t0] satisfying

M−1 � e−
∫ t

t0
hi(τ)+gi(τ)Δτ |e

d
(i)
rr

(t, t0)| � M.

Since hi(t) and gi(t) are sectionally continuous on T. Then there exist continuous
functions ĥi(t) and ĝi(t) satisfying

ai � ĥi(t) � bi, −δ � ĝi(t) � δ

and ∫ +∞

−∞
|(ĥi(τ) + ĝi(τ)) − (hi(τ) + gi(τ))|Δτ � 1.

Thus, we have

(eM)−1 � e−
∫ t

t0
ĥi(τ)+ĝi(τ)Δτ |e

d
(i)
rr

(t, t0)| � eM, t ∈ T.

Let Sir(t) = e−
∫ t

t0
ĥi(τ)+ĝi(τ)Δτ · e

d
(i)
rr

(t, t0) and

Li(t) = diag (Si1(t), Si2(t), · · · , Sini
(t)) .

It can be seen that ‖Li(t)‖ � eM and ‖L−1
i (t)‖ � eM for any t ∈ T and system

(4.20) is kinematically similar to

zΔ
i = Λi(t)zi (4.31)

with yi = Li(t)zi, where Λi(t) = L−1(σ(t))Di(t)L(t) − L−1(σ(t))LΔ(t) is a ni × ni

matrix whose rj-coefficient is defined by

{Λi(t)}rj =

⎧⎪⎨⎪⎩
d
(i)
rr S−1

ir (σ(t))Sir(t) − S−1
ir (σ(t))SΔ

ir(t) if r = j,

d
(i)
rj S−1

ir (σ(t))Sij(t) if 1 � r < j � ni,

0 others.

A straightforward calculation leads to

{Λi(t)}rj = d
(i)
rj S−1

ir (σ(t))Sij(t) = d
(i)
rj

·
eμ(t)(ĥi(t)+ĝi(t))e

d
(i)
jj �d

(i)
rr

(t, t0)

1 + μ(t)d(i)
rr

, (r � j)

S−1
ir (σ(t))SΔ

ir(t) = S−1
ir (σ(t)) lim

s↘μ(t)

Sir(t + s) − Sir(t)
s

= lim
s↘μ(t)

(
1 − es(ĥi(t)+ĝi(t))

1 + sd
(i)
rr (t)

)
· s−1,

and

{Λi(t)}rr = d(i)
rr S−1

ir (σ(t))Sir(t) − S−1
ir (σ(t))SΔ

ir(t) = lim
s↘μ(t)

es(ĥi(t)+ĝi(t)) − 1
s

.

(4.32)
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Since (eM)−1 � Sir(t) � eM and A(t) is bounded, we obtain d
(i)
rr is bounded and

d
(i)
rj S−1

ir (σ(t))Sij(t) is bounded, i.e., {Λi(t)}rj is bounded if r < j.
We define the η-transformation

zi(t) = diag(1, η, · · · , ηni−1)wi(t).

It can be seen that (4.31) and (4.20) are kinematically similar to

wΔ
i = Γi(t)wi,

where the rj-coefficient of Γ(t) is

{Γi(t)}rj =

⎧⎪⎨⎪⎩
{Λi(t)}rj if r = j,

ηj−r{Λi(t)}rj if 1 � r < j � ni,

0 others.

Observe that Γi(t) can be written as

Γi(t) = diag({Λi(t)}11, {Λi(t)}22, · · · , {Λi(t)}nini
) + Wi(t),

where the rj-coefficient of Wi(t) is defined by

{Wi(t)}rj =

{
ηj−r{Λi(t)}rj if 1 � r < j � ni,

0 others.

Since {Λi(t)}rj is bounded if r < j, we obtain that ‖Wi(t)‖ → 0 as η → 0. On the
other hand, it follows from (4.32) that

ξμ({Λi(t)}rr) = Re
(

lim
s↘μ(t)

log(1 + s{Λi(t)}rr)
s

)
= Re

(
ĥi(t) + ĝi(t)

)
∈ (ai − δ, bi + δ).

Therefore, it is clear that system (2.2) is Δ-contracted to the set

Gδ =
k⋃

i=1

(ai − δ, bi + δ) for any δ > 0. Since the constant δ can be sufficiently

small and Gδ → Σ(A) as δ → 0, we have F ⊆ Σ(A), where F is the generalized
contractible set of (2.2).

On the other hand, by the definition of generalized contractible set and
lemma 4.14, we have Σ(A) ⊆ F . In conclusion, we have F = Σ(A). The proof is
completed. �

Example 4.16. Let us consider the system mentioned in the counterexample. Let
F denote the generalized contractible set of system (3.1). Obviously,

ξμ(e − 1) = log |1 + e − 1| = 1, ξμ(e−1 − 1) = log |1 + e−1 − 1| = −1, F = [−1, 1].

We know that the dichotomy spectrum of system (3.1) is [−1, 1], which supports
our result.
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13 Á. Castañeda and N. Jara. A note on the differentiability of Palmer’s topological equivalence
for discrete systems. Preprint https://arxiv.org/pdf/2104.14592.pdf.
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16 A. Castañeda and G. Robledo. Dichotomy spectrum and almost topological conjugacy
on nonautonomous unbounded difference systems. Discrete Contin. Dyn. Syst. 38 (2018),
2287–2304.

17 X. Chang, J. Zhang and J. Qin. Robustness of nonuniform (μ, ν)-dichotomies in Banach
spaces. J. Math. Anal. Appl. 387 (2012), 582–594.

https://doi.org/10.1017/prm.2023.10 Published online by Cambridge University Press

https://arxiv.org/pdf/2104.14592.pdf
https://arxiv.org/abs/1808.07568
https://doi.org/10.1017/prm.2023.10


380 M. Wu and Y.-H. Xia

18 S. N. Chow and H. Leiva. Existence and roughness of the exponential dichotomy for skew-
product semiflows in Banach spaces. J. Differ. Equ. 120 (1995), 429–477.

19 W. A. Coppel. Dichotomy in stability theory, Lect. Notes Math., vol. 629 (New York/Berlin:
Springer-Verlag, 1978).

20 S. Hilger. Analysis on measure chains – a unified approach to continuous and discrete
calculus. Res. Math. 18 (1990), 18–56.

21 I. Huerta. Linearization of a nonautonomous unbounded system with nonuniform contrac-
tion: a spectral approach. Discrete Contin. Dyn. Syst. 40 (2020), 5571–5590.

22 L. Jiang. Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl.
315 (2006), 474–490.

23 L. Jiang. Strongly topological linearization with generalized exponential dichotomy. Non-
linear Anal. TMA 67 (2007), 1102–1110.

24 F. Lin. Spectrum sets and contractible sets of linear differential equations. Chin. Ann.
Math. Ser. A 11 (1990), 111–120 (Chinese).

25 F. Lin. Exponential dichotomy on linear system (Hefei: Anhui University Press, 1999).

26 X. Lin. A note on Gronwall’s inequality on time scales. Abstr. Appl. Anal. 2014
(2014), 1–4.
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