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For linear differential systems, the Sacker—Sell spectrum (dichotomy spectrum) and
the contractible set are the same. However, we claim that this is not true for the
linear difference equations. A counterexample is given. For the convenience of
research, we study the relations between the dichotomy spectrum and the
contractible set under the framework on time scales. In fact, by a counterexample,
we show that the contractible set could be different from dichotomy spectrum on
time scales established by Siegmund [J. Comput. Appl. Math., 2002]. Furthermore,
we find that there is no bijection between them. In particular, for the linear
difference equations, the contractible set is not equal to the dichotomy spectrum. To
counter this mismatch, we propose a new notion called generalized contractible set
and we prove that the generalized contractible set is exactly the dichotomy
spectrum. Our approach is based on roughness theory and Perron’s transformation.
In this paper, a new method for roughness theory on time scales is provided.
Moreover, we provide a time-scaled version of the Perron’s transformation. However,
the standard argument is invalid for Perron’s transformation. Thus, some novel
techniques should be employed to deal with this problem. Finally, an example is
given to verify the theoretical results.
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1. Introduction
1.1. History

The well-known notion of exponential dichotomy introduced by Perron [35]
extends the concept of hyperbolicity from autonomous linear systems to nonau-
tonomous linear systems and plays a crucial role in the study of the dynamical
behaviour of nonautonomous dynamical systems, such as stable and unstable invari-
ant manifolds as well as linearization theory. Since the concept was proposed by
Perron, exponential dichotomy together with its variants and extensions has been
extensively studied [3-8, 11, 13, 14, 17, 19, 22, 23, 25, 28-30, 38].
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Based on the study of exponential dichotomy, the well-known Sacker—Sell spec-
trum was introduced by Sacker and Sell [37] for skew-product flows on vector
bundles with compact base and it plays an important role in describing the diag-
onal term. In fact, Bylov [10] introduced the concept of almost reducibility and
proved that any linear system can be almost reducibility to diagonal system. Later,
Lin [24] improved the Bylov’s work and proved that the contractible set is equal
to the Sacker—Sell spectrum of the linear system. More specifically, Lin proved that
the diagonal terms are contained in the Sacker—Sell spectrum and this spectrum is
the minimal compact set where the diagonal coefficients belong to. The main ideas
of Lin’s work are based on the roughness theory of classical exponential dichotomy
and Perron’s transformation [35] by which a linear system can be reduced to an
upper triangular system. Later, Cataneda and Huerta [12] considered Lin’s work
in a nonuniform framework. Cataneda and Robledo [15] extended Lin’s work to
difference systems. We mention that the contractible set is a powerful tool to study
the linearization with unbounded perturbations (see [16, 21]).

Recently, Potzsche [32, 33] introduced the concept of the exponential dichotomy
on time scales. The theory of time scale or measure chain can be traced back
to Hilger [20], which allows a unified treatment of continuous systems, discrete
systems and hybrid systems. With such a framework, many properties and appli-
cations of exponential dichotomies on time scales can be studied in a certain range.
For instance, Aulbach and Potzsche [2] studied the reducibility of linear dynamic
equation on measure chains. Potzsche [34], Xia et al. [40] studied the linearization
of dynamic equations on measure chains and time scales, respectively. Siegmund
[39] considered the exponential dichotomy which is a specialized version of the
one studied in [32, 33] and introduced a new notion of spectrum for this specific
exponential dichotomy. Another important property of exponential dichotomy is its
roughness under perturbations. Roughness of exponential dichotomy can be traced
back to Massera and Schéffer [27] and then it has been widely studied for contin-
uous or discrete systems [1, 18, 19, 25, 31, 36] and the systems on general time
scales [41-43].

1.2. Motivations and novelties

Motivated by the works of Lin [24], Huerta [21], Castaneda and Robledo [16],
and Siegmund [39], in this paper, we consider the relationship between the con-
tractible set and the dichotomy spectrum studied in [39] on time scales. We show,
by a counterexample, that the contractible set may not only be different from the
dichotomy spectrum established by Siegmund [39], but also there is no bijection
between them. In particular, for the linear difference equations, the contractible set
is not equal to the dichotomy spectrum, which contradicts the results in [15]. Thus,
the counterexample also shows that the result of [15] is questionable. This is con-
trary to the expectation that the spectrum should be equal to the contractible set.
To counter this mismatch in expectation, we propose a new definition of generalized
contractible set and we prove that the generalized contractible set is exactly the
dichotomy spectrum. In particular, if T = R, the generalized contractible set is the
contractible set in [24] and the dichotomy spectrum is the Sacker—Sell spectrum. In
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other words, our result is consistent with the one studied in [24] when dynamical
system is reduced to the continuous case.

Our approach is based on roughness theorem and Perron’s transformation. In this
paper, a new simple method for roughness theory on time scales is provided which
is different from the method of using Lyapunov function or generalized Groéwall
inequality [41-43]. The advantages of this method are that the range of disturbance
is determined and the coefficient matrix function can be unbounded. The main steps
of this new method are listed as follows.

(i) Firstly, we prove that the roughness theorem holds for the system which
admits exponential dichotomy with the projection I or O;

(ii) Secondly, we show that the unperturbed system z® = A(t)z is kinematically
similar to a diagonal block system y® = diag(A;(t), A2(t))y, where its corre-
sponding subsystem y£ = A (t)y; (resp. y5 = Az(t)y2) admits exponential
dichotomy with the projection I (resp. O);

(iii) Lastly, we construct a Lyapunov transformation x = R(t)y by which the
perturbed system z® = (A(t) + B(t))x can be transformed into the sys-
tem y2 = diag(A;(t) + Bi(t), Aa(t) + Ba(t)). Moreover, sup ||B;(t)|| — 0 as

teT

sup || B|| — 0.
teT

However, the standard techniques to construct the Lyapunov transformation z =
R(t)y for the continuous cases are not valid for the dynamic equations on time
scales. In fact, it is more difficult to construct the matrix-valued function R(t) than
that the continuous case. Because the relation of kinematical similarity is more
complex than that in the continuous case and it is difficult to deal with the term
R(o(t)) occurred in the relation, where o is the forward jump operator. To see how
to overcome the difficulty, one can refer to (4.13) and (4.14).

Furthermore, in this paper, we provide a time-scaled version of the Perron’s
transformation. However, on time scales, the difficulty mentioned above still exists
in the discussion of Perron’s transformation. The standard arguments for Per-
ron’s transformation on R are not valid for the systems on time scales. In
fact, if we use the standard arguments, the transformation z = U(t)y trans-
forms system z® = A(t)z into y® = B(t)y, then it leads us to an inequality
that ||B(t) + BT () UT (a(t))U(t)|| < ||A(t) + AT()UT (o(t))U(t)||, where o is the
forward jump operator and A(t) is bounded. In particular, for the continuous
case T =R, ||B(t) + BT(t)| <||A(t) + AT(t)||. However, in order to prove the
boundedness of B(t) on time scales, we have to overcome the troublesome term
UT(o(t))U(t). Therefore, we employ some novel techniques to deal with this prob-
lem (see theorem 4.1). Finally, we include an example to illustrate the effectiveness
of our main result.

1.3. Organization of the paper

The rest of this paper is organized as follows. In §2, we introduce some notations
and definitions. Section 3 gives a counter example to state that the contractible
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set may not be equal to dichotomy spectrum and introduces the new definitions of
A-contractibility and generalized contractible set. In § 4, the main results of this
paper and an example are provided.

2. Preliminaries

For completeness, we briefly introduce some basic terminology and notations of
the calculus on time scales. More details can be found in the books [9, 20]. A time
scale T is a nonempty closed subset of R. Throughout this paper, we always assume
that a time scale T is unbounded to the right and left (two-sided time). The closed
interval on time scales is denoted by [-,-]r. The forward jump operator o : T — T
is defined by o(t) :=inf{s € T:s>t}. A set T" is defined as T* =T — {m} if
T has a left-scattered maximum, T* = T otherwise. A function is said to be rd-
continuous if it is continuous at right-dense points in T and its left-sided limits
exist at left-dense points in T. The set of rd-continuous functions is denoted by
Crq. The graininess function p is defined by pu(t) :=o(t) —¢t. A function p: T — R
is regressive if 1+ p(¢)p(t) # 0 holds for all ¢ € T*. The set of all regressive and
rd-continuous functions is denoted by R. If p € R, we define the cylinder operator
&, 1 R — Crq and the exponential function e, : T — R by

)= tim PO g e ([ i),

where ¢,s € T. The function f is said to be positively regressive if f € C.q and
1+ p(t)f(t) > 0 holds for all ¢ € T. The set of all positively regressive functions is
denoted by RT. The range of function f is denoted by Imf. The real part of a
complex number z is denoted by Re(z). The function Eu : R — Cpq is defined by

E()0) = Rel€, () (1) = tim PELEPOSL (2.1)

Now we consider the n-dimensional linear system
8 = A(t)x (2.2)

on a time scale T, where A(t) € R(T,R™ ") and u(t) is bounded. Let ®4(t,s)
denote the evolution operator of (2.2), i.e., ®4(-, 7)& solve the initial value problem
(2.2), z(1) =&, for 7 € T and £ € R™. Since A is regressive, ®4(t,s) is invertible
for any t,s € T with ®*(t,s) = ®4(s,t). Another linear dynamic equation

y* = B(t)y (2.3)

with (not necessarily regressive) B € C,q(T,R™"*™) is said to be kinematically sim-
ilar to (2.2) on an interval J C T if there exists a function A € C}!,(J,R"*") with
the following properties:

(i) A(-) and A=1(-) are bounded as functions from J to R"*";

(ii) the identity A®(t) = A(t)A(t) — A(o(t))B(t) holds on J*.
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A function A : J — R™*" with these properties is called Lyapunov transforma-
tion function and the transformation z = Ay is called Lyapunov transformation. It
is known that the corresponding linear change of variables x = A(t)y transforms
(2.2) into (2.3).

REMARK 2.1. Kinematical similarity defines an equivalence relation on the set of all
linear homogeneous dynamic equation in R™. Moreover, the regressivity is preserved
under kinematic similarity on any time scale [2].

An invariant projector of (2.2) is defined to be a function P :T — R™*™ of
projections P(t), t € T such that

P(t)Pa(t,s) = Pa(t,s)P(s) fort,seT.

DEFINITION 2.2 [39]. For v € R we shall say that (2.2) admits an exponential
dichotomy with growth rate v (y-ED) if there exists an invariant projector P :
T — R™™ ™ and constants K > 1 and o > 0 such that for t,s € T, the dichotomy
estimates

DA(t,s)P(s)]| < Ke'"™ o t>s

|| ( ) ) ( )” (’Y a)(t S) bl
Dy(t,s)(I —P(s))]| < Ke Y, t<s,
[®a(t,s)( () (rta)(i=e)

hold, where I is the identity matriz.

Obviously, one can see that if system (2.2) admits y-ED and kinematical similar
to system (2.3), then system (2.3) also admits y-ED.

DEFINITION 2.3. The dichotomy spectrum of system (2.2) is the set
Y(A) = {y € R:2® = A(t)x admits no v-ED}.

REMARK 2.4. If two systems are kinematically similar, then they have the same
dichotomy spectrum.

DEFINITION 2.5. System (2.2) is contracted to the compact set F CR if for
any 0 >0, there exist functions C;(t) € Crq(T,R) (i=1,2,...,n) and B(t) €
Cra(T, R™™ ™) satisfying

1Bl <5 Jmac)ck
=1

such that system (2.2) is kinematically similar to the system
(1) = [diag(C1 (1), ..., Cu(t) + B (t).

DEFINITION 2.6. A set F is called the contractible set of system (2.2) if F CR
satisfying

(i) system (2.2) is contracted to F;

(i) of system (2.2) is contracted to Fy, then F C F}.
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3. A counterexample and the new definition of contractibility

From the results in [24], we know that for linear differential systems, the Sacker—Sell
spectrum and the contractible set are the same. However, we claim that this is
questionable for the linear difference equations. A counterexample is given. In what
follows, we show, by a counterexample, that the contractible set may not be equal
to dichotomy spectrum for the difference equations.

Counterexample 1: Consider the 1-dimensional discrete system (seen as time

scale T = Z)
Az =a(t)x (3.1)
where
e—1 t>0
t) = ' - 3.2
CL( ) {611, t<0 ( )

A straightforward calculation leads to

(I)a(t, S) — esgn(tfs)-(sgn(t)~tfsgn(s)~s)

)

where
1, t>0
sgn(t) =40, t=0
—1, t<0O.

Then for any « > 1, there exists a constant « satisfying v — 1 > « > 0, such that
|Po(t,s)| = esen(t)t=sen(s)s  o(r=a)(t=s) = for ¢ € [s,4+00)T,

which implies system (3.1) admits 4-ED if v > 1. In a similar way, we can prove that
system (3.1) admits v-ED if v < —1. For any v € [—1, 1], it can be easily verified
that there are no K > 1,a > 0, such that

|a(t,0)] = e < K e or [@,(t,0)| = [@,7(0, 1)

a

=el € Ke (ot for all ¢ > 0.

Therefore, we have ¥(a) = [—1,1]. On the other hand, since (3.1) is a diagonal sys-
tem, we see that the contractible set of system (3.1) is {e — 1,e~! — 1}. Therefore,
we conclude, in this example, that the contractible set is not equal to the dichotomy
spectrum. Furthermore, there is no bijection between the dichotomy spectrum and
the contractible set of this system.

On the other hand, system (3.1) can be written as

ex(n) n =0

x(n—l—l):{ o

e 'z(n) n<O. (3:3)

The Sacker—Sell spectrum (definition 2.2, [15]) of system (3.3) is [e ™!, e]. Obviously,
system (3.3) is almost reducible (definition 1.2, [15]) to itself. Therefore, system
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(3.3) is contracted (definition 1.3, [15]) to the compact set {e~' e}. Then the
contractible set (definition 1.4, [15]) of system (3.3) is the subset of {e~!,e}. This
contradicts to the result (theorem 2.4, [15], saying, the Sacker—Sell spectrum of
system (3.3) is the contractible set). Therefore, their assertion is questionable.

REMARK 3.1. Note that proposition 5 in [15] plays an important role in prov-
ing theorem 2.4 in [15]. We now show that there is a fatal error in the proof of
proposition 5 in [15]. For the sake of clarity, we recall proposition 5 in [15] and its
proof:

“proposition 5 in [15]: If the linear system
z(n+1) = A(n)z(n)

satisfies (P1)—(P2) and can be contracted to a compact set E C (0,400), then
Y(A)CE.

Proof of proposition 5 in [15]: Let us choose A ¢ E and notice that the com-
pactness of E allows to define o = inf, e |\ — x| > 0. By using definition 1.4, we
have that the system z(n + 1) = A(n)x(n) is kinematically similar to

y(n+1) = Diag(Cy(n),- -+, Ca(n) {1 + B(n)}y(n),
where C;(n) € E for any n € Z and sup | B(n)|| < ¢§/||C||. Now, by lemma 3.1 we
neL

know that x(n + 1) = A=Y A(n)z(n) is é-kinematically similar to
1
y(n+1) = < Diag(Ci(n), -, Ca(m)){I + B(n)}y(n).

Since C;(n) € E for any n € Z and i = 1,--- ,d, without loss of generality, we can
assume that

Ci(n) <Xifi=1---,m,

e (3-4)
Ciln) >Xifi=m+1,--- .d.
We claim that the above assumption (3.4) is false!
For continuous systems, it is true to assume that C;(t) < A, 7 € {1,--- ,m} (resp.

Ci(t)y >N ie{m+1,---,d}) for all t € R. We illustrate this point by way of con-
tradiction. Suppose that there exists ¢, ta € R such that C;(t1) < X and C;(t2) > \.
Notice that C;(t) is continuous, t € R,C;(t) € E,\ ¢ E. Then by intermediate
value theorem, there exist a € [t1,t2] such that C;(a) = A ¢ E, which contradicts
Ci(t) € E for all t € R.

However, for discrete systems, the assumption (3.4) is false. We claim
that C;(n) < X, i € {1,--- ,m} (vesp. Ciy(n) > N\, i € {m+1,---,d}) does not hold
for all n € Z. Tt is possible that there exist ni,ns € Z such that C;(ny) < X\ and
Ci(n2) > A, because the value of C;(n) is discontinuous in range space. For example,
we take C;(n) = —1 for n <0 and C;(n) =1 for n > 0. Let E = {—1,1} and \ =
0 ¢ E. Obviously, E is a compact set and C;(n) € E for n € Z. However, C;(n) < A
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for n < 0 and C;(n) > A for n > 0. Therefore, the assumption (3.4) is false. This is
the fatal error in the proof in [15].

Now we consider the 1-dimensional system
2 = a(t)z (3.5)

on time scale T = hZ, where h > 0,h # —%5 and a(t) is defined by (3.2). Then the
evolution operator of (3.5) is given by

(14 he —h)7, t>s52>0,
14+he—h)i(l+he  —h)7, t>

Ba(t,s) = ¢ LThem MEAThem =)™, 8 20>8 0 g
(1+he ! —h)7F, 0>t>s,
D 1(s,t), t<s.

It can be easily verified that for any ~ > A\ =h tlog(l+ he—h), there
exists a satisfying 7 — A\; > a > 0 such that |®,(t,s)] < eV~ for all ¢ €
[s,+00)pz, since 1+ he—h > |1+ he ! —h|. Similarly, we have that for any
v <Xy =h"tlog|l+ he™! — h|, there exists 3 satisfying Ay — v > 3 > 0 such that
|y (t,5)| < eOFHAE=9) for all t € (—o0, s|pz. Therefore, ¥(a) C [Ag, A1].

For any v € [Aa, A1] and @ > 0, we have

O Wh ot Mt =1 4 he—h and 0TV S Mh — |1 4 et —h).

Then we get ¢ =e~"(1 +he —h)™' <1 and for any K > 1, there exists a
positive integer k such that Kc* < 1, namely, K e(V=®*" < (1 + he — h)*, which
implies that

K O =kh 1&(kh, 0)].

Similarly, we have that for any K > 1, there exists a negative integer [ < 0 such
that K e+t < |1 4+ he ! — b, which implies that

K O+l 15 (1R, 0)|.
Therefore, we obtain that for any v € [Aa, A1], there are no K > 1, > 0 such that
|®q (L, 5)] < K e or |®,(s,1)| < KT for all t € [s, +00)pz.

Hence, [A2, A\1] € X(a) and then [y, A\1] = X(a). However, it can be seen that the
contractible set of system (3.5) is {e — 1,e™! —1}.

In fact, the counterexample shows that the contractible set could be different from
dichotomy spectrum on time scales established by Siegmund [39]. Furthermore, we
find that there is no bijection between them.

To counter this mismatch in expectation, we propose a new notion of contractible
set, named by generalized contractible set. For the convenience of research, we study
the relations between the dichotomy spectrum and the contractible set under the
framework on time scales. Suppose that S is a subset of R. Let w(.S) denote the
minimal closed interval which contains S. The notion of A-contractibility is defined
as follows.
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DEFINITION 3.2 A-contractibility. System (2.2) is said to be A-contracted to the
set F' = O w(F;) CR if for any 6 > 0, there exist functions c¢;(t) € Crqa(T,R) (i =
1,2,... ,;LZI and B(t) € Cpq(T,R™*™) satisfying

Bl <6, Im&,(c;)(t) C F;
such that system (2.2) is kinematically similar to the system
22 (t) = [diag(cy (), ..., en(t)) + B(t)]z(t),
where €, is defined by (2.1) and Im(c;) denotes the range of the function c;(t).

REMARK 3.3. System (2.2) is said to be almost reducible to 2 = C(t)x if for any
§ > 0, system (2.2) is kinematically similar to 2 = (C(t) + B(t))z with || B|| < 6.
Now we use the notion of almost reducibility to explain A-contractibility. If there
exist sets Fy, Fo, -+ , F,, C R such that system (2.2) is almost reducible to a diagonal
system

2 = diag(ci(t), ..., cn(t))x
with Im €, (¢;)(t) C F;, then we say that system (2.2) is A-contracted to the set F' =
CJ w(F;). In particular, for discrete systems, if there exist sets Fy, Fy, -+, F,, CR
;Tllch that the system
x(k+1) = A(k)x(k) (3.6)
is almost reducible to a diagonal system
x(k+1) = diag(ci(k), ..., cn(k))x(k)

with log |c;(k)| € F; for all k € Z, then system (3.6) is A-contracted to the set
F = | w(F;). In [15], the authors give a concept of contractibility. In their paper,
i=1

system (3.6) is contracted to the compact subset E C (0,4o0c0) if it is almost
reducible to a diagonal system

x(k+ 1) = diag(ci(k), ..., cn(k))x(k)

with ¢;(k) € E for all k € Z. In our paper, we study the relation between ¢; (k) and
the dichotomy spectrum established by Siegmund [39] (Sacker—Sell type spectrum).
However, the authors of [15] consider the Sacker—Sell spectrum.

DEFINITION 3.4 Generalized contractible set. A set F is called the generalized
contractible set of system (2.2) if F C R satisfying

(i) system (2.2) is A-contracted to F;

(i) of system (2.2) is A-contracted to Fy, then F C Fy.
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4. Main results

The main purpose of this paper is to prove that the generalized contractible set
is equal to dichotomy spectrum. Our approach is based on roughness theorem and
Perron’s transformation. This section is divided into three subsections. In § 4.1,
we provide a time-scaled version of Perron’s transformation. In § 4.2, a new simple
method for roughness theory on time scales is provided which is different from
the method of using Lyapunov function or generalized Growall inequality [41-43].
In § 4.3, we prove that the generalized contractible set is exactly the dichotomy
spectrum and we provide an example to illustrate the effectiveness of our result.

4.1. Perron’s transformation

THEOREM 4.1 Perron’s transformation. If A(t) is bounded, then system (2.2) is
kinematically similar to the system x® = B(t)x, where B(t) is an upper triangular
bounded matriz function and B € R.

Proof. Let X (t) be a fundamental matrix of system (2.2). By QR decomposition,
we obtain a real orthogonal matrix U(t) (i.e., U(t)U(t)T = U(t)TU(t) = I holds for
all t € T) and a real upper triangular matrix Y (¢) such that

Since X (t) is rd-continuously differentiable, it is easily seen that U(¢) and Y (¢) are
also. The change of variables © = U(t)y replaces the equation (2.2) by

y* = B(t)y,
where B = (U°)T AU — (U?)TUA. Then we have
I+ u()B(t) = T+ p(O[(U°)T AU — (U7) U]
= U+ put) AU + 1 — (U (U + pt)U?)
— (UOYIIT + p() A + T — (U7)TU% = (U7 + () AT,

which implies that B € R since A € R. Since Y (¢) is a fundamental matrix of the
transformed equation, B(t) = Y2 (t)Y ~1(t) is real upper triangular. Note that

(
(

UBUT = A-UAUT, U°BT(U)T =U°UTAT —U(UA)T. (4.1)
and
A= wuhHr =vu(Uh” +U”uT =o0. (4.2)
From (4.1) and (4.2), we have
U°[B+ BT (U)TUIUT =U°BUT + U BT (U = A+UUTAT.  (4.3)
We introduce the norm defined by [|A| := sup |Az|/|z|. It is well known that
lU|| =1if U is an orthogonal matrix. Then, ?ffr; (4.3), we have

1B+ B (UT)TU| < A+ UTUTAT| < ||A] + [|AT]. (4.4)
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We claim that AT is bounded. In fact, let ||Alloc =3 |a;;| and we obtain
|Alle = ||AT||oo. Since M, (R) is a finite dimensional linear space, there are
positive constants ¢y, ce, such that ¢ - || < ||« || < c2f - || Therefore, we get
|B+ BT (U°)TU| < (14 c2)] A

Suppose that B(t) is unbounded. Then there exists a sequence {t,,|m € N4},
such that ||B(t,,)|| = m. Note that

ve -U 2
<Al + =,
OO

1Bl = 1(U*)T AU — (UO)T U2 < A+ U2 = (1A + |

which implies that p(t¢,,) — 0 as m — +oo. Let
ct)y=U)"v-1=—-U0"" U -U).

Thus, [|C(tm)|| < |U(tm + 1(tm)) — U(tm)||. Since U(t) is continuous, we have
|C(tm)]| — 0 as m — 4o00. For any n x n matrix D = (d;;), we have

ntY Cldi P < IDIP <Y |digl*.
i i

This inequality can be found in the page 88 of [19]. Since B is upper triangular,
we have

(L+c)Al = 1B+ BT(U)"U|| = |B+ B" + B*C|| > |B + BT|| - ||C|[|B]

Nl

> (7Y bk + b | = ICHIBI
ik

> (n=4 = |icll) 1B].

_1 _1 .
Thus, (14 ¢3)[[A(tn) | > (7% = 10t} I1B(tw) ]| = m (207 = [C (k)] ). Since
A(t) is bounded, let m — 400 and we have the right side of the above inequality
unbounded, which leads to a contradiction. Therefore, B(t) is bounded. t

4.2. Roughness

LEMMA 4.2. Let X(t) be a fundamental matrixz of system (2.2). Then system (2.2)
admits v-ED if and only if there exist a projection matriz Q (i.e., Q* = Q) on R™
and constants K > 1,a > 0 such that for any t,s € T,

IX(6)QXH(s)| S K™= ¢ >,

IX(6)( = QX (o) S KeOFU=) ¢ <5,
REMARK 4.3. Obviously, system (2.2) has an evolution operator ®4(t,s) =
X(#)X~1(s). In the proof of sufficiency we construct the invariant projector

P(t) = X(t)QX ~'(¢) and for the necessary condition we let Q = X ~1(7)P(7)X (7).
The proof of lemma 4.2 is simple and we omit it.
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LEMMA 4.4 Theorem 1, [26]. Let —p € RT(T,R) and y € R(T,R). Suppose that
p(t) > 0,y(t) >0 and a > 0. Then

y(t) <a+ . VteT

[ vwwnar

implies

aey(t, s) fort>s
< PA\"» =) ’
y(t) < {aep(t, s), fort<s.

LEMMA 4.5 Corollary 4.12, [2]. Let equation (2.2) admit a v-ED with K, «, and
projection @ with rank m < n. Then system (2.2) is kinematically similar to the
block diagonal system

y =

= (P p) (5

which has the following properties:
(a) Bi(t) € R™*™ and Bo(t) € R=mIX(=m) for qll t € T;
(b) there exists a constant K > 1 such that the estimates
[@p, (t,s)]| S K== ¢ >
@5, (t5)[| S K eOF00=9) ¢ <,

hold fort,s € T.

LEMMA 4.6. Let pu(t) be bounded and the upper bound of u(t) is denoted by p*.
Suppose B(t) € Crq(T,R"*™) and equation (2.2) admits v-ED with the constants
K, « and projection Q@ = O (reps. Q@ =1). If
6 =[B@)| <01 (resp. 62),
then system
y® = [A(t) + B(t)ly (4.6)

also admits v-ED with the projection Q1 = O (resp. Q1 = I), where

01 = min{(p* K el el =t (K elteln) =ty

6y = min{ (p* K el =1 (K el =1y,

Proof. We only prove the case Q = O and the case (Q =1 can be proved in a
similar way. Let ®(¢,s) and ¥(t,s) denote the evolution operators of systems
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(2.2) and (4.6), respectively. It can be seen that

[|®(t, s)|| < KeFot=s) " <

For any y € R", we have

B(t, s)y = B(t, s)y + / B(t, 0(7)) B(r)U(r, s)yAr,

hence for ¢ < s,
W (t, )yl < [|(t, s)y +|/St [@(E, o () 1B [[¥(7, s)y[|AT|
< K 09|y || + K| /t [9(7, 5)y[leOF V=D A7,
Mutiplying both sides by e~ ("Ft we get

t
e_('y"'a)t”\ll(t,s)y” < Ke—(’v—&-a)sHyH +K5‘/ H\I/(T, 8)y||e—(’7+o¢)r e—(’y-l-a)u(r)AT‘

t
<K ey K] [ 1, syl e o g
It can be seen that —Kd el"**I1" is positively regressive if § < [u*K el +eln”]=1 By
lemma 4.4, for § < [p*K el telr”]=1 we have
e O (L, s)y|| < K e O lylle_gselraim (L, 5)-

It can be seen that the function £(v) = log(1 — vK el Tel1") /y is decreasing with
respect to v. Thus,

e W (1, 5)y|| < K e 0|y exp{—K§ el (¢t — 5)}.
Mutiplyng both sides by et we get
[@(t, )yl < K eyl exp{—K5 " (1 — 5)}
< Kyl exp{(y + a — Kseh Tty — )}, ¢ <s.

Note that a;=a— Kéetelr” >0  for § <6 =min{[u*K elrteln’]—1,
afK el telr” =11 therefore system (4.6) admits v-ED with projection Q; = O if
0 < 61. The other assertion can be proved in a similar way. O

REMARK 4.7. If T=R, then p*=0, § =dy=a/K, which are consis-
tent with lemma 4.6 in [25]. If T=2Z,v=0, then p*=1 § =ds=
min{K ~te % aK te “}

THEOREM 4.8 Roughness theorem. Assume that pu(t) is bounded, B(t) €
Cra(T,R™™) and system (2.2) admits y-ED with the constants K,« and projec-
tion Q. Then there exists § > 0 such that (4.6) admits v-ED with projection Q1
similar to Q when ||B(t)|| < 4.
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Proof. Let k be the rank of Q. By lemma 4.5, system (2.2) is kinematically similar
to the block diagonal system (4.5) by a Lyapunov transformation « = J(t)y, where
Bi(t) € R™*™, By(t) € R=m)x(n=m) for all ¢ € T, and there exists a constant
Ko > 1 such that the estimates

||(I)Bl (ta S)H < Ko e(’yfa)(tfs)’ t>s,

(4.7)
195, (8, 5)[| < Ko Tt <,
hold for ¢,s € T. Let
s = (20 5 0)-
Note that
JA(t) = A()J(t) = J(o(1)) Bo(t)
= [A@t) + Bt)]J(t) = J(o(t))[Bo(t) + T~ (o (t)) B(t) I (t)],
which implies that system (4.6) is kinematically similar to the system
22(t) = [Bo(t) + J Yo (1) B(t)J ()= (4.8)
Let
D(t) = J= (o (t))B(t)J(t)
and
X ={H € Crq(T,R™") : || H| < o0},
where ||H|| := ilelirr) [|H (t)]|. Tt can be seen that X is a Banach space with the norm

Il - ||. Let E) = diag(Ix, O), where I is the identity matrix of order k. Consider a
matrix function H € X, and the mapping T defined by

TH(t) = / B, (t,0(5)) Br(I — H(o(s))) D(s)(I + H(s))(I — )@, (s, t)As

- / 0y (t,0(5))(T = BT — H(o(s)D(s)(I + H($)) Exp, (5,1)As,

Now we show that TH € X. It follows from (4.7) that
1@ 5, (£, 5) Erll = 1@, (£, 5)[| < Koo' ™ )t >,
195, (1, ) = Bi)ll = @5, (¢, 5)l| < KoeOF =) ¢ <.

Thus we have

t
ITH®)| < / Ko e(y—a)(t—s) e—(v—a)#(S)(l + HH||)2||D||K0 (YT (s=t) A ¢

+ / Koy erte)(t—s) e—(v+a)u(3)(1 + | H|)?||D|| Ko (V=)= A ¢
t
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= Kg(1+[|H|)*|D||

t oo
X (el'y_o‘“*/ ezo‘(s_t)As—l—elV"’al”*/ e_zo‘(s_t)As> . (49
o t
Let us define the map ¢ : R — R™:

e’ —1
= lim .
e(7) Jim

*

Tt can be verified that v < ¢(vy) < ’37;7_1 Note that

t t

1
/ erc(sft)As < / e—2a(t75) ds = — (410)

e oo 2a

and
0o oo —2a(s—t) |55 *

—2a(s—t) A g — DAs — o a . (411
/t e S /5 etp(—Qa)(Sv ) $ (p(—QOé)(S) - =1 = e—2ap* ( )

Therefore, TH (t) is bounded and TH € X. Let
1
XO{H:Hex,||H||<2},

then for any H,, Hy € X, we have

(I = Hi(o(1))D()(I + Hu(t)) — (I = Ha(o (1)) D(t)(I + Ha(t))
= (Ha(o(t)) = Hi(o (1)) D(t) — D(t)(Ha(t) — Hi(t))
+ (Hz(o(t)) = Hi(a(1))D(t) Ha(t) + Hi(o (1)) D(t)(Ha(t) — Hi (1))

Thus,
ITH:y(t) — THa(t)|
= | /_; O, (t,0(s)) Ex[(I — Hi(o(s))D(s)(I + Hi(s))
— (I = Hx(0(5)))D(s)(I + Ha(s))]
(I = Ep)®p,(s,1)As — /too O, (t,0(s))(I — Ey)

x [(I = Hi(o(s)))D(s)(I 4 Hi(s))
— (I = Hz(0(5)))D(s)(I + Ha(s))| Ex®p, (s, 1) As||

= |l /_ D, (t,0(s))ER[(Ha(o(t)) — Hi(o(t))D(t) — D(t)(Ha(t) — Hi(t))

+ (Hz(o(t)) — Hi(o(1)))D(t) H2(2)
+ Hy(o(t))D(t)(Ha(t) — Hi(t)](I — Ex)®p,(s,t)As
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- By (1,0()) (I — En)[(Ha(o(1))
~ Hy(o(6))D(t) — D) (Ha(t) — Hy(1))
T (Halo(t)) — Hy(0(6))D(0) Ha(t) + Hi(o(8) D(t) (Ha(t)
Hy ()] Ee®p, (5. ) As]
<31 |, ~ Hal (o= [ ntag e [ OS]
- t (4.12)

Note that | D[] < ||J]|||J ||| B]|- It follows from (4.9), (4.10), (4.11) and (4.12) that
there exists a constant § > 0, such that || B|| < ¢ implies that

(i) TH € Xy, if H € Xp;
(ii) | THy, — THa| < 3||Hi — Ha||, if Hy, Ha € X,.

Therefore, T is a contraction mapping. Note that A} is a closed subspace of X', then
Xop is a Banach space with the norm || - ||. By the contraction mapping principle,
there exists a unique fixed point H € Xjy such that

H{(t) :/ D, (t,0(s)) Ex(I — H(o(s)))D(s)(I + H(s))(I — E)®p,(s,1)As

— 00

- /too D, (t,0(8))(I — Ex)(I — H(o(s)))D(s)(I + H(s))ErPp,(s,t)As.
(4.13)

It can be seen that FEi®p,(t,s)=Pp,(t,s)E; and (I — E)®p,(t,s) =
Op,(t,s)(I — Ey) since

D, (t,5) = ((I)Bl o Op, (t,S)) '

Therefore, EyH(t) = H(t)(I — E}). Then we obtain

X (=®p,(s,0(t)))Bo(t)As

-/ ", (0(t), ()1 — BT — Ho(s))D(s)(T + H(5))

X Ei(—®p,(s,0(t)))Bo(t)As

+ D, (0(t). 0 () Ex(I — H(o(t)) D) + H(O)(I — B)®s, (t,0(1))
+ D, (0(t). (D) — E)(I — H(o(t) D) + H(t) B, (t,0 (1))

https://doi.org/10.1017/prm.2023.10 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.10

Is the Sacker=Sell type spectrum equal to the contractible set? 369
= BoH(t) — H(o(t))Bo(t)

o(t)
+/t D, (a(t),0(s))Ex(I — H(a(s)))D(s)(I + H(s))
x (T = Ep)®p, (s, 0(£)) Bo(t) As

o(t)
+/t ®p,(o(t), 0(s))(I — Ex)(I — H(o(s)))D(s)(I + H(s))

X Ep®p,(s,0(t))Bo(t)As
+ Ex(I = H(o (1)) D(t)(I + H(t))(I — Ey)®p, (¢, 0(t)
+ (I = Ep)(I = H(o (1)) DO + H (1)) Ex®p, (¢, 0()
= BoH(t) — H(a(t))Bo(t
)

)
( )
o(t) + [Ex(I = H(o(8))) D) + H(t))(I - Ej)
+ (I - Ep)(I - H(o(t) )B
0
(
)

)+
)JD@)(I + H (1)) Ek|®p, (t, 0(t))(o(t) Bo(t) + 1)
= BoH(t) = H(o(t))Bo(t) + Ex(I — H(o(t)))D(t)(I + H(t))(I — E)
+ (= Eg)(I = H(o(1)))D(t)(I + H(1))E}
= Bo(t)H(t) — H(o(t))Bo(t) + ExD(t)(I + H(t))(I — Ex)
— ExH(o())D(t)(I + H(1))(I - Ej)
+ = Ex)D(t)(I + H(t))Ey — (I — Ex)H(o (1)) D(t)(I + H(t))Ex
= Bo(t)H(t) — H(o(t))Bo(t) + ExD(t)(I + H(t))(I — Ex)
—H(o(t))(I = Ex)D(t)(I + H(t))(I - Ej)
+ (I = Ex)D(t)(I + H(t))Ey — H(o(t)) ExD(t)(I + H(t)) Ex
= Bo(t)(I + H(t)) — (I + H(o(t)))Bo(t) + Ex D(t)(I + H(1))(I — Ej)
+ (= Ex)D()(I + H(1))(I — Ej)
— I+ H(o(t))I — Ex)D@)(I + H(t))(I — Ex)
+ (I = En)D()(I + H(t) B + ExD(t)(I + H(t)) Ex
— (I +H(o(t))ExD(t)(I + H(t))Ej
= Bo(t)(I + H(t)) = (I + H(a(t)))Bo(t) + D(t)(I + H(t))
— I+ H(e()[(I = Ex)D()(I + H(t))(I — Ey) + ExD(t)(I + H(t)) Ex].
Let
R(t) =1+ H(1). (4.14)
Then ||R|| < 2 since |H|| < 3. Forany t € Tand y € R", y # 0,

1 1
1ROyl = lly + H@yll = llyll = IHOy = Nyl = 1yl = 5yl

It follows from ||R(¢)y|| # 0 that R(t) is invertible for any ¢ € T. Then we obtain

Iyl = 1RO R @yl > IR 0,
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ie., [|[R71(t)y|| < 2||ly||. Therefore, ||[R1(¢)|| < 2. Note that

R(t) = HA(t) = [Bo(t) + D()]R(t)
= R(a(1))[Bo(t) + (I = Ex)D@)R()(I — Ex) + EpD(t)R(t) Ex],

which implies that system (4.8) is kinematically similar to the system
u®(t) = [Bo(t) + (I — Ex)D(t)R(t)(I — Ey) + ExD(t)R(t)E}]u. (4.15)

Hence, system (4.6) is kinematically similar to system (4.15). It follows from lemma
4.6 that system (4.15) admits v-ED when || B]| is sufficiently small and the rank
of projection is k. Then system (4.6) also admits v-ED and the rank of projection
is k. ]

4.3. Generalized contractibility

LEMMA 4.9 Theorem 11, [39]. The dichotomy spectrum %(A) of system (2.2) is the
disjoint union of k closed intervals where 0 < k < n, namely,

k
£(A4) = Ylai, bi)

i=1
with —0o < a1 < by <ag < by < -+ <ap < b < o0,

k
LEMMA 4.10. Assume that X(A) = U lai,bi] with a1 <bp <ag <by < -+ <

=1
ay < by, then there exist functions B;(t) (i =1,2,...,k) such that X(B;) = |ai, bi]
and system (2.2) is kinematically similar to the system

z® = diag(Bi(t), -, Br(t))z. (4.16)

Proof. Let v € (bg—1,ax), then system (2.2) admits v-ED. It follows from lemma
4.5 that system (2.2) is kinematically similar to

.’BIA = Al (t).%‘l, JJQA = Ag(t>$2, (417)

where the first equation of (4.17) admits v-ED with the invariant projector I and
the second equation of (4.17) admits 4-ED with the invariant projector O. By

k-1
lemma 4.9, we have X(A;) = U [a;,bi], X(A2) = [ag,br]. Let By = Ay, By = As,
i=1
then
k-1
S(Bo) = Jlai b, B(Bx) = [an, bi].
i=1
The proof is completed by repeating the above steps. O
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LEMMA 4.11 Theorem 5, [26]. Suppose that A(t) is bounded on T and let L =
sup ||A(t)]]. Then one has
teT

lx1 — wa|ler(t, to),  fort € [to,+00)T,

|Pa(t,to)zr — Pal(t, to)za] <
’ lx1 — zalle—r(t, to), fort e (—oo,to]T,

where @ 4(t,tg) is the evolution operator of system (2.2).

LEMMA 4.12. The following statements are true.

(a) If [e,d] CR — X(A), then system (2.2) admits c-ED and d-ED with the same
projector;

(b) IfX(A) Cla,b] and X > b (resp. X < a), then system (2.2) admits A\-ED with

the projector I (resp. O) and constants K = 1, > 0.

Proof. (a). For any \ € [c, d], system (2.2) admits \-ED, i.e., there exist constants
ay > 0,K, > 1 and a projection @y such that

1@ a(t, 5)Pa(s)]| < KnePmon =g > s,
1@ 4(t, 8)(I = Pa(s))ll < Kx e 1 L,

where ® 4 (t, s) is the evolution operator of system (2.2). Obviously, system (2.2) also
admits v-ED with the projector Py when vy € (A — ax, A + «y). Since the family of
open intervals {(A — ax, A + ay )|\ € [¢, d]} covers the interval [¢, d]. By Heine-Borel
theorem, there are finite open intervals (A1 — dx,, A1 +0x, ), » (A — Ox,,,, Am +
dx,,) that cover the interval [c, d]. Suppose A\; < Ag < -+ < Ay, Then (A; — 0y, A +
Ox) N (Nig1 = Oxiyrs Nig1 +0x,,,) #0 (i =1,2--- ,m — 1). Therefore, Py, = Py
(i=1,2---,m —1), which implies P, = Py.

(b). Let L =sup||A(t)]| and let M = max{L, A}. According to lemma 4.11, for

teT

i+1

any A > b, we have
1@a(t,s)z]| = [[@a(t:s)e — Dalt,s) - O] < [|zfer(t,s) < e"=z]

<M= ||z||, te[s,+oo)r,
which implies that ||® (¢, s)|| < eM*=%) for t € [s, +oc)r. Thus, system (2.2) admits
M-ED with the projector I. Note that [\, M] C R — X(A). From the statement (a)

in this lemma, we have system (2.2) that admits y-ED with the projector I. The
other assertion can be proved in a similar way. O

LEMMA 4.13. Assume that C(t) = (c;j(t)) € Crq(T,R™ ™) is a bounded upper
triangular matriz-valued function (c;;(t) =0 if i > j) satisfying X(C) = [a,b], then

»(C) = U > (cii).

=1
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Proof. Let D(t) = diag(c11(t), c22(t), -, can(t)). Obviously, for any A ¢ |J X(ci),
i=1

1=

the diagonal system
2 = D(t)z
admits A-ED. From theorem 4.8, there exists § > 0, such that the system

y® = [diag(cr1(t), ea2(t), -, can(t)) + B()]y
also admits A-ED if sup || B(t)|| < d, where B(t) € Cpq(T,R™"*™). Let sup ||C'(¢)|| = L
teT teT

5

53T - n=1)2, we obtain

and n = Taking the transformation = = diag(1,7n,--- ,n

ZA = [dlag(L?% e »nn_l)]_le

= [dlag(lan7 /| 71)]710@)58
= [dlag(la /ZRa ,nnil)]ilc(t)diag(lv /PR annil)z

S

Cll(t)
coa(t)
Cnn (1)
0 newa(t) n*eis(t) - 7" ewn(t)
0 neas(t) - 0" ean(t)
+ O e nnf?’csn(t) 2

2[D(t) + B(t))=

It is clear that ||B(t)|| < 0. Therefore, 22 = [D(t) + B(t)]z admits A-ED. Then the
system 22 = C(t)z also admits \-ED, which implies 3(C) C |J %(ci;)-

i=1
On the other hand, let A ¢ X(C) = [a,b]. If A > b, by lemma 4.12, the system
2 = C(t)z admits \-ED with the projector I. Then there exist constants K > 1,

ay > 0 such that
[@c(t,s)]| < KyeP =9 ¢ € [s,400).

It can be easily verified that

ey (L,8) * e *
€can (tv S) e *
(I)C(ta 5) -
Cenn (t7 5)

and le.,, (t,s)| < ||Pc(t,s)||,i = 1,2, ,n. Therefore,

lec,, (t, )] < KpeP o9 -t e [s,400),i = 1,2, ,m,
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which implies that the system z2 = c;;z; admits A-ED for any i € {1,2,--- ,n}.
Thus, A ¢ | X(ci). In a similar way, we can prove that A ¢ |J X(c;) if A <a.
i=1 j

i=1
Therefore, |J X(¢;;) € X(C). In conclusion, we have (C) = |J 3(¢;;). The proof
i=1 i=1
is completed. O

LEMMA 4.14. If system (2.2) is A-contracted to F, then ¥(A) C F.

Proof. f A ¢ F, then a = infJ A — x| > 0 since F' = |J w(F;), where F; are closed
ze i=1

intervals (i = 1,2,--- ,n). It follows from the definition of generalized contractible

set that there exist ¢ (t), c2(t), -+, ca(t) € Cra(T,R) and B(t) € Cpq(T,R"*™), such

that sup [[B(t)| < 6,Im§,(c;) C F;(i =1,2,--- ,n) and system (2.2) is kinemati-
teT

cally similar to
y® = [diag(ci(t), c2(t), -, en(t)) + B(t)]y. (4.18)
Without loss of generalization, we assume that
w(F)<A—a, (GF=1,2,--,k),
w(Fj)>)‘+a7 (J:k+lvvn)a

which implies

Eu(ci)(t)</\—05, VteT (i=1,2,--- k),
Ec)t)>A+a, MeT (j=k+1,--,n).
Therefore, we have

leo (£, 5)| = e Eu(ED©As £ A-)E=9) (13 6)(1=1,2,--- k),

lee, (£, 5)] = el Cule@As o (OF)t=9) (4 < §)(j=k+1,--- ,n).

Since sup || B(t)|| < ¢ and ¢ can be sufficiently small, by roughness theorem, we
teT

get system (4.18) admits A\-ED. Therefore, system (2.2) also admits A-ED, which
implies A ¢ X(A). The proof is completed. O

THEOREM 4.15. Assume that A(t) is bounded and the generalized contractible set
of system (2.2) is denoted by F. Then F = X(A).

Proof. The proof is divided into several parts. Firstly, we prove that F' C ¥(A).

Part 1: System (2.2) is kinematically similar to an upper triangular system.

Suppose L(A) = U [ai, bi](1 <k <n),a; <by <ag <by < - <ap < bg. From

=1

lemma 4.10, system (2.2) is kinematically similar to system (4.16), where B;(t)(i =
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1,2,--- ,k) are bounded rd-continuous functions and X(B;) = [a;, b;]. Using Per-
ron’s transformation, the system

2 = By(t)x; (4.19)

7

is kinematically similar to the n; x n; upper triangular system

yi = Di(t)ys, (4.20)

where 3(D;) = [a;, b;]. Let D;(t) = (dE;) (t)). From lemma 4.13, le E(dﬁ?) = [ai, bi].

Then, by lemma 4.12, for any ¢ > 0, the system
u® = d9 (t)u

admits (b; + 0)-ED with projector I and (a; — §)-ED with projector O. In conse-
quence, there exist constants K = 1, « > 0, such that

le o (t8)] < elbitd=)(t=9) = for ¢ € [s, 400)r,
(4.21)
le o (t8)] < elai=0%a)t=9) " for ¢ € (—o0, 5.

Part 2: We are going to construct a strictly increasing and unbounded sequence
{t,(fr) ;‘;’8 such that for any constant M > exp{(b; +1 —a; +J)(1 + p*)}, the
estimate

M1<e ftto hi(T)+gi(T)AT

lego (t,t0)| < M (4.22)

holds for all ¢ € [tg, +00)T, where h;, g; : [to, +00)r — R is defined by:

hl(t):{a : E[j 7 J+1)T7 (]:032;4,)

b ifte [ty i),

and

gi(t):{ ! E[J ’J—H)Ta (j:052747"')

5 iftelt .

In what follows, we denote tl(fr) by t, (p€ Ng) if there is no ambiguity.

Interchanging ¢ by s in the second inequality of (4.21), we obtain

{e_(bi+5)(t—5) ‘ed(i? (t,s)] < e—olt=s) ¢ ¢ [to, +00)T, (4.23)

e~ (@=0=3 e ) (t,5)] = e, t € [to, +00)r.
Let
Ult,to) = e (@700 |e o (t,t0)|, V(¢ tg) = e CTIEI0le ) (¢, 4)].

Therefore, by (4.23), we have

(4.24)
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It can be seen that U(t,s) > 1 and V(t,s) <1 if ¢t > s and for any fixed to € T,
U(t,to) is unbounded on [tg, +00)r since a > 0. Moreover, V(t,tg) — 0 as t — +oo.
In consequence, there is t; > tg such that

M~ <1<U(t,t)) <M (4.25)
for any t € [to, 1] and
U(o(ty),to) = M. (4.26)
Meanwhile, we assert that t; — ¢ty > 1. In fact, one can see that
Ult,s) < eBit1=aitd)t=)  y(p o) < Bit1=bi=0)=9) for > g
since $(d\2) C [a;,b;] and le ) (t,5)| < ebitD(E=5) for t > 5. From (4.26), we get
M < elbitl=aitd)(o(tr)~to)

which implies that

In M

o) —to > g =5

> 14 u”

since M > exp{(b; + 1 —a; +0)(1 + p*)}, and then t; —to > 1.
On the other hand, the function U (1, o)V (¢,t1) is convergent to zero as t — +o0.
Then, there exists to > t; such that

Ulti,to)V(o(ta),t1) < M1
and
Ulti,to)V(t,t1) > M~" for any t € [t1,to]r.
Combined with the first inequality of (4.24) and (4.25), we have
M~ < U(t,t0)V(t,t1) < M for any ¢ € [ty, ta]r. (4.27)
If t € [t1,t2]T, by the definition of h;(t) and g;(t), we have

o= Vi hi(D)+g (AT

le g (£, to)

([t "t hi i A
—e (Jeg + L) (hi(m)+g:(7)) T|ed5_i7? (t;tl)”edsjr) (tl,t0)|
= D0 (11, 10)

.e—(bi+6)(t—t1)‘edw (t,t1)| = Ult1, to)V (t, t1).

Combined with (4.27), equation (4.22) is verified for any ¢ € [to, t2]r. As inductive
hypothesis, we assume that there are 2m + 1 numbers tg < t1 < -+ < tom_1 < tam
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such that

_peltam) oo (AT —
Jio halr)ta()a |ed$ir) (0<t2m)at0)| <M ! (428)
and
M1t <e fttﬂ hi(T)+gi(T)AT|€d(i) (t, to)‘ <M foranyte [tgm_l, tgm].
Using the second inequality of (4.24), we have that

o Ji " D ra(MAT) (& (t2m £0) U (£, t21n) (4.29)

is unbounded on [ta,,, +00)1. Then, there exists to,,+1 = ta,, such that this product
is less than M for any ¢ € [to,, t2m+1] and

— Ji2m hy(r) +g1(r)m|edw (tam: t0)|U (0 (t2ma1), tam ) = M. (4.30)

In addition, it follows from the inductive hypothesis and U(t,to,,) = 1 (¢ = tom)
that

- / " ha(r) + (AT

Mt <e Jto le g (t2m t0) U (t,t2n) < M for any t € [tam, tam41]r-

Moreover, by (4.31) and (4.30), it is not difficult to verify that to,, 11 — tom, > 1.
Finally, we have that

. / " ha(r) + i (1) A

e Jto le g (tam, to) [U (tam+1, tam )V (L, b2mt1)
converges to zero as t — +00. Then there exists t5,,42 such that the product above

is greater than M1 when ¢ € [t 11, tams2]. Since V(t,tame1) < 1 for t = topmyr,
the product above is less than M. It can be easily verified that

t m
o MOITEMAT I (1, 80)| = o S0 IOITEOAT e (ty, 10) U (F o)
for t € [tgm, t2m+1] and

_ ftto hi(T)+g:(T)AT

(§ |6 (i) (t,t0)|

- [t 7 hi(T)+gi( T)AT|€ 1% )(t2ma )|U(t2m+1’ t2m)v(t’ t2m+1)

for t € [tam+1,tam2]. This proves (4.22) and t, — 400 as p — +oo.
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Part 3: In a similar way, we can define h;(t) and g;(t) on (—o0, tg] satisfying

M1 <e” -fttb hi(T)+gi(T)AT

le i) (t, to)| < M.

Since h;(t) and g;(t) are sectionally continuous on T. Then there exist continuous
functions h;(t) and g;(t) satisfying

a; < Tli(t) <b, —0<gi(t) <o

and
too
|10+ 30 - () + gi(m)laT < 1.

Thus, we have

(eM)™ < e i hi(THﬁi(T)Aqedu) (tto)| <eM, teT.

b (T) 4G (T AT
Let S;, (1) = o~ Jip Mi(MFa(T)A ey (,ty) and

Li (t) = dlag (Sﬂ(f), Sig (t), ce ,Sinl (t)) .

It can be seen that ||L;(t)|| < eM and ||L; *(t)|| < eM for any t € T and system
(4.20) is kinematically similar to

22 = Ai(t)z (4.31)

7

with y; = L;(t)z;, where A;(t) = L= (o(t))D;(t)L(t) — L™ (a(t))LA(t) is a n; x n;
matrix whose rj-coefficient is defined by

di) S (o (1)) Sin(t) = S (0 ()SE () ifr =,

{Ai()}ry =4S (0 (1) Sy (8) if1<r<j<n,,
0 others.

A straightforward calculation leads to
{Ai(0)}rs = di S, (0 (1)) = )

et () (hi(t)+gi (t))ed@,)ed”) (t, o)
JJ T

- , (r <)
1+ p(t)dss)

51 o (0)S20) = 57 (o(0) tiy S5l

os(hi(H)+3: (1)

. —1

= lim |(1——F— -5 7,
o) 1+ sd®(¢)

es(hi(O+3:(1) _

and

{0} = dDS, (0(1)Sir (1) — S, (0(1)SE(H) = lim

Tr r r
s\ (t) S

(4.32)
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Since (eM)~! < S;,(t) < eM and A(t) is bounded, we obtain d"¥ is bounded and
dfn?Si;l(a(t))Si-(t) is bounded, i.e., {A;(t)},; is bounded if r < j.
We define the n-transformation
z(t) = diag(1,n,--- , 0™ " Vw;(t).
It can be seen that (4.31) and (4.20) are kinematically similar to

K3

where the rj-coefficient of I'(¢) is

{Ai(t)}rj if r = j,
{Ti() ey = 07 " {Ai(t) }ry 1< 7 < <my,
0 others.

Observe that T';(t) can be written as
i (t) = diag({As(t) bars {Ai(t) Faz, -+ {Aa(8) fin,) + Wilh),
where the rj-coefficient of W;(t) is defined by

A}y i1 < << ng,
0 others.

{Wi(t)}r; = {
Since {A;(t)},; is bounded if r < j, we obtain that ||W;(t)|| — 0 as n — 0. On the

other hand, it follows from (4.32) that

lim log(1 + s{Ai(t)}M)>

s\a(t) s

€,({Ai(H)}) = Re (
=Re (Ri(t) + 5i(t)) € (a: — &,b; + ).

Therefore, it is clear that system (2.2) is A-contracted to the set
k
Gs = J(a; —6,b; +6) for any 6 > 0. Since the constant 6 can be sufliciently
i=1
small and G5 — X(A4) as § — 0, we have ' C 3(A), where F' is the generalized
contractible set of (2.2).
On the other hand, by the definition of generalized contractible set and
lemma 4.14, we have X(A) C F. In conclusion, we have F' = X(A). The proof is
completed. O

EXAMPLE 4.16. Let us consider the system mentioned in the counterexample. Let
F denote the generalized contractible set of system (3.1). Obviously,

Ele—1) =logll+e—1]=1, {,(e'=1)=logll+e ' =1 =-1, F=[-11].

We know that the dichotomy spectrum of system (3.1) is [—1, 1], which supports
our result.
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