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Abstract

Similarity solutions of the steady-state equation of transport for the
distribution function F,, of cosmic rays in the interplanetary region are
obtained by the use of transformation groups. The solutions are derived in
detail for a spherically-symmetric model of the interplanetary region with an
effective radial diffusion coefficient K = K,,(p)rb with r the heliocentric radial
distance, p the particle momentum, «,,(p) an arbitary function of p, and the
solar wind velocity is radial and of constant speed V. Solutions for which the
similarity variable 17 is a function of r only are also derived; these are of
particular importance when the F,, is specified on a boundary of given radius.
Non spherically-symmetric solutions can also be obtained by group methods
and examples of such solutions are listed, without derivation, for the
equation of transport incorporating the effects of amsotropic diffusion
(diffusion coefficient KH in the radial direction and KL normal to it). The
solutions are the most extensive steady-state analytic solutions yet obtained,
and contain previous analytic solutions as special cases.

1. Introduction

The equation of transport for the propagation of cosmic-rays in inter-
planetary space including the physical protesses of convection, diffusion and
energy changes was formulated by Parker [17]. It was derived by a different
method and a streaming equation added by Gleeson and Axford [11], and by
Dolginov and Toptygin [7,8]. Since then many analyses of the consequences
of this equation have been carried out, some by means of analytic solutions,
but most using numerical solutions following Fisk [9].

In this paper the theory of Lie groups (Lie, [14]; Ovsjannikov, [16];
Matschat and Muller, [15]; Bluman, [2, 3, 4]; Bluman and Cole, [5, 6]) is used
to obtain similarity solutions of the steady-state equation of transport. These
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[2] Similarity solutions 433

solutions are the most general steady-state analytic solutions available, and
they can be used to derive the previously reported analytic solutions of Parker
[17, 18], Fisk and Axford [10], Toptygin [20], Webb and Gleeson [22, 23] and
Gleeson and Webb [12].

The solutions are derived for a spherically-symmetric model of the
interplanetary region, in which the effective radial diffusion coefficient
K = K(,(p)rb, where p denotes particle momentum, r is heliocentric distance, b
is a constant, and x()(p) in an arbitrary function of momentum. The solar wind
velocity is assumed to be radial and of constant speed V.

In section 2, the steady-state spherically symmetric equation of transport
is expressed in a separable form, with separation variables x and t, where JC is
a function of r and p, and t is a function of p. A monoenergetic source term is
included in the transport equation since it is intended (in a later paper) to
derive the monoenergetic source or Green's function solution of Webb and
Gleeson [22, 23] and of Toptygin [20] from the similarity solutions.

In section 3, the infinitesimal transformations admitted by the separated
transport equation are obtained, both for the case of a monoenergetic source
term and for the homogeneous equation with zero source term.

In section 4, the infinitesimal transformations, determined in section 3,
and the group methods of Bluman and Cole [5, 6] are used to obtain
spherically-symmetric similarity solutions of the equation of transport. In
terms of the mean distribution function with respect to momentum F,,(r,p),
the solutions have the functional form

Fl)(r,p)=F(r1)G[x(r1,t),t}, (1.1)

where r\(x, t) is one of the invariants of the group, known as a similarity
variable, and x = x{r,p) and t = t{p) are the separation variables of section 2.
The dependence of G on -q and t is derived explicitly from invariance
considerations. The function F(TJ) is the solution of an ordinary differential
equation obtaned by substituting the form (1.1) into the steady-state equation
of transport for Ft,(r,p).

In the study of the propagation of cosmic-rays in the interplanetry region,
solutions in which the distribution function is specified at one fixed heliocen-
tric radius and appropriate boundary conditions are specified at another, are
of particular interest. Since the similarity curves 17 = constant, play the role of
boundary curves in the general similarity form (1.1), solutions with bound-
aries r = constant, are obtained by requiring that 17 (or a limit of TJ) be solely
a function of r. Examples of such solutions are obtained in section 5, as
particular cases of the general similarity solutions of section 4.

In section 6, further analytic similarity solutions of the equation of
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transport, including anisotropic diffusion, obtained by the group method are
listed without derivation from Webb [21]. These solutions are for an idealised
model with a radial interplanetary magnetic field, and for a radial solar wind
velocity of constant speed V. The solutions are non spherically symmetric and
depend on heliocentric position (r, 0, <j>) and momentum p, where (r, 6, <f>) are
spherical polar coordinates centred on the sun with polar axis coincident with
the sun's rotation axis. By appropriate transformation of the diffusion
coefficients parallel and perpendicular to the magnetic field, KJ and K±, the
spherically-symmetric component of the latter solutions give the spherically-
symmetric solutions of section 4.

Finally in section 7, some comments are made about the scope and
applicability of the present results and further papers to follow which extend
this work are noted.

2. Separation of the transport equation

With a source of monoenergetic particles of momentum p0, released at
heliocentric radius r0, the steady-state continuity equation for cosmic-rays
propagating in the interplanetary medium is (Parker, [17]; Gleeson and
Axford [11]; Dolginov and Toptygin [7, 8]; Jokipii and Parker [13])

V • (VF« - K • VF,,) - ^ V • V -0- (p'Fo)
5p dp

N
^ 8(r - ro)8(p - p0), (2.1)

where Fn(r, p) is average distribution function with respect to momentum p.
Here V is the solar wind velocity, K is the diffusion tensor, 8(z) is a delta
function of argument z, and N is the number of particles released per unit
time. The terms on the right represent the source.

For the spherically symmetric models considered here the diffusion
tensor is replaced by an effective radial diffusion coefficient

K = Kn(p)r", (2.2)

where «0(p) is an arbitrary function of momentum p, and the solar wind
velocity is radial, and of constant speed V. With this model the transport
equation (2.1) is

8(r - ro)8(p - p0). (2.3)
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By introducing two new independent variables

(2{rpmf-b)l2l{\ - b) if b/1,
x = (2.4)

l-ln(2r2p3)/2 if 6 = 1,

and

/ = - 3 | P K0(z)z('-ibV2dz/2V, (2.5)

the transport equation transforms into the separable forms

M[F0}=^-(^+a2)^-^-Z8(x-x0)8«-to) = 0, (2.6)

where

(i) if b^\ and K = K0(p)r",
a, = 2n + 1, a2 = 0,
Z = 3Nxo/(327r2Vp'orl\n + l\), (2.7)

and
(ii) if ft = 1 so that K = K0(p)r,

ai=0,a2=-2, (2.8)

The forms (2.6) of the transport equation with parameter values (2.7) and
(2.8) provide the basis of our subsequent study on the invariance group of
(2.6) (section 3) and the similarity solutions of the spherically-symmetric
transport equation (sections 4 and 5).

3. Infinitesimal transformations admitted by the transport equation

Denoting any solution of the transport equation for Fo by u(x, t), we now
use the technique of Bluman and Cole [5] to determine the infinitesimal
transformations

x' = x + eX(x,t,u)+O(e2)

t'=t + eT(x,t,u)+O(e2) (3.1)

U'=U + EU(X, t,u)+O(e2)

admitted by the transport equation (2.6) which leave equation (2.6) invariant
so that in terms of the differential operator M of (2.6) we have

M'[u'] = 0 iff M[u] = 0 (3.2)
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where M'[M'] is obtained from M[u] if (x, t, u) is replaced by (*', f', u'). We
obtain the infinitesimal generators (X, T, U) of (3.1) both for the case of a
monoenergetic source term - Z8(x - xo)8(t - t0) in equation (2.6) and for the
homogeneous equation with zero source term.

The infinitesimal transformation of the delta function source term in (3.2)
is obtained from

8(x'- xo)8(t'-to) = 8(x - xo)8(t - t0) if^ , (3.3)

where

T,+ Tju,)+ O(e2) (3.4)

is the Jacobian of the transformation between (x, t) and (*', t'). The transfor-
mation of the l/x' term in equation (3.2) is obtained by the Taylor series
expansion

Ufo^ (3-5)
From the partial derivative transformations of Bluman and Cole [5] and using
the results (3.3)-(3.5) we have an expression for the transport equation
operator on u'(x',t') in terms of the solution u(x, t):

, - ^ - ( 7 + 0 2 ) U, + Z8(x - xo)8(t - h)

Xuux+Xx + T,+ Tuu.)

u, [t/.-T, + (7+

ux\-X, + XXX-2UXU - (—

ul h.Xxu - Uuu + ( 7 +

uxu, \-Xu +2TXU + ( 7 + ^ 2 ) Tu]- Tuu
2,+ Xuuul

Tuuulu, + (2XX - Uu)uxx +2Txuxl + 3Xuuxuxx

Tuu,uxx + 2 T U « A , J + O(e2). (3.6)

The 'classical method' of proceeding, described in Bluman and Cole [5] is to
set the right-hand side of equation (3.6) proportional to M[M].
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Thus the invariance condition (3.6) assumes the form,

M'[u']- M[u] = eAM[u]+ O(e2), (3.7)

where A is at most a function of x and / (Ovsjannikov, [16], Chapter 6). Since
u is a solution of the transport equation (3.1) we have

uxx = - ( y + a2) ux + u,- ZS(x - xo)8(t - t0). (3.8)

In the classical method we eliminate uxx from the invariance condition (3.6) or
(3.7) by the substitution (3.8), and equate to zero terms with the same
derivatives of u, i.e., the coefficients of u,, ux, u\, uxu,, u2, ux, u

2
xu,, uxl, uxuxl,

and the terms independent of the derivatives of u.
Successively equating to zero the coefficients of uxuxl, uxu, and u\ in

equation (3.6) we find that

Tu = 0, Xu= 0, Uuu = 0, (3.9)

and consequently

U = f(x,t)u+g(x,t), X=X(x,t), T=T(x,t). (3.10)

Successively equating the coefficients of uxl, u,, ux and the remaining
terms to zero,

T, =0; and hence with (3.10) T= T(t), (3.11)

2Xx-T(t) = 0, (3.12)

X, - Xxx +2fx-^f+ (-+a2) Xx = 0, (3.13)

T + ^ ) A-/.] + «-
- Z8(x - xo)S(t - to)[T'(t) + f(x, t)-Xx] = 0. (3.14)

From equation (3.14) we have

) . - / , = (>, (3.15)

, - g , = 0 , (3.16)

and for a non-zero source term, with Z/0,

/(*„, to) + T{t0) - Xx (x0, tn) = 0. (3.17)

Note that f(x, t) and g(x, t) satisfy the homogeneous transport equation (2.6).
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438 G. M. Webb [7]

The solutions of equations (3.10)—(3.17) for the infinitesimal generators
X, T and U depend on the parameters a, and a2 which in turn depend on the
radial dependence of the diffusion coefficient according as K = K0(p)rb, b/ 1
or K = K0(p)r (equations 2.6-2.8). The generators for these two cases are
given below.

Case (i) K = K0{p)r", b^ 1

The parameters a, and a2 for this case are given by equations (2.7), and
the solutions of equations (3.10}-(3.17) for X, T and U are

X = (P + yt)x, T=yt2 + 2pt + a, U = uf + g, (3.18a)

where

/= -{yx2-(n + \)yt + 8, (3.18b)

a, (3, y, 8 are arbitrary parameters, and g(x, t) is any solution of the
homogeneous transport equation

, 2n + l ,, , o .
g«+—j-g* =g,. (3.18c)

Equations (3.18) give the infinitesimal generators for the homogeneous
equation of transport (2.6). We now obtain the generators (X, T, U) for the
equation of transport with a monoenergetic source term.

For a source term in the transport equation (2.6) the source point (x0, t0)
is invariant under the infinitesimal transformation (3.1) and hence

X(xo,to)=T(to) = 0. (3.19)

Applying the source condition (3.17) and the results (3.19) for the invariance
of the source point (JC0, t0), we find that the subgroup of the main group (3.18)
admitted by the inhomogeneous equation has generators

X = y(t-to)x, T=y(t-tof, U = uf + g, (3.20a)

where

/ = - | y ( x 2 - x ? , ) - ( « + l)y(/-fo). (3.20b)

Case (ii) K = K,,(p)r

For this diffusion coefficient case, the parameters a, and a2 occurring in
the transport equation (2.6) are given in equations (2.8), and the solutions of
the determining equations (3.10)—(3.17) for the infinitesimal generators X, T
and U are
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X = (P + yt)x + k + 8t, T=yt2 + 2pt + a, U = uf + g (3.21a)

where

/= -\yx2 + (P + yt-\8)x-yt2-(2p+h-8)t + \, (3.21b)

a, /3, y, k, A are arbitrary, but constant parameters, and g(x, t) is any solution
of the homogeneous transport equation

g«-2gx = g,. (3.21c)

Equations (3.21) give the infinitesimal generators for the homogeneous
equation of transport (2.6). Note that the generators X and T of equations
(3.21a) are identical to the generators X and T obtained by Bluman and Cole
[5] in their study of the one-dimensional heat equation.

The infinitesimal generators X, T and U for the equation of transport
(2.6) with a monoenergetic source term Z8(x — xn)8(t — t») satisfy the in-
variant source condition (3.17) and the condition (3.19) corresponding to the
invariance of the source point (x0, t0). Thus the subgroup of the main group
(3.21) admitted by the inhomogeneous equation of transport (2.6) has
generators

X = (3(x - xn) + y ( x t - Xot,,) + 8 ( t - / „ ) , (3.22a)

T=y(t2-t?>) + 2(3(t-tll), (3.22b)

U = uf+g, (3.22c)

w h e r e

/ = - 1 y (x 2 - JCH) + (/3 - iS){x - xn) + y(tx - /„*„)

- y{t2- /?.)-(2/3 +h - 8)(t - to)-(P + yt0), (3.22d)

and g is a solution of the homogeneous transport equation (3.21c).

4. Similarity solutions

In this section the generators (X, T, V) of the infinitesimal transforma-
tions obtained in section 3, are used to derive similarity solutions of the
cosmic-ray equation of transport (2.6) by the group methods of Bluman and
Cole [5, 6]. There are two cases to consider according as (i) K = Kn(p)rb, b^ 1
and (ii) K = K,,(p)r.

From Bluman and Cole [5, 6] the functional forms of the similarity
solutions are obtained by integrating the group trajectories

dx dt du . . . .
X = T = V • ( 4 1 )
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440 G M. Webb [9]

In the present application the infinitesimal generators (X, T, U) are given
explicitly for the two clases in equations (3.18) and (3.21), and in each case are
of the form

X = X(x, t), T=yt2 + 2pt + a, U = uf(x,t)+g(x,t). (4.2)

Here the solutions are obtained for generators with g = 0, y / 0, and for the
two diffusion coefficient cases (i) and (ii). Thus the group trajectories (4.1)
may be written as

ft=^=A{x,t), (4.3)

du U uf _ . . .. ..

li=T=ZT= u C ( x ' r ) - ( 4 4 )

The solution of the trajectory equation (4.3) is of the form

T] (x, t) = constant = T/C, (4.5)
where TJ(JC, t) is a similarity variable. Using the solution (4.5) to express x in
terms of TJC and / and substituting in the second trajectory equation (4.4), we
obtain an ordinary differential equation in u and /. Thus the solution of the
second trajectory equation is of the form

(T,c,0,a (4-6)
where

G(x,0=exp(| C[x(r,c,t),t)dty (4.7)

and the constant of integration has been written as F(TJC) with F an arbitrary
function of its argument.

The intersection of the surfaces (4.5) and (4.6) in (x, t,u) space with T;C
constant is a curve which defines a group trajectory. The family of group
trajectories obtained by varying the parameter TJC generates the invariant
solution surface or the functional form of the similarity solution. Thus the
general similarity solution has the form

u=F(r,)G[x(r,,t),t], (4.8)

where

G[x(v, t), t] = exp Q C[x{-n, t), t)dij , (4.9)

and TJ(JC, t) is given by equation (4.5). Note that the result (4.8) is the form of
the similarity solution referred to in equation (1.1). Substitution of the form
(4.8) into the transport equation (2.6) leads to an ordinary differential
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[10] Similarity solutions 441

equation for F(TJ), SO that the similarity solution is completely determined.
We now carry out the derivation of G and F for the particular cases of
interest here.

Case (i) K = Ka(p)r", b/ 1

By setting

t,= -p/y, as = (ay - /32)/y2, * = [S + (n + l)/3]/y, (4.10)

in the generators (3.18), the trajectory (4.3) is

and the trajectory (4.4) is

= C(x t) (4 m

Following the general development of Bluman and Cole [5], integration
of equation (4.11) yields the similarity variable

r1(x,t) = x/[(t-tsy+as}i. (4.13)

Then substituting

x = v[(t-ts)
2+as)K (4.14)

from equation (4.13) in the trajectory equation (4.12), treating TJ as a
constant, and integrating yields the form of similarity solution

analogous to the result (4.8). Note that the integral in the exponent is given
explicitly by

arctan[(< - u)la]la,

-M{t-ts), (4.16)

- t . - b)l{t -t, + b)]/2b,

according as a, = a2>0, as=0, or a, = -b2<0, respectively.
The ordinary differential equation for F(i?) is now obtained by substitut-

ing the similarity form (4.15) into the homogeneous equation of transport
(2.6). It is
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where n = (b + 1)/(1 - b) (equations 2.7).
The general solution of the differential equation (4.17) for F(T/) depends

on the parameter as. For as^Q, the solution is '

F(V) = CXP(-^-^)[AM(^-
2(-as)>'

(^+2(^'-1>^)]' ^ 8 >
where M(k,,k2, x) and U(k,,k2, x) are independent solutions of Rummer's
confluent hypergeometric equation

x ) - j ^ - / c , y = 0 . (4.19)
/7V

This equation and its solutions are discussed in detail in Abramowitz and
Stegun [1], section (13.1) and Slater [19]. For a, = 0, the solution of equation
(4.17) is

(4.20)

where m =\n\, and Im{z) and Km(z) are modified Bessel functions of the
first and second kind (Abramowitz and Stegun [1], section 9.6). The complete
solution for u and hence Fn is now known and given explicitly by substituting
F(TJ) from equations (4.18) or (4.20) into equation (4.15).

In any particular boundary value problem involving the similarity
solutions of equations (4.15), (4.18) and (4.20), the boundary conditions are
specified on similarity curves T\ = 17,, = constant, and F(-q,,) (or a linear
combination of F' and F) must be chosen accordingly. The parameter x
appears only in equation (4.17) for F(TJ), and not in the similarity coordinate
or boundary condition. Thus \ c a n play the role of an eigenvalue (Bluman
and Cole [5]).

Case (ii) K = K,,(p)r

The derivation of the similarity solutions for this case are completely
analogous to Case (i). Integration of the trajectory equation (4.3) with the
generators (3.21) leads to the similarity variable

r,(x, t) = [x + d,- e,(t - r,)]/[(/ - t,)2+a,]K (4.21)

and integration of the second trajectory equation (4.4) gives the similarity
form
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[12] Similarity solutions 443

dy/(y2+ a.)) (4-22)

where fs, a,, e,,di and Ci are arbitrary parameters. Again the integral in the
exponent is given by (4.16). The function F(TJ) in (4.22) satisfies the ordinary
differential equation

0 ( ^ ! ) O, (4.23)

which is obtained by requiring that the similarity solution satisfy the
homogeneous equation of transport (2.6).

The general solution of equation (4.23) for F(ry) depends on the arbitrary
parameter as. For as^0, the solution is

where M(kuk2,x) and U(kuk2,x) are independent solutions of Rummer's
confluent hypergeometric equation (4.19). For as = 0 equation (4.23) has
solutions in terms of exponential functions:

F(r,)=A exp(- V7t r,) + B exp(V^ T,). (4.25)

Substitution of the expressions (4.24) or (4.25) for F(T;) into (4.22) gives the
general similarity solution for u, and hence Fo, for this case with K = Ka(p)r.

5. Solutions for cosmic-ray boundary value problems

It was noted in the introduction, and section 4, that the similarity curves
17=17,, = constant, can be used as boundary curves in the solution of
boundary value problems. In studying the propagation of cosmic-rays in the
interplanetary medium, solutions in which we can specify the distribution
function F0(r,p) at one fixed heliocentric radius and boundary conditions at
another are of particular interest. These solutions are obtained by direct
application when the similarity variable 17 is solely a function of r, so that
V = v(r)- The similarly variables 17 of equations (4.13) and (4.21) are
dependent on a set of arbitrary parameters. For particular parameter values
and diffusion coefficients we have 17 = 77 (r). Further similarity variables can
be obtained by letting one or more of the parameters tend to infinity and
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appropriately rescaling the old similarity variable. The corresponding similar-
ity solutions are obtained by substituting the appropriate parameter values in
the similarity solutions of section 4.

We now obtain three such solutions; two from case (i) with K = K0(p)rb,
b^ 1, and one from case (ii) for which K = K0(p)r. They are given below as
Examples 1, 2 and'3.

EXAMPLE 1. K = Kcp"rb, b^\

For a diffusion coefficient K = K0(p)rb, b^ 1, the similarity variable is
given by equation (4.13), that is

r1=x/[(t-ts)
2+ast (5.1)

with x and t defined in terms of r and p in equations (2.4) and (2.5).
By choosing as = ts = 0 in the similarity variable (5.1) we obtain a

particular similarity variable

T|, = jc/r. (5.2)

The similarity variable 17, is solely a function of heliocentric radius r if the
diffusion coefficient is of the form

K = Kcr
bpMb-%)'\ (5.3a)

and in this case

x = 2{rpV2f-bV2l{\ - b), (5.3b)

t = 2Kcp
H'-b)'V[V(b-l)], (5.3c)

Vi = x/t = \-VriI-"vl/Kc, (5.3d)
are the appropriate expressions for x, t and 17,.

The similarity solution for this case is obtained by putting a, = ts = 0, in
the more general similarity form (4.15) and in the solution (4.20) for F(r)). We
obtain

u =$xp(-V
2t/4-X/t)v^r"-'[AIm(\/rxV,)+BKm(V^r,])]. (5.4)

This of course has the form (1.1) or (4.8). The spectrum that can be fitted
directly on a boundary at fixed r is of the form exp(- \rj2t - x/t)t~"~', with t
given in terms of p by (5.3c). More complex spectra can be fitted by using an
appropriately weighted eigenfunction expansion constructed from the general
solution (5.4), with the parameter x P'aying t n e role of an eigenvalue.

EXAMPLE 2. K = Kcp°rb, b^ 1

The similarity variable -q with b^ 1 is given by equation (5.1). Putting
as = - t2,, and letting ts —* °° we introduce a new similarity variable

https://doi.org/10.1017/S0334270000001302 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001302


[14] Similarity solutions 445

r,2 = limit *£ = - £ . (5.5)

Thus for a diffusion coefficient of the form

K = Kcr", b^ 1, (5.6a)

for which

x = 2(rp3/2)(1-")/2/(l - b), (5.6b)

, = K c p*-» '7[V(&-l ) ] , ( 5 . 6 c )

then the similarity variable

T,2= -ix2/t = Vr ' - b / [Kc(l-b)] , (5.6d)

is solely a function of heliocentric radius.
The similarity solution for the diffusion coefficient case (5.6a) with

K = Kcr
b, />/ 1, is obtained from the similarity form (4.15) and the expression

(4.18) for F(TJ) by allowing ^ to be a function of ts such that

v = - limit £ , (5.7)

by putting as = - f2, letting <s —»°°, and by scaling out infinite multiplication
factors in the solution. It is

u = r-("+1)/2{A M[K1 + n)- v, 1 + n, r,2] + B [/[i(l + n)- v, 1 f n, T,2]}, (5.8)

where A and B are arbitrary constants. This solution again has the form (1.1)
or (4.8). The spectrum that can be fitted directly on a boundary at fixed r is of
the form t"~in+l)l2, which via (5.6c) is a power law spectrum in momentum p.
Again, more complex spectra can be fitted by using an appropriately weighted
eigenfunction expansion constructed from the general solution (5.8), with v
playing the role of an eigenvalue.

EXAMPLE 3. K = K,t(p)r

From equation (4.21) the similarity variable for K = «a{p)r is

V=[x + dl- e,(t - t,)]/[(t - t.f + a,]K (5.9)

where x and t are defined in general in equations (2.4) and (2.5). We now
show that for the special case K = KJ it is possible to introduce a new
similarity variable TJ3 which is solely a function of r. In this particular case of
K = Kcr we have from (2.4) and (2.5)

x = - | ln(2r2p3), / = -3*cln(p)/2V. (5.10)
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To obtain T/3 we first introduce a new similarity variable

- limit a-q,

with 17 given by (5.9) and a, = a2. Making use of equations (5.10) this function
is

|ln2 - d, - e,u + in(r) + 31n(p)/2 - 3Kre, \n(p)/2 V,

and finally putting

e,= V/Kc, dx = \\n2-VtjKc, (5.11)

we eliminate the dependence on p obtaining for this case

r/3 = ln(r), (5.12)

as a new similarity variable dependent only on r.
The corresponding similarity solution is obtained by substituting the

appropriate parameter values for as, e, and d\ in the similarity form (4.22)
with F(-q) given by equation (4.24), and allowing the parameter c, of equation
(4.22) to be a function of as such that

limit cjas = v2. (5.13)

Thus letting a, = a2—»°o, and setting

C = 1 - V / ( 2 K C ) , (5.14)

the similarity solution becomes

u ={Ae^+Be—")exp[(v2-c2){t-ts)-CT]i}. (5.15)

Alternatively in terms of heliocentric radius r and momentum p, this solution
with K = KJ is

u = F0(r,p)=rc(A r" + Br')pr3"^2-'^v. (5.16)

Using the similarity solution (5.16) it is possible to fit directly a power law
spectrum in momentum p on a boundary at a fixed radius. By appropriate
choice of A and B, and by superposition of the similarity solutions (5.16),
more complex boundary spectra can be fitted.

6. Solutions without spherical symmetry

The methods used to obtain the spherically-symmetric solutions can be
applied to non-spherically-symmetric cases, and anisotropic diffusion can be
included. A particular example relevant to cosmic-ray propagation studies is
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that of a strong radial magnetic field, with diffusion coefficients *cj along the
field and K± perpendicular to the magnetic field. For completeness the
equations and solutions are summarised below; full details are given in Webb
([21], Ph.D. thesis).

The diffusion coefficients are assumed to be
/en = Kn(p)rb, K±/K|| = e = constant; (6.1)

with, as previosuly for K, Kn(p) an arbitrary function of momentum p. Both Kg
and K± are assumed to be independent of 0 and <f> with (r, 6, </>) spherical polar
coordinates centred on the sun with polar axis along the sun's rotation axis,
and the solar wind velocity is assumed radial and of constant speed V.

The steady-state equation of transport for Fu(r, 6, <fi, p), (2.1) with the
diffusion tensor K given by (6.1) can be separated with the same change of
variables as previously. Thus if b^ 1, and /x = cos 8 we obtain

2F0]
<{>2 J

d2Fl} . 2w + 1 dF0 BF0 , e(n + I)2

dx2 + x dx dt+ x2 ^ f

= 0, (6.2)

with x and f given in terms of r and p by equations (2.4) and (2.5)
respectively, and n = (b + 1)/(1 — b). If b = \ then the separable equation
becomes

d2F0 dFtt dFt> [ 2 «92F() BF0, 1 «92F,,

with x and / given by equations (2.4) and (2.5). Note that putting KX/KD = e = 0
in (6.2) and (6.3) we obtain the spherically symmetric forms (2.6).

For equation (6.2) the similarity variable TJ is again (4.13) viz.

r]=xl[{t-tsf+as}K

and the solution for Fn(r, 6, <f>, p) in terms of 17, /, /x and <£ is

(6.4)

in which PT(fJ-) and Q7((i.) are associated Legendre functions with /, m
integers and m § /. The function F(TJ) depends on an arbitrary parameter a,.
If a, 7*0,

p [ ]
x [AM(kX/V(-a,) + k(l + a 1 + £AV(-O,)T,2)

a.) + l(l + a i + e,12V(-a,)v2)], (6.5)
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and if a, = 0,

= r,- [A I( ( V * r , ) + BK((V~xr,)], (6.6)

where

£ = [el(l + \)+n2]\ (6.7)

For equation (6.3), the similarity variable -q and the similarity solution
depend on the diffusion coefficient parameter e = KJK^ and on an arbitrary
parameter A and we have three forms of solution.

(a) If KjKlt=e^0, A ̂  0, the similarity variable is

Tj=x-h('-'.)2/A, (6.8)

and the corresponding solution for F0(r, 6, <f>, p) is

Fo = exp[ - y\t - f5)Vl2A2 + h(t~ OVA + y(fl -

s'"* (6.9)

where

(b) If KJKI{= e^O and A = 0, the similarity variable is

V=t-t., (6.11)

and the solution is

"im* (6.12)

(c) For the special case of (6.3) with KJK% = e = 0, the solution is

Fn=u(x,t)h(e,4>), (6.13)

where u(x,t) is the spherically symmetric solution for K = K0(p)r, given in
equations (4.22), (4.24) and (4.25), and h(6,<t>) is an arbitrary function of 9
a n d <{>.

7. Concluding remarks

The main aim of this paper has been to construct similarity solutions of
the steady-state equation of transport for cosmic-rays in the interplanetary
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region with a diffusion tensor proportional to Ka(p)rb, and a radial solar-wind
velocity, of constant speed V. The similarity solutions obtained are (4.15),
(4.22), (6.4), (6.9) and (6.12); they are new results containing many new special
cases.

Complete details of the derivation of the spherically symmetric similarity
solutions were given (section 4). The group methods used have also been
applied to derive solutions for non-spherically-symmetric models, and exam-
ples of non-spherically symmetric solutions for a diffusion tensor symmetric
about the radial direction are listed (section 6). The detailed derivations of
these latter solutions are not presented here, but are available in Webb ([21]
Ph.D. thesis).

Although not developed here, the spherically symmetric solutions can be
used to obtain solutions in which the distribution function is known on a
boundary at infinity. These are called galactic-spectrum solutions. One
example of these solutions has been obtained by Fisk and Axford [10], using
particular cases of the more general separation variables deduced here.

The special solutions obtained in section 5 for which the similarity
variable TJ is solely a function of r are of particular interest in cosmic-ray
studies. This is because it is possible to use them when the distribution
function F0(r,p) is specified at one fixed radial distance rb (say) and appro-
priate boundary conditions are specified at another. Note that with TJ = 17 (r),
the boundary spectrum F,,(rb,p) must have a p dependence dictated by the
solution. However, this limitation may be overcome by using a suitable
superposition of the solutions obtained here (see last paragraph).

The solutions in all cases were obtained for infinitesimal generators X, T,
I) of the form

X = X(x,t), T=T(t), U=uf(x,t) + g(x,t),

(equations 4.2) for the case g = 0, y^ 0. Further solutions could be obtained
with g(x, t) a non-trivial solution of the homogeneous equation of transport
(2.1). The similarity solutions were constructed from the "classical" subgroup
of the transport equation. It is possible that more general solutions could be
obtained by using the "non-classical" procedure of Bluman and Cole [5].

The generators were obtained both for the equation of transport with no
sources [(3.18), (3.21] and for the case with a monoenergetic source [(3.20),
(3.22)]. The subgroup admitted by the equation of transport with a
monoenergetic source term can be used to derive the monoenergetic-source
solution given in Webb and Gleeson [22] without proof and by Toptygin [20]
who derived it without group methods.

The derivation of the monoenergetic-source solution will be given in a
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further paper. Also in preparation is a paper showing how, using the present
reults, solutions may be obtained for the general boundary value problem in
which F,,(r, p) may have any specified form on a boundary at r = rb.
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