
TPLP 23 (5): 1029–1069, 2023. c© The Author(s), 2022. Published by Cambridge University Press.

doi:10.1017/S1471068422000035 First published online 4 March 2022
1029

Specifying and Reasoning about CPS through the
Lens of the NIST CPS Framework

THANH HAI NGUYEN, MATTHEW BUNDAS∗, TRAN CAO SON∗
Department of Computer Science, New Mexico State University, Las Cruces, USA

(e-mails: thanhnh@nmsu.edu, bundasma@nmsu.edu, stran@nmsu.edu)

MARCELLO BALDUCCINI, KATHLEEN CAMPBELL GARWOOD
Saint Joseph’s University, Philadelphia, USA

(e-mails: mbalducc@sju.edu, kcampbel@sju.edu)

EDWARD R. GRIFFOR
National Institute of Standards and Technologies, Gaithersburg, USA

(e-mail: edward.griffor@nist.gov)

submitted 4 June 2021; revised 24 October 2021; accepted 21 January 2022

Abstract

This paper introduces a formal definition of a Cyber-Physical System (CPS) in the spirit of the
CPS Framework proposed by the National Institute of Standards and Technology (NIST). It
shows that using this definition, various problems related to concerns in a CPS can be precisely
formalized and implemented using Answer Set Programming (ASP). These include problems
related to the dependency or conflicts between concerns, how to mitigate an issue, and what
the most suitable mitigation strategy for a given issue would be. It then shows how ASP can
be used to develop an implementation that addresses the aforementioned problems. The paper
concludes with a discussion of the potentials of the proposed methodologies.

KEYWORDS: artificial intelligence, knowledge representation, automated reasoning and plan-
ning, cyber-physical system, answer set programming, concern satisfaction, CPS ontology

1 Introduction

The utility (potable water, wastewater) distribution systems, the electric power grid, the

transportation network, automated driving systems (ADS), hospital robots, and smart-

home systems are a few examples of cyber-physical systems (CPS)1 that are (or soon

to be) a part of our daily life. Before any CPS is deployed into the real-world, several

concerns need to be investigated and addressed, for example, why should someone trust

that the CPS will perform its functions safely, securely and reliably? How will such a

system respond to a certain critical conditions and will that response be acceptable? In

other words, evidence must be gathered and argued to be sufficient to conclude that

critical properties of a CPS have been assured before its deployment. For financial and

∗ Matthew Bundas has been supported by the GAANN grant #P200A180005. Tran Cao Son has been
partially supported by the following NSF grants 1914635, 1757207, and 1812628.

1 For brevity, we use CPS to stand for both the plural and the singular cyber-physical system.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035
https://orcid.org/0000-0001-9996-4720
mailto:thanhnh@nmsu.edu
mailto:bundasma@nmsu.edu
mailto:stran@nmsu.edu
mailto:mbalducc@sju.edu
mailto:kcampbel@sju.edu
mailto:edward.griffor@nist.gov
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068422000035&domain=pdf
https://doi.org/10.1017/S1471068422000035

1030 T. H. Nguyen et al.

practical reasons, the validation and verification of a CPS should be done as early as

possible, starting with its design. CPS are complex systems that evolve with use, requiring

a principled methodology and tools for developing an assurance case before release to

the market. Such a methodology and the tools for applying it are two key contributions

of this paper. We present here a formalization of a CPS with a clearly defined semantics

that enables the assessment of critical system properties. The need for such a foundation

for assurance can be seen in the next example.

Example 1

Suppose that we would like to develop an Automated Driving System (ADS). We have

two constraints that we would like to enforce: (a) packets sent from the wind-sensor, a

part of the situational awareness module (SAM), to the main processor must be fast and

reliable; (b) all communication channel must be encrypted. We will refer to (a) and (b)

as an Integrity concern and Encryption concern, respectively.

Consider a situation in which the ADS has only one possible communication channel,

which is fast, reliable when encryption is disabled, but is not when encryption is enabled.

In this situation, the two constraints are in conflict with each other. It is impossible to

satisfy both of them.

Assume that we also have some preference, called Verification, which is related to the

verification of received data. Encrypted data would have been preferred to non-encrypted

one. If the wind-sensor uses the non-encrypted socket communication, it can satisfy (or

positively affect) the Integrity concern but it does not satisfy (or negatively affect) the

Verification preference.

In this paper, we view a CPS as a dynamic system that consists of several components

with various constraints and preferences which will be referred as concerns hereafter.

Given a concrete state of the system, a concern might or might not be satisfied. We aim

at laying the mathematical foundation for the study of CPS’ concerns. This foundation

must allow CPS developers and practitioners to represent and reason about the concerns

and answer questions such as (i) will a certain concern or a set of concerns be satisfied?

(ii) is there any potential conflict between the concerns? and (iii) how can we generate

the best plan that addresses an issue raised by the lack of satisfaction of a concern? Read-

ers familiar with research in representing and reasoning about dynamic systems might

wonder whether well-known formalisms for representing and reasoning about dynamic

systems such as automata, action languages, Markov decision process, etc. could be used

for this purpose. Indeed, our proposed framework extends these formalisms by adding a

layer for modeling the components and concerns in CPS.

To achieve our goal, we propose a formalism for representing and reasoning about con-

cerns of CPS. We will focus on the properties described in the CPS Framework (CPSF)

proposed by the CPS Public Working Group (CPS PWG) organized by the National

Institute of Standards and Technology (NIST) (Griffor et al. 2017a; Griffor et al. 2017b;

Wollman et al. 2017). This framework defines several important concepts related to CPS

such as facets (modes of the system engineering process: conceptualization, realization

and assurance), concerns (areas of concern), and aspects (clusters of concerns: functional,

business, human, trustworthiness, timing, data, composition, boundaries, and lifecycle).

These concepts are organized in an ontology which is easily extensible and allows us to

better manage development and implementation within, and across, multiple application

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1031

domains. We formally propose the notion of a CPS system that (i) considers constraints

among concerns; (ii) enables the automatic identification of conflicts between concerns;

and (iii) enables the application of planning techniques in computing mitigation strate-

gies. Building and establishing upon CPSF are important properties of our research,

which distinguish it from much of the work done on CPS so far. While most of the prior

research is focused on a specific class of CPS or of aspects, for example, CPS for smart

grids or concerns related to cybersecurity (Uluagac et al. 2019), the methodology we

provide is intentionally domain-independent and applicable to any class of CPS.

The paper is organized as follows. Section 2 presents a brief overview of the CPS

framework, answer set programming, action language, and reasoning with ontologies us-

ing answer set programming. Section 3 contains the main contribution of the paper, a

formalization of a CPS theory, which includes a specification of CPS domain and the

semantics defining when a concern is satisfied. It also formally defines several reason-

ing tasks related to the satisfaction of concerns such as (i) when is a concern satisfied;

(ii) what are the most/least trustworthy components of a CPS system; (iii) is the CPS

system compliant; (iv) computing a mitigation strategy for a system when some con-

cerns become unsatisfied; (v) which mitigation strategy has the best chance to succeed.

Section 4 provides an answer set programming implementation of the tasks. The paper

concludes with the discussion of the related work. The paper is arranged in a way such

that it can be of interest to different groups of readers. Specifically, it separates the for-

mal definitions of a CPS, and the reasoning tasks associated with it, from a concrete

implementation of the reasoning tasks. As such, a reader only interested in the formal

theories would likely be interested in Section 3. On the other hand, the code in Section 4

would be of interest to readers who would like to experiment with their own CPS.

2 Background

This section reviews the background notions that will be used in the paper, including the

CPS ontology, answer set programming, and the use of logic programming in ontology

reasoning.

2.1 NIST CPS framework and the CPS ontology

One of the major challenges in designing, maintaining and operating CPS is the diver-

sity of areas of expertise involved in these tasks, and in the structure of the CPS itself.

For example, developing a “smart ship” (Moschopoulos 2001) involves close interaction

among, and cooperation of, experts in disciplines ranging from cybersecurity to air con-

ditioning systems and from propulsion to navigation. As demonstrated by, for example,

NASA’s Mars Climate Orbiter,2 ensuring a shared understanding of a CPS and the in-

teroperability of its components is an essential step towards its success – a goal that is

made even more elusive by the fact that the areas of knowledge relevant to a CPS vary

greatly depending to the type of CPS considered.

For this purpose, NIST recently hosted a Public Working Group on CPS with the

aim of capturing input from those involved in CPS to define a CPS reference framework

2 https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/
https://doi.org/10.1017/S1471068422000035

1032 T. H. Nguyen et al.

supporting common definitions and facilitating interoperability between such systems,

regardless of the type of CPS considered. A key outcome of that work was the CPS

Framework (Release 1.0, published as three separate NIST Special Publications Griffor

et al. 2017a; Griffor et al. 2017b; Wollman et al. 2017), which proposes a means of describ-

ing three facets during the life of a CPS: conceptualization, realization, and assurance of

CPS; and to facilitate these descriptions through analytical lenses, called aspects, which

group common concerns addressed by the builders and operators of the CPS. The CPS

Framework articulates the artifacts of a CPS in a precise way, including the concerns

that motivate important requirements to be considered in conceptualizing, realizing (in-

cluding operating), and assuring CPS. Albeit helpful, being a reference framework the

CPS Framework only helps with the specification of a CPS and the discussion among

experts. It does not, by itself, reduce the amount of work necessary to analyze the CPS

and its evolution of the CPS lifecycle.

This realization gave impulse to the investigation that ultimately resulted in the CPS

Ontology (Balduccini et al. 2018; Nguyen et al. 2020a), which provides a CPS analysis

methodology based on the CPS Framework featuring a vocabulary that describes and

supports the understanding and development of new and existing CPS, including those

designed to interact with other CPS and function in multiple interconnected infrastruc-

ture environments.

At the core of the CPS Framework and of the CPS Ontology are the notions of do-

mains, facets (conceptualization, realization and assurance), aspects and concerns, and

a cyber-physical functional decomposition. The product of the conceptualization facet is

a model of the CPS (requirements added to address prioritized concerns), the product of

the realization facet is a CPS satisfying the model and the product of the assurance facet

is assurance case for the prioritized set of concerns. Domains represent the different ap-

plication areas of CPS such as automated driving systems, electrical grid, etc. Concerns

are characteristics of a system that one or more of its stakeholders are concerned about.

They are addressed throughout the lifecycle of a CPS, including development, mainte-

nance, operation and disposal. Requirements are assertions about the state variables of a

CPS aimed at addressing the concerns. The reader should note that, in line with the cur-

rent CPSF specification, we consider the term property to be a synonym of requirement,

and we use the two terms interchangeably in the rest of this paper. Artifacts are the

elements of products of the facets for a CPS and include requirements, design elements,

tests, and judgments. Aspects are the ten high-level concerns of the CPS Framework:

functional, business, human, trustworthiness, timing, data, communication, boundaries,

composition, and lifecycle.

• Functional aspect is a set of concerns related to the sensing, computational, control,

communications and actuation functions of the CPS.

• Business aspect includes the concerns about enterprise, time to market, environ-

ment, regulation, cost, etc.

• Human aspect is a set of concerns related to how a CPS is used by humans or

interacts with them.

• Trustworthiness aspect is a set of concerns related to the trustworthiness of CPS

including security, privacy, safety, reliability, and resilience. In this paper we adopt

the definition of trustworthiness from the NIST CPS Framework, where the term is

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1033

taken to denote the demonstrable likelihood that the system performs according to

designed behavior under any set of conditions as evidenced by its characteristics.3

• Timing aspect: Concerns about time and frequency in CPS, including the genera-

tion and transport of time and frequency signals, time-stamping, managing latency,

timing composability, etc.

• Data aspect includes the concerns about data interoperability including data se-

mantics, identify operations on data, relationships between data, and velocity of

data.

• Communications aspect includes the concerns about the exchange of information

between components of a CPS.

• Boundaries aspect is set of concerns about the interdependence among behavioral

domains. Concerns related to the ability to successfully operate a CPS in multiple

application area.

• Composition aspect includes the concerns about the ability to compute selected

properties of a component assembly from the properties of its components. Com-

positionality requires components that are composable: they do not change their

properties in an assembly. Timing composability is particularly difficult.

• Lifecycle aspect: Concerns about the lifecycle of CPS including its components.

The CPS Ontology defines concepts and individuals related to concepts (with focus on

Trustworthiness) and the relationships between them (e.g. has-subconcern). Figure 2,

excluding the nodes labeled CAM, SAM and BAT and links labeled “relates” and “active,”

shows a fragment of the CPS ontology where circle nodes represent specific concerns and

gray rectangle nodes represent properties. To facilitate information sharing, the CPS

Ontology leverages standards such as the Resource Description Framework (RDF.4) and

the Web Ontology Language (OWL5) for describing the data, representing the entities

and their relationships, formats for encoding the data and related metadata for sharing

and fusing. An entity or relationship is defined in the ontology by an RDF-triple (subject,

predicate, object). Below are the main classes and relationships in the CPS ontology.

Aspects and Concerns. The ontology defines the highest-level concept of Concern with

its refinement of Aspect. In the concern tree in Figure 1, the circle nodes of a concern tree

represent specific concerns which are individuals of class Concern. The root nodes of the

concern tree is a particular kind of concern that is an instance of class Aspect (subclass of

Concern). Specific concerns are represented as individuals: Trustworthiness as an indi-

vidual of class Aspect, Security and Cybersecurity of class Concern. Edges linking aspects

and concerns are represented by the relation has-subconcern. A relation has-subconcern

is used to associate a concern with its sub-concerns. Thus, Trustworthiness aspect

has-subconcern Security, which in turn has-subconcern Cybersecurity.

Properties. Properties of a CPS are represented by individuals of class Property. In

the CPS Framework, a concern can be addressed by a combination of properties. An

edge that links a property p with an aspect or concern c is represented by the rela-

3 This is a pragmatic choice dictated by our intent to provide a formal account of the NIST CPS
Framework. The debate on a universally accepted definition of trustworthiness is on-going and is
beyond the scope of this paper.

4 https://www.w3.org/TR/rdf-concepts/.
5 https://www.w3.org/TR/owl-features/.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/owl-features/
https://doi.org/10.1017/S1471068422000035

1034 T. H. Nguyen et al.

Fig. 1. NIST CPS ontology.

tion addressed-by, which says that concern c is addressed by property p. For example

in Figure 2 (LKAS domain), concern Integrity has been addressed by some properties:

Secure-Boot, Advanced-Mode, Powerful-Mode, Normal-Mode and Saving-Mode.

To ease the reading, we provide a summary of the main classes and relationships in

the CPS ontology in Table 1.

2.2 Answer set programming

Answer Set Programming (ASP) (Marek and Truszczyński 1999; Niemelä 1999) is a

declarative programming paradigm based on logic programming under the answer set

semantics. A logic program Π is a set of rules of the form:

c← a1, . . . , am, not b1, . . . , not bn

where c, ai’s, and bi’s are literals of a propositional language
6 and not represents (default)

negation. c can be absent. Intuitively, a rule states that if ai’s are believed to be true

and none of the bi’s is believed to be true then c must be true. For a rule r, r+ and r−,

6 For convenience, we often use first order logic literals under the assumption that they represent all
suitable ground instantiations.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1035

Fig. 2. CPS Ontology and LKAS domain.

referred to as the positive and negative body, respectively, denote the sets {a1, . . . , am}
and {b1, . . . , bn}, respectively.
Let Π be a program. An interpretation I of Π is a set of ground atoms occurring in Π.

The body of a rule r is satisfied by I if r+ ⊆ I and r− ∩ I = ∅. A rule r is satisfied by

I if the body of r is satisfied by I implies I |= c. When c is absent, r is a constraint and

is satisfied by I if its body is not satisfied by I. I is a model of Π if it satisfies all rules

in Π.

For an interpretation I and a program Π, the reduct of Π w.r.t. I (denoted by ΠI) is

the program obtained from Π by deleting (i) each rule r such that r−∩I �= ∅, and (ii) all

atoms of the form not a in the bodies of the remaining rules. Given an interpretation I,

observe that the program ΠI is a program with no occurrence of not a. An interpretation

I is an answer set (Gelfond and Lifschitz 1990) of Π if I is the least model (wrt. ⊆)
of ΠI .

A program Π can have several answer sets, one answer set, or no answer set. Π is said

to be consistent if it has at least one answer set; it is inconsistent otherwise. Several

extensions (e.g. choice atoms, aggregates, etc.) have been introduced to simplify the use

of ASP. We will use and explain them when needed. Given a program Π and an atom

a, we write Π |= a to say that a belongs to every answer set of Π. Π |∼ a to say that a

belongs to at least one answer set of Π.

We illustrate the concepts of answer set programming by showing how the 3-coloring

problem of a bi-directed graph G can be solved using logic programming under the answer

set semantics. Let the three colors be red (r), blue (b), and green (g) and the vertex set

of G be {0, 1, . . . , n}. Let Π (G) be the program consisting of

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1036 T. H. Nguyen et al.

Table 1. Main components of the CPS ontology.

Class Meaning

Concern Concerns that stakeholders have w.r.t. to a system, such as security,
integrity, etc. They are represented in the ontology as individuals.
The link between a concern and its sub-concerns is represented by
the has-subconcern relation

Aspect High-level grouping of conceptually equivalent or related cross-
cutting concerns (i.e. human, trustworthiness, etc). In the ontology,
Aspect is subclass of class Concern

Property Class of the properties relevant to a given CPS. The fact that a
property addresses a concern is formalized by relation addressed-by

Configuration Features of a CPS that characterize its state, for example, if a com-
ponent is on or off. When property satisfaction can change at run-
time, corresponding individuals will be included in this class

Action and constraint Actions are those within the control of an agent (e.g. an operator)
and those that occur spontaneously. Constraints capture dependen-
cies among properties (e.g. mutual exclusion)

Object property Meaning

cpsf:hasSubCon The object property represents the has-subconcern relationship
between the concerns

cpsf:addrConcern The object property represents the addressed-by relation between
a concern and a property

cpsf:impactPositively The object property represents positive impact relation between a
property and a concern

• the set of atoms edge (u, v) for every edge (u, v) of G,

• for each vertex u of G, the rule stating that u must be assigned one of the colors

red, blue, or green:

1{color (u, g) ; color (u, r) ; color (u, b)}1←
This rule uses the choice atom, introduced in Niemelä et al. (1999), to simplify the

use of ASP. This atom says that exactly one of the atoms color (u, g), color (u, r),

and color (u, b) must be true.

• for each edge (u, v) of G, three rules representing the constraint that u and v must

have different color:

← color (u, r) , color (v, r) , edge (u, v)

← color (u, b) , color (v, b) , edge (u, v)

← color (u, g) , color (v, g) , edge (u, v)

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1037

It can be shown that for each graph G, (i) Π (G) has no answer set, that is, is inconsistent

iff the 3-coloring problem of G does not have a solution; and (ii) if Π (G) is consistent

then each answer set of Π (G) corresponds to a solution of the 3-coloring problem of G

and vice versa.

2.3 Action language B

We review the basics of the action description language B (Gelfond and Lifschitz 1998).

An action theory in B is defined over two disjoint sets, a set of actions A and a set of

fluents F. A fluent literal is either a fluent f ∈ F or its negation ¬f . A fluent formula

is a propositional formula constructed from fluent literals. An action domain is a set of

laws of the following form:

Executability condition: executable a if p1, . . . , pn (1)

Dynamic law : a causes f if p1, . . . , pn (2)

Static Causal Law : f if p1, . . . , pn (3)

where f and pi’s are fluent literals and a is an action. (1) encodes an executability

condition of an action a. Intuitively, an executability condition of the form (1) states that

a can only be executed if pi’s hold. (2), referred to as a dynamic causal law, represents

the (conditional) effect of a. It states that f is caused to be true after the execution

of a in any state of the world where p1, . . . , pn are true. When n = 0 in (2), we often

omit laws of this type from the description. (3) represents a static causal law, that is, a

relationship between fluents. It conveys that whenever the fluent literals p1, . . . , pn hold

then so is f . For convenience, we sometimes denote the set of laws of the form (3), (2),

and (1) by K, DD, and DE , respectively, for each action domain D.

A domain given in B defines a transition function from pairs of actions and states7

to sets of states whose precise definition is given below. Intuitively, given an action a

and a state s, the transition function Φ defines the set of states Φ(a, s) that may be

reached after executing the action a in state s. If Φ(a, s) is an empty set it means that

the execution of a in s results in an error. We now formally define Φ.

Let D be a domain in B. A set of fluent literals is said to be consistent if it does not

contain f and ¬f for some fluent f . An interpretation I of the fluents in D is a maximal

consistent set of fluent literals of D. A fluent f is said to be true (resp. false) in I iff

f ∈ I (resp. ¬f ∈ I). The truth value of a fluent formula in I is defined recursively over

the propositional connectives in the usual way. For example, f ∧g is true in I iff f is true

in I and g is true in I. We say that a formula ϕ holds in I (or I satisfies ϕ), denoted by

I |= ϕ, if ϕ is true in I.

Let u be a consistent set of fluent literals and K a set of static causal laws. We say

that u is closed under K if for every static causal law

f if p1, . . . , pn

in K, if u |= p1 ∧ . . . ∧ pn then u |= f . By ClK (u) we denote the least consistent set

of literals from D that contains u and is also closed under K. It is worth noting that

7 states are defined later.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1038 T. H. Nguyen et al.

ClK (u) might be undefined. For instance, if u contains both f and ¬f for some fluent f ,

then ClK (u) cannot contain u and be consistent; another example is that if u = {f, g}
and K contains

f if h and ¬h if f, g

then ClK (u) does not exist because it has to contain both h and ¬h, which means that

it is inconsistent.

Formally, a state of D is an interpretation of the fluents in F that is closed under the

set of static causal laws K of D.

An action a is executable in a state s if there exists an executability proposition

executable a if f1, . . . , fn

in D such that s |= f1 ∧ . . . ∧ fn. Clearly, if n = 0, then a is executable in every state of

D. The direct effect of an action a in a state s is the set

e (a, s) = {f | a causes f if f1, . . . , fn ∈ D, s |= f1 ∧ . . . ∧ fn}.
For a domain D, Φ(a, s), the set of states that may be reached by executing a in s, is

defined as follows.

1. If a is executable in s, then

Φ (a, s) = {s′ | s′ is a state and s′ = ClK (e (a, s) ∪ (s ∩ s′))};
2. If a is not executable in s, then Φ (a, s) = ∅.
Every domain D in B has a unique transition function Φ, which we call the transition

function of D. The transition function allows one to compute the set of states reached

by the execution of a sequence of actions α = [a1, . . . , an] from a state s0, denoted by

Φ̂ (α, s0), as follows:

1. If n = 0 then Φ̂ (α, s0) = s0
2. If n > 0 then Φ̂ (α, s0) = ∪u∈Φ(a1,s0)Φ̂ (α′, u) where α′ = [a2, . . . , an] and if

Φ̂ (α′, u) = ∅ for some u then Φ̂ (α, s0) = ∅.

2.4 Representation and reasoning with CPS ontology in ASP

Various researchers have explored the relationship between ASP and the Semantic Web

(e.g. Eiter 2007; Nguyen et al. 2018b;a; 2020b), in particular with the goal of leveraging

existing ontologies. In these works, an ASP program is used for reasoning about classes,

properties, inheritance, relations, etc. Given ASP’s non-monotonic nature, it also provides

sufficient flexibility for dealing in a principled way with default values, exceptions and

for reasoning about the effects of actions and change.

We use a similar approach in this paper to leverage the existing CPS Ontology for

reasoning tasks related to CPS and concerns. Our approach includes the ability to query

the CPS Ontology for relevant knowledge and provide it to an ASP-based reasoning com-

ponent. Because the present paper is focused on the latter, for simplicity of presentation

we assume that all relevant classes, instances, relations, properties of the CPS ontology

are already encoded by an ASP program. We denote this program by Π(Ω) where Ω

denotes the ontology, which is the CPS ontology in this case. We list the predicates that

will be frequently discussed in this paper.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1039

• class(X): X is a class;

• subClass(X,Y): X is a subclass of Y;

• aspect(I) (resp. concern(I), prop(I), decomp func(I)): I is an individual of class

aspect (resp. concern, property, decomposition function);

• subCo(I,J): J is sub-concern of I; and

• addBy(C,P): concern C is addressed by property P (a link from a property P to a

concern C in the ontology);

• positiveImpact(P,C): The satisfaction of property P impacts positively on the sat-

isfaction of concern C.

• func(F,C): F is a functional decomposition of concern C.

Listing 1. Π (Ω) : ASP program for CPS Ontology Ω

1 class(X) :- RDFtriple(X,"rdf:type","owl:Class ").
2 subClass(X,Y) :- RDFtriple(X,"rdfs:subClassOf",Y), class(X), class(Y).
3 subClass(X,Y) :- subClass(X,Z), subClass(Z,Y).
4 instance(I) :- RDFtriple(I,"rdf:type","owl:NamedIndividual ").
5 isInstanceOf(I,X) :- instance(I), class(X), RDFtriple(I,"rdf:type",X).
6 isInstanceOf(I,Y) :- instance(I), class(X), class(Y), subClass(X,Y),

isInstanceOf(I,X).
7 concern(C) :- instance(C), isInstanceOf(C,"cpsf:Concern ").
8 aspect(A) :- instance(A), isInstanceOf(A,"cpsf:Aspect ").
9 prop(P) :- instance(P), isInstanceOf(P,"cpsf:Property ").

10 decomp_func(F) :- instance(F), isInstanceOf(F,"cpsf:DecompFunc ").
11 subCo(I,J) :- concern(I), concern(J), RDFtriple(I,"cpsf:hasSubCon",J).
12 addBy(C,P) :- prop(P), concern(C), RDFtriple(P,"cpsf:addrConcern",C).
13 func(F,C) :- decomp_func(F), concern(C), RDFtriple(F,"cpsf:

decompFunctionOf",C).
14 positiveImpact(P,C) :- concern(C), prop(P), RDFtriple(P,"cpsf:

impactPositively",C).

Listing 1 represents the ASP program Π (Ω) of CPS Ontology Ω. The predicate

RDFtriple(S,P,O) denotes the RDF triple store which has been queried and extracted

from Ω by using SPARQL.8 Lines 1–2 define the class(X) and subClass(X,Y) based

on the ontology extraction. Line 3 reasons the extension about subclass relationship.

Lines 4–6 encode the definitions of instance(I) and isInstanceOf(I,X) with the similar

method. The concern, aspect, property and decomposition function instances are defined

in Lines 7–10. And, the three rules in Lines 11–14 represent the encoding of subCo(I,J),

addBy(C,P), func(F,C) and positiveImpact(P,C) relationships respectively.

Given a collection of individuals in the CPS ontology Ω, Π (Ω) will allow us to

check addBy (c, p), subCo (i, j), func (f, c), positiveImpact (p, c), etc; whether a con-

cern c is addressed by a property p, concern j is a sub-concern of concern i, f is func-

tional decomposition of concern c, the satisfaction of p impacts positively on concern

c, etc. respectively. They are written as: Π (Ω) |= addBy (c, p), Π (Ω) |= subCo (i, j),

Π (Ω) |= func (f, c),Π (Ω) |= positiveImpact (p, c), etc.

Similar rules for reasoning about the inheritance between concerns, inheritance between

subconcerns and concerns, etc. are introduced whenever they are used subsequently.

We note that the CPS framework does come with an informal semantics about when

a concern is supposedly be satisfied. The work in Balduccini et al. (2018) provides a

8 https://www.w3.org/TR/rdf-sparql-query/.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1017/S1471068422000035

1040 T. H. Nguyen et al.

preliminary discussion on how the satisfaction of a concern can be determined. It does

not present a formal description of the CPS system as in this paper and does not address

the functional decomposition issue though.

3 CPS theory specification

3.1 Formal definition

In this section, we develop a formal definition of CPS theory and its semantics. The

proposed notion of a CSP theory will allow one to specify and reason about the concerns

of the CPS. Our discussion will focus on Trustworthiness aspect in the CPS ontology

but the proposed methodology is generic and is applicable to the full CPS ontology. To

motivate the definition, we use the following example:

Example 2 (Extended from Balduccini et al. 2018)

Consider a lane keeping/assist system (LKAS) of an advanced car that uses a camera

(CAM) and a situational awareness module (SAM). The SAM processes the video stream

from the camera and controls the automated navigation system through a physical out-

put. In addition, the system also has a battery (BAT).

CAM and SAM may use encrypted memory (data encrypted) and a secure boot

(secure boot). Safety mechanisms in the navigation system cause it to shut down if

issues are detected in the input received from SAM. The CAM and SAM can be in

one of two operational modes, the basic mode (basic mode or b mode) and the advanced

mode (advanced mode or a mode). The two properties address concern Integrity relevant to

operation function. In advanced mode, the component consumes much more energy than

if it were in basic mode. BAT serves the system energy consumption and relates with

one of three properties, saving mode (s mode) or normal mode (n mode) or powerful mode

(p mode). Three properties address concern Integrity relevant to the energy functionality.

The relationship between SAM, CAM and BAT are: (1) If both SAM and CAM are in

advanced mode, the battery has to work in saving mode. (2) if CAM and SAM are in

basic mode, the battery can be in powerful mode or normal mode and (3) if one of SAM and

CAM is in advanced mode and the other one is in basic mode, then the battery must work

in normal mode.

The relationship between the LKAS domain and the CPS ontology is shown in Figure 2.

Informally, the CPSF defines that the concern Integrity is satisfied if secure boot is

satisfied and its two functionalities, operation and energy, are satisfied; the operation

functionality is satisfied if at least one of the properties {advanced mode, basic mode} is

satisfied; and the energy functionality is satisfied if there is at least one of {saving mode,

normal mode, powerful mode} properties is satisfied. Intuitively, this can be represented by

the following formula:

(secure boot) ∧ (advanced mode ∨ basic mode)

∧ (saving mode ∨ normal mode ∨ powerful mode)
(4)

The example shows that a CPS system is a dynamic domain and contains different

components, each associated with some properties which affect the satisfaction of con-

cerns defined in the CPS ontology. In addition, the satisfaction of concerns depends on

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1041

the truth values of formulae constructed using properties and a concern might be related

to a group of properties. We will write ω (c) to denote the set of properties that addresses

a concern c. We therefore define a CPS system as follows.

Definition 1 (CPS System)

A CPS system S is a tuple (CO,A, F,R,Γ) where:

• CO is a set of components;

• A is a set of actions that can be executed over S ;

• F is a finite set of fluents (or state variables) of the system;

• R is a set of relations that maps each physical component co ∈ CO to a set of

properties R (co) defined in the CPS ontology; and

• Γ is a set of triples of the form (c, fu, ψ) where c is a concern, fu is a functional

decomposition of concern c, and ψ is a formula constructed over ω (c).

In Definition 1, (A,F) represents the dynamic domain of S , Γ represents constraints on

the satisfaction of concerns in the CPSF ontology in S , and R encodes the properties of

components in S which are related to the concerns specified in the CPSF. As the truth

values of these properties can be changed by actions, we assume that

∪co∈COR (co) ∪ {active (co, p) | co ∈ CO, p ∈ R (co)} ⊆ F.
where active (co, p) is true means that the component co is currently active with property

p. (A,F) is an action theory as described in Subsection 2.3. Note that (A,F) can be non-

deterministic due to the presence of statements of the form (3). Although it is possible,

this rarely happens in practical applications. We will, therefore, assume that (A,F) is

deterministic throughout this paper. We illustrate Definition 1 in the following example.

Example 3

The CPS system in Example 2 can be described by Slkas = (COlkas, Alkas, Flkas,

Rlkas,Γlkas) where:

• COlkas = {SAM, CAM, BAT}.
• Flkas contains the following fluents:

— active (X, P) denotes that component X ∈ COlkas is working actively with

property P , for example, active(cam,basic mode), active(cam,data encrypted),

active(sam,finger printing) and active(bat,normal mode) states that the cam-

era is working in basic mode, with encrypted data, the SAM is authenticated

by fingerprinting method and the battery is working in normal mode.

— on (X) (off (X)) denotes that component X is (isn’t) ready for use.

— the set of properties that are related to the components (P denotes that the truth

value of property P), for example, basic mode, oauth, etc. These properties are

drawn in Figure 2 (rectangle boxes except the three components SAM, CAM,

BAT).

The relationship among the fluents are encoded below:

— active (BAT, saving mode) if active (SAM, advanced mode) , active (CAM,

advanced mode) which encodes the statement if both SAM and CAM are in

advanced mode, the battery has to work in saving mode.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1042 T. H. Nguyen et al.

— active (BAT, normal mode) if active (SAM, advanced mode) , active (CAM,

basic mode) and

active (BAT, normal mode) if active (SAM, basic mode) , active (CAM,

advanced mode) encode the statement if one of SAM and CAM is in advanced mode

and the other one is in basic mode, then the battery must work in normal mode.

— active (BAT, powerful mode) ∨ active (BAT, normal mode) if active (SAM,

basic mode) , active (CAM, basic mode) which encodes the statement if both

SAM and CAM are in basic mode, the battery can be in powerful mode or

normal mode.

• Alkas contains the following actions:

— switM (X, M): switching the component X to a mode M . The set of the form (1)

and (2) for the action that switches the CAM from basic mode to advanced mode

switM (cam, advanced mode) contains the following statements:

– executableswitM (cam, advanced mode)ifon (cam) , active (cam, basic mode)

which says that the action switM (cam, advanced mode) can only be executed

if the component CAM is on and in the basic mode.

– switM (cam, advanced mode) causes active (cam, advanced mode) ,

¬active (cam, basic mode).

This states that if we switch the component CAM to the advanced mode then

it is in the advanced mode and not in the basic mode.

The statements for switM (cam, basic mode) that switches the CAM from

advanced mode to basic mode are similar. And the similar statements for

switM (sam, basic mode) and switM (sam, advanced mode) which switch the

component SAM to basic mode and advanced mode respectively.

— There are also actions that switch other components to different modes or meth-

ods. These are:

– switA (X, A): switching between authorization methods where X = SAM .

– switV (X, V): switching between verification methods where X can be SAM

or CAM .

– switEM (X, EM): switching between encryption method where X can be SAM

or CAM .

– switEA (X, EA): switching between encryption algorithms where X can be

SAM or CAM .

The set of statements of the form (1) and (2) associated with these actions are

similar to those associated with switM (X, M) and is omitted here for brevity.

— tOn (P) and tOff (P) denote the actions of enabling and disabling the truth

value of property P , respectively. The sets of statements of the form (1) and

(2) associated to each of these actions is similar. We list those associated with

tOn (P) as an example:

– executable tOn (basic mode) if ¬basic mode: this can only be executed if

the system property is not in the basic mode.

– tOn (basic mode)causesbasic mode: set the system property to basic mode.

— patch (P) denotes action of patching some properties P with available patch

software. The set of statements for action patch (P) could be:

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1043

Fig. 3. Integrity and Authorization concerns with their functionalities and properties.

executablepatch (conn encrypted)if¬conn encrypted, availablePatch(conn encrypted)

patch (conn encrypted) causes conn encrypted

• Rlkas = {CAM �→ {ip filtering, algo DES, algo AES, algo RSA, data encrypted,

conn encrypted, mac check, protocol encrypted, secure boot, basic mode,

advanced mode, trusted auth device, trusted environment, iris scan}, SAM

�→ {data encrypted, algo RSA , algo DES, algo AES, protocol encrypted,

conn encrypted, firewall setup, mac check, ip filtering ,advanced mode,

basic mode, finger printing, two factors, iris scan, oauth , opt code,

email verify , ip check , trusted environment , secure boot}, BAT �→
{powerful mode, trusted environment, normal mode, saving mode}}.
The components and relations to the properties are illustrated by the arrow lines

with “relates” labels in the bottom part of Figure 2.

• Γlkas contains the following triples (see also Figure 3):

— (integrity, operation, advanced mode ∨ basic mode) says the satisfaction of for-

mula advanced mode ∨ basic mode addresses the concern integrity in the relevant

functional decomposition operation.

— (integrity, energy, saving mode ∨ normal mode ∨ powerful mode) denotes the for-

mula saving mode ∨ normal mode ∨ powerful mode addresses the concern integrity

in the relevant functional decomposition energy.

— (authorization, sign in, oauth ∧ opt code) denotes the satisfaction of formula

oauth ∧ opt code addresses the relevant functional decomposition sign in of the

concern authorization.

— (authorization, sign in, two factors ∨ finger printing ∨ iris scan) denotes

the formula two factors ∨ finger printing ∨ iris scan addresses the concern

authorization in the relevant functional decomposition sign in.

— (authorization, sign in, oauth ∧ ip check ∧ email verify) denotes that the con-

cern authorization with the relevant functional decomposition sign in is ad-

dressed by formula oauth ∧ ip check ∧ email verify.

In addition, the functional decomposition of the Integrity concern in-

dicates that the formula (secure boot) ∧ (advanced mode ∨ basic mode) ∧
(saving mode ∨ normal mode ∨ powerful mode) addresses the Integrity concern.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1044 T. H. Nguyen et al.

Likewise, the formula

trusted auth device ∧ trusted environment∧
(two factors ∨ finger printing ∨ iris scan ∨
(oauth ∧ opt code) ∨ (oauth ∧ ip check ∧ email verify))

addresses the Authorization concern.

Given a CPS system S with a set of fluents F , a state s of S is an interpretation of

F that satisfies the set of static causal laws of the form (3) (Subsection 2.3).

Definition 2 (CPS Theory)

A CPS theory is a pair (S , I) where S is a CPS system and I is a state representing

the initial configuration of S .

3.2 The semantics of CPS theories

Given (S , I) where S = (CO,A, F,R,Γ), the action domain (A,F) specifies a transition

function ΦS between states (Subsection 2.3). In each state, the satisfaction of a particular

concern in the CPSF is evaluated using the relationship R and the components C. We

will define this relation next. First, we note that a concern in a CPS can be related

to some components in S , directly through the R relation and the formulae in Γ or

indirectly through the inheritance in the CPS ontology. Observe that the development

of the CPS relies on the following intuition:

• A concern might have several sub-concern;

• A concern might be addressed by a set of functional decompositions which are

represented by Boolean formulae.

This leads to the following informal meaning of the notion of satisfaction of a concern in

a state of the CPS:

• For each concern c, if Γ does not contain any tuple of the form (c, fu, ψ) then c is

satisfied in a state s when every of its direct subconcerns is satisfied; for example,

the Trustworthiness concern is satisfied in a state s of the LKAS system if its

children, Safety, Reliability, Security, Resilience, and Privacy, are satisfied;

and every of its properties is satisfied.

• For each concern c, if Γ contains some tuple of the form (c, fu, ψ) then c is satisfied

when ψc = ∧(c,fu,ψ)∈Γψ is satisfied in s and every property p related to c–as

specified by the CPS ontology–is satisfied in s; for example, the Integrity concern

is satisfied in the state s of the LKAS system if the formula (4) is satisfied in s

where secure boot is a property related to Integrity and the other conjuncts are

the two disjunctions representing the two functional decomposition of Integrity.

Next, we formalize precisely the notion of satisfaction of a concern. Let Λ(c) be the

conjunction of ∧(c,fu,ψ)∈Γψ and all properties that are related to c and not appearing in

any formula of the form (c, fu, ψ) ∈ Γ. For example, in formula (4), the last two conjuncts

are the two functional decompositions of Integrity from Γlkas and the first conjunct is

a property that does not appear in any functional decomposition of Integrity. In the

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1045

following, we denote 〈c〉 is the set of descendants of c such that for each d ∈ 〈c〉, d has

no sub-concern.

Definition 3

Let s be a state in S = (CO,A, F,R,Γ) and c be a concern. We say that c is satisfied

in s, denoted by s |= c, if

• s |= Λ(c); and

• every sub-concern c′ of c is satisfied by s.

Having defined when a concern is satisfied in a state, we can define the notion of sat-

isfaction of a concern after the execution of a sequence of actions as follows. Recall the

transition function ΦS dictates how the system changes from one state to another state

and the set of states resulting from the execution of a sequence of actions α from a state

can be computed by Φ̂S . Therefore, we can define the satisfaction of a concern c after

Definition 4

Let (S , I) be a CPS theory, α a sequence of actions, and c a concern in the CPS Ontology.

c is satisfied after the execution of a sequence of actions α from the initial state I, denoted

by (S , I) |= c after α, iff

Φ̂S (α, I) �= ∅ ∧ ∀u ∈ Φ̂S (α, I) . [u |= c] (5)

In the above definition, the condition Φ̂ (α, I) �= ∅ guarantees that α is a valid sequence

of actions, that is, its execution in I does not fail. The second condition is the standard

definition of logical entailment.

Definitions 3–4 provide the basis for us to answer questions related to the satisfaction

of a concern in a state or after a sequence of actions is executed, that is, the concern sat-

isfaction problem. In the following, we will discuss other problems that are of importance

for the design and development of CPS systems.

3.3 Reasoning tasks in CPS

Knowing when a concern is (is not) satisfied is very important. We now discuss the issues

related to the satisfaction of concerns in a CPS. We focus on the following problems:

1. What is the most/least trustworthy9 component in a CPS?

2. Are there non-compliance in a given CPS? How to detect non-compliance?

3. What to do if an (external or internal) event occurs and leads to an undesirable

situation? How to recover from such situation?

4. What is a best or most preferred mitigation strategy for a given situation?

In what follows, we provide precise formulations of the aforementioned tasks and propose

solutions for them. For simplicity of presentation, we focus on discussing these questions

with respect to a given state. The answers to these questions after the execution of a

sequence of actions from the initial state can be defined similarly to the definition of

the satisfaction of a concern via the function Φ, as in Definition 4. Our implementation

covers both situations.

9 Recall that our discussion focuses on trustworthiness but it can easily be adapted to other aspects
defined in the CPS ontology.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1046 T. H. Nguyen et al.

3.3.1 Most/Least trustworthy components

Given S = (CO,A, F,R,Γ) and a state s in S . A component x ∈ CO might be related

to many concerns through the properties in R (x), whose truth values depend on the state

s. Recall that for each property p and component x, active (x, p) is true in s indicates that

component is active with property p in the state s; furthermore, the CPS ontology con-

tains the specification that p positively or negatively impacts a concern c. The latter are

defined by the predicates addBy (c, p) and positiveImpact (p, c) in Ω (Subsection 2.4). As

such, when a component is active with a property, it can positively impact a concern. For

example, in Figures 2 and 3, the property secure boot addresses the Integrity concern

and is described to impact positively on the satisfaction of Integrity concern by Ω. In

the current state, the component SAM is working on property secure boot. Assuming that

concern Integrity is satisfied in this state, we say that component SAM directly positively

affects to the Integrity concern through property secure boot. We say that a component

x directly impacts a concern c in state s through a property p if the following conditions

hold:

1. x works with property p in state s; and

2. p addresses concern c and p is true in s.

If x directly impacts c in state s through p and the CPS ontology specifies that the

satisfaction of property p impacts positively on the satisfaction of c and c is satisfied in

state s, then we say that x directly and positively affects c.

As the notion of concern satisfaction is propagated through the sub-concern relation-

ship, it is natural for us to define that component x impacts (resp. affects positively) con-

cern c through property p in a state s, denoted by impact (x, c, s) (resp. pos (x, p, c, s)),

if (i) x directly addresses (resp. direct positively affects) c through a property p; or (ii)

there exists some sub-concern c′ of c that is addressed (resp. positively affected) by x.

In the above example (see also Figure 2), the component SAM directly positively affects

to the Integrity concern through property secure boot then SAM also affects positively

concerns Cyber-Security, Security and Trustworthiness in the concern tree through prop-

erty secure boot.

Given a component x, the ratio between the number of concerns that are positively

affected by x and the number of concerns that are addressed by x characterizes how

effectively x influences the system. For this reason, we will use this number to characterize

the trustworthiness of components in the system. So, we define

tw (x, s) =
Σp∈R(x) | {c | s |= c ∧ positiveImpact (p, c) ∧ p ∈ s ∧ active (x, p)} |

Σp∈R(x) | {c | (s �|= c ∨ ¬positiveImpact (p, c)) ∧ addBy (c, p) ∧ p ∈ s ∧ active (x, p)} | +1

(6)

Assume that all concerns and properties are equally important, we could compare the

trustworthiness of a component x ∈ CO with that of a component x′ ∈ CO by comparing

the ratios tw.

Definition 5

For a CPS system S = (CO,A, F,R,Γ), x1, x2 ∈ CO, and state s of S ,

• x1 is more trustworthy than x2 in s, denoted by x1 �s x2 (or x2 is less trustworthy

than x1, denoted by x2 ≺s x1), if

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1047

— tw (x1, s) > tw (x2, s); or

— tw (x1, s) = tw (x2, s) = 0 and impact (x1, s) < impact (x2, s) where

impact (x, s) = Σp∈R(x) | {c | (s �|= c ∨ ¬positiveImpact (p, c)) ∧ addBy (c, p) ∧
p ∈ s ∧ active (x, p)} |.

• x1 is as trustworthy as x2 in s, denoted by x1 ∼s x2, if
— tw (x1, s) = tw (x2, s) > 0; or

— tw (x1, s) = tw (x2, s) = 0 and impact (x1, s) = impact (x2, s).

x1 �s x2 denotes that x1 �s x2 or x1 ∼s x2. x is a most (least) trustworthy component

of S in s if x �s x′ (x′ �s x) for every x′ ∈ CO.

Proposition 1

Let S = (CO,A, F,R,Γ) be a CPS system and s be a state in S . The relation �s over
the components of S is transitive, symmetric, and total.

Proof

It is easy to see that for any pair of components, either c1 �s c2, c2 ∼s c1, or c1 ∼s c2.
Furthermore, c ∼s c. It follows that �s is therefore transitive, symmetric, and total.

3.3.2 Non-compliance detection in CPS

The design of a CPS is often subject to competing constraints from various people or

organizations with different focus and type of expertise. This may result in sets of con-

straints that are unsatisfiable, for example, a set of concerns cannot (never) be satisfied,

giving rise to a non-compliance. Example 1 shows that there exists a situation in which

competing concerns cannot be satisfied at the same time. In general, the problem is

formulated as follows.

Definition 6 (Lack of Compliance)

Given the CPS system S = (CO,A, F,R,Γ), an integer n, a set of actions SA ⊆ A, and
a set of concerns SC, we say that S is

1. weakly n-noncompliant wrt. (SA, SC) if there exists a sequence α of at most n

actions in SA and an initial state I, such that (S , I) �|= c after α for some concern

c ∈ SC.
2. strongly n-noncompliant wrt. (SA, SC) if for every sequence α of at most n actions

in SA and an initial state I, (S , I) �|= c after α for some concern c ∈ SC.
Given an integer k, weakly k-noncompliant implies that there is a potential that some

concern in the set SC of concerns might not be satisfied. Strongly k-noncompliant in-

dicates that there is always some concern that cannot be satisfied. Systems that are

strongly k-noncompliant might need to be re-designed.

It is easy to see that, by Definition 4, checking whether a system is weakly k-

noncompliant is equivalent to identifying a plan of length k or less that “makes some

concern unsatisfied.” On the other hand, checking whether a system is strongly k-

noncompliant is equivalent to identifying a plan of length less than k that “satisfies all

concerns.” Since we assume that the specification language for CPS is propositional and

planning for bounded plans is NP-complete, we can easily derive the following results:

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1048 T. H. Nguyen et al.

Proposition 2

Given S , (SA, SC), and k, checking whether S is weakly k-noncompliant is NP-complete

and checking whether S is strongly k-noncompliant is co-NP-complete.

Proof

This relies on the fact that checking whether a planning problem has a solution of length

k is NP-complete (e.g. the Plan-Length problem in Ghallab et al. 2004).

3.3.3 Mitigation strategies

Let S = (CO,A, F,R,Γ) be a CPS system and s be a state of S . When some concerns

are unsatisfied in s, we need a way to mitigate the issue. Since the execution of actions

can change the satisfaction of concerns, the mitigation of an issue can be achieved by

identifying a plan that suitably changes the state of properties related to the concerns.

The mitigation problem in a CPS can be defined as follows:

Definition 7 (Mitigation Strategy)

Let S = (CO,A, F,R,Γ) be a CPS domain and s a state in S . Let Σ be a set of concerns

in Ω. A mitigation strategy addressing Σ is a plan α whose execution at the initial state

s results in a state s′ such that for every c ∈ Σ, c is satisfied in s′.

Definition 7 assumes that all plans are equal. This is often not the case in a CPS

system. To illustrate this issue,

Example 4

Consider the LKAS system in Example 2. The initial state Ilkas is given by: CAM and

SAM are in basic mode and secure boot, BAT is in powerful mode and every properties in

Ilkas are observed to be True. The energy consumption constraints of BAT are encoded

in Listing 2. Figure 4 shows a fragment of the CPS theory that is related to the problem

described in this example.

Listing 2. Πclkas: Battery consumption constraints in Δlkas

1 h(active(bat,saving_mode),T) :- h(active(cam,advanced_mode),T),
h(active(sam,advanced_mode),T), step(T).

2 1{h(active(bat,powerful_mode),T); h(active(bat,normal_mode),T)}1 :-
h(active(cam,basic_mode),T), h(active(sam,basic_mode),T), step(T).

3 h(active(bat,normal_mode),T) :- h(active(X,advanced_mode),T), X!=Y,
h(active(Y,basic_mode),T), step(T).

4 :- h(active(bat,M1),T), h(active(bat,M2),T), M1!=M2, step(T).

A cyber-attack occurs and the controller module is attacked, which causes basic mode to

become False while advanced mode is (True). Given this information, we need a mitigation

strategy for the set Σ = {Integrity}. The mitigation strategies (with the length is 2) can

be generated as following:

• α1= [tOn(basic mode)]

• α2= [switM(cam,advanced mode) , switM(sam,advanced mode)]

• α3= [switM(sam,advanced mode) , switM(cam,advanced mode)]

• α4= [switM(sam,advanced mode) , tOn(basic mode)]

• α5= [switM(cam,advanced mode) , tOn(basic mode)]

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1049

Fig. 4. Current configuration of Δlkas related to Integrity concern after cyber-attack.

As shown in the example, it is desirable to identify the best mitigation strategy. In

this paper, we propose two alternatives. The first alternative relies on a notion called

likelihood of satisfaction of concerns and the second alternative considers the uncertainty

of actions.

Likelihood of Satisfaction (LoS) of Concerns We introduce a notion called likelihood of

satisfaction (LoS) of concern and use it to distinguish mitigation strategies. Our no-

tion relies on the positive impacts of properties on concerns within the system (Sub-

section 2.4). For example, property secure boot positively impacts Integrity in Exam-

ple 2 (denoted by positiveImpact(secure boot,integrity)). For a concern c, we denote

with rel+ (c) the set of all properties that positively impact a concern c. Furthermore,

rel+sat (c, s) is the set of properties in rel+ (c) which hold in state s. The ratio between

these two numbers can be used to characterize the positive impact degree of concern c in

state s as follows:

deg+ (c, s) =

⎧⎨
⎩
| rel+sat (c, s) |
| rel+ (c) | if rel+ (c) �= ∅

1 otherwise
(7)

We note that rel+sat and tw might appear similar but they are different in the following

way: rel+sat is concerned with the relationship between properties and concerns while tw

focuses on the relationship between components and concerns.

We define the likelihood of satisfaction of a concern as follows.

Definition 8 (Likelihood of Concern Satisfaction)

Given a CPS system S , a state s in S , and a concern c, the likelihood of the satisfaction

(LoS) of c in s, denoted by ϕLoS (c, s), is defined by:

ϕLoS (c, s) =

{
deg+ (c, s) ∗Πx∈sub(c)ϕLoS (x, s) if sub (c) �= ∅
deg+ (c, s) if sub (c) = ∅

(8)

where sub (c) is the set of subconcerns of c.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1050 T. H. Nguyen et al.

Having defined the LoS of different concerns, we can now use this notion in comparing

mitigation strategies. It is worth to mention that CPSF defines nine aspect, that is, top-

level concerns, (e.g. trustworthiness, functionality, timing, etc.). Let TCΩ be the set

of top-level concerns in the CPS ontology. We discuss two possibilities:

• Weighted LoS : Each top-level concern is associated with a number, that is, each

c ∈ TCΩ is associated with a weight Wc (e.g. Wfunctionality for functionality,

Wtrustworthy for trustworthiness, etc.). The weights represent the importance of

the top-level concerns in the CPS. They can be used to compute the weighted LoS

of a system S in state s

w (S , s) = Σc∈TCΩ
ϕLoS (c, s) ∗Wc (9)

This weighted LoS can be used to define a preference relation between mitiga-

tion strategies such as β ≺ α (α is better than β) iff maxs′∈ΦS (α,s) w (S , s′) ≥
maxs′∈ΦS (β,s) w (S , s′).

• Specified Preferences LoS : An alternative to the weighted LoS of a system is

to allow the users to specify a partial ordering over the set TCΩ which will

be used to define a preference relation among mitigation strategies using well-

known preference aggregation strategies (e.g. lexicographic ordering). For example,

if Functionality > Business then a mitigation strategy α is better than a miti-

gation strategy β, written as β ≺ α, iff maxs′∈ΦS (α,s) ϕLoS (Functionality, s
′) ≥

maxs′∈ΦS (β,s) ϕLoS (Business, s
′) .

It is easy to see that the above preference relation ≺ is also transitive, symmetric, and

reflexive and if some strategies exist then most preferred strategies can be computed.

Example 5 (Continuing from Example 4)

Let us consider the strategies generated in Example 4. All five mitigation strategies

(α1, α2, α3, α4 and α5) generated in Section 4.4 can be used to address the issue raised

by the cyber-attack. Specifically, the fragment of final state (Gαi
) relevant to Integrity

concern of each plan (αi) is given below:

• Gα1
is {CAM �→ basic mode, CAM �→ secure boot, SAM �→ basic mode, SAM �→

secure boot, BAT �→ powerful mode } or {CAM �→ basic mode, CAM �→ secure boot,

SAM �→ basic mode, SAM �→ secure boot, BAT �→ normal mode }.
In which, we define G1

α1
is {CAM �→ basic mode, CAM �→ secure boot, SAM �→

basic mode, SAM �→ secure boot, BAT �→ powerful mode }, and G2
α1

is {CAM �→
basic mode, CAM �→ secure boot, SAM �→ basic mode, SAM �→ secure boot, BAT �→
normal mode }.
• Gα2

and Gα3
: {CAM �→ advanced mode, CAM �→ secure boot, SAM �→ advanced mode,

SAM �→ secure boot, BAT �→ saving mode}
• Gα4

is {CAM �→ basic mode, CAM �→ secure boot, SAM �→ advanced mode, SAM �→
secure boot, BAT �→ normal mode}
• Gα5

is {CAM �→ advanced mode, CAM �→ secure boot, SAM �→ basic mode, SAM �→
secure boot, BAT �→ normal mode}

In each considered state, the statement X �→ P denotes that component X is working

with property P . For example, BAT �→ saving mode says that the battery is working in

saving mode.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1051

Considering the five final configurations of different mitigation strategies in the

example above, we have:

deg+
(
Integrity,G1

α1

)
= 0.6, ϕLoS

(
Integrity,G1

α1

)
= 0.6 ;

deg+
(
Integrity,G2

α1

)
= 0.4, ϕLoS

(
Integrity,G2

α1

)
= 0.4 ;

deg+ (Integrity,Gα2
) = 0.8, ϕLoS (Integrity,Gα2

) = 0.8;

deg+ (Integrity,Gα3
) = 0.8, ϕLoS (Integrity,Gα3

) = 0.8;

deg+ (Integrity,Gα4
) = 0.6, ϕLoS (Integrity,Gα4

) = 0.6 and

deg+ (Integrity,Gα5
) = 0.6, ϕLoS (Integrity,Gα5

) = 0.6

We also have that deg+ (availability,) = 1, deg+ (security,) = 1, deg+

(trustworthiness,) = 1, etc. In addition, we also have the LoS values of trustworthiness

aspect in the five different final configurations as following:

ϕLoS
(
Trustworthiness,G1

α1

)
= 0.0497,

ϕLoS
(
Trustworthiness,G2

α1

)
= 0.0331,

ϕLoS (Trustworthiness,Gα2
) = 0.0662,

ϕLoS (Trustworthiness,Gα3
) = 0.0662,

ϕLoS (Trustworthiness,Gα4
) = 0.0497, and

ϕLoS (Trustworthiness,Gα5
) = 0.0497.

Figure 5 shows the trustworthiness tree for the final configurations of mitigation

strategies α2 and α3 (Gα2
and Gα3

), where LoS values are computed and displayed as a

number at the top-left of each concern. In all 5 possible strategies, mitigation strategies

α2 and α3 are also the best mitigation strategies which are especially relevant to the

trustworthiness attribute, where the LoS of trustworthiness aspect in final state (Gα2

and Gα3
) is maximum. In this figure, the LoS of trustworthiness (root concern) is 0.0662

(llh sat(trustworthiness)=0.0662). By applying a similar methodology for all remaining

aspects (i.e. business, functional, timing etc.), we can calculate LoS values for all nine

aspects in CPS Ontology.

Mitigation Strategy with The Best Chance to Succeed Preferred mitigation strategies

computed using LoS of concern satisfaction assume that actions always succeeded. In

practice, actions might not always succeed. In this case, it is preferable to identify strate-

gies with the best chance of success. Assume that each action a is associated with a set

of statements of the form:

a success with v if X (10)

where v ∈ [0, 1] and X is a consistent set of literals in S . This statement says that if each

l ∈ X is true in a state s and a is executable in s then v is the probability of a’s execution

in s succeeds. We assume that if a occurs in two statements “a success with v1 if X1”

and “a success with v2 if X2” with X1 �= X2 then v1 = v2 or there exists p ∈ F such

that {p,¬p} ⊆ X1 ∪ X2. Furthermore, for a state s in which no statement associated

with some action a is applicable, we assume that a succeeds with probability 1 in s

if it is executable in s. It is easy to see that this set of statements defines a mapping

pr : A × States → [0, 1] where States denotes the set of all states of S and pr (a, s)

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1052 T. H. Nguyen et al.

Fig. 5. Trustworthiness concern tree with LoS of concerns computation.

represents the probability that the execution of a in s succeeds. Thus, the execution of

a sequence of actions (or a strategy) α = [a0, . . . , an−1] in a state s succeeds with the

probability Πn−1
i=0 pr (ai, si) where s0 = s, and for i > 0, si is the result of the execution of

ai−1 in si−1. This can be used to define a preference relation between strategies similar

to the use of LoS of concern satisfaction, that is, we prefer strategies whose probability

of success is maximal. We omit the formal definition here for brevity.

It is worth mentioning that the specification by statements of the form (10) is at the

action level. It is assumed that if action a succeeds with a probability v, it means that

all of its potential effects will be achieved with the probability v. In some applications,

it might be more proper to consider a finer level of probabilistic specification of effects

such as if action a succeeds then with a probability pi, ei will be true, for i = 1, . . . , k.

To work with this type of applications, a probabilistic action language such as the one

proposed in Baral et al. (2002) or a specification using Markov decision process could be

used. We will leave the discussion related to this type of applications for the future.

4 An ASP-based implementation for reasoning tasks in CPS theories

This section develops an ASP encoding given a CPS theory, building on the work on plan-

ning in ASP and on formalizing CPS (e.g. Balduccini et al. 2018; Gelfond and Lifschitz

1993). The code is available at https://github.com/thanhnh-infinity/Research CPS.

We start with the encoding of the theory (Subsection 4.1). Afterwards, we develop, for

each reasoning task, an ASP module (Subsections 4.2–4.7) which, when added to the

encoding of the domain, will compute the answers for the task.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://github.com/thanhnh-infinity/Research_CPS
https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1053

Throughout this section, we assume that (S , I) where S = (CO,A, F,R,Γ) is a CPS.

The encoding of (S , I) in ASP will be denoted with Π (S)
n
, where n is a non-negative

integer representing the horizon of the system that we are interested in. We note that

the encoding of the CPS ontology (Subsection 2.1 and 2.4), Π(Ω), will be automatically

added to any program developed in this section. For this reason, whenever we write

Π (S)
n
we mean Π (S)

n ∪Π(Ω).

4.1 ASP encoding of a CPS theory

The encoding of a CPS theory contains two parts, one encodes the domain and another

the initial state. We first discuss the encoding of the domain.

4.1.1 Encoding of the domain S

Π(S)
n
contains the following rules.10

• The set of rules declaring the time steps: for each 0 ≤ t ≤ n, an atom step (t), that

is, the rule step (t)←.

• The set of rules encoding the components: for each co ∈ CO, an atom comp (co).

• The set of rules encoding actions: for each a ∈ A, an atom action (a).

• The set of rules encoding fluents: for each f ∈ F , an atom fluent (f).

• The set of rules encoding relations: for each co ∈ CO and p ∈ R (co), an atom

relation (co, p).

• The set of rules encoding functional dependencies: for each (c, fu, ϕ) ∈ Γ, an atom

formula (idϕ), an atom addFun (c, fu, idϕ), and a set of atoms encoding ϕ, where

idϕ is a unique identifier associated to ϕ and c is a concern.

• The rules for reasoning about actions and changes (see, e.g. Son et al. 2006):

— For each executability condition of the form (1) the rule:

exec (a, T) :− step (T) , h∗ (p1, T) , . . . , h∗ (pn, T) .
— For each dynamic causal law of the form (2):

h∗ (f, T+1) :− step (T) , occurs (a, T) , h∗ (p1, T) , . . . , h∗ (pn, T) .
— For each state constraint of the form (3):

h∗ (f, T) :− step (T) , h∗ (p1, T) , . . . , h∗ (pn, T) .
— The rules encoding the inertia axiom:

h (f, T+1) :− step (T) , h (f, T) , not ¬h (f, T+1) .
¬h (f, T+1) :− step (T) ,¬h (f, T) , not h (f, T+1) .

where h∗ (x, T) stands for h (x, T) if x ∈ F is a fluent and ¬h (y, T) if x = ¬y and

y ∈ F .
We illustrate the ASP encoding of a CPS by presenting the encoding of the LKAS theory

in Example 2. Listing 3 shows the encoding of components, actions, and relations of Slkas

10 We follow the convention in logic programming and use strings starting with lower/uppercase letter
to denote constants/variables. In addition, this program can be generated automatically given that S
is specified in the syntax given in Section 3.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1054 T. H. Nguyen et al.

without the encoding of the initial state. Listing 4 shows the ASP encoding for Γlkas (see

Figure 3).

Listing 3. Example program Π(Slkas)
n
for LKAS

1 comp(sam). comp(cam). comp(bat).
2 relation(cam,algo_AES). relation(cam,algo_RSA).
3 relation(cam,algo_DES). relation(cam,ip_filtering).
4 relation(cam,conn_encrypted). relation(cam,data_encrypted).
5 relation(cam,protocol_encrypted). relation(cam,mac_check).
6 relation(cam,secure_boot). relation(cam,iris_scan).
7 relation(cam,advanced_mode). relation(cam,basic_mode).
8 relation(cam,trusted_auth_device). relation(cam,trusted_environment).
9 relation(sam,algo_AES). relation(sam,algo_RSA).

10 relation(sam,algo_DES). relation(sam,mac_check).
11 relation(sam,conn_encrypted). relation(sam,data_encrypted).
12 relation(sam,ip_filtering). relation(sam,secure_boot).
13 relation(sam,protocol_encrypted). relation(sam,firewall_setup).
14 relation(sam,advanced_mode). relation(sam,basic_mode).
15 relation(sam,finger_printing). relation(sam,two_factors).
16 relation(sam,iris_scan). relation(sam,oauth).
17 relation(sam,opt_code). relation(sam,email_verify).
18 relation(sam,ip_check). relation(sam,trusted_environment).
19 relation(bat,powerful_mode). relation(bat,normal_mode).
20 relation(bat,saving_mode). relation(bat,trusted_environment).
21 ...
22 action(tOn(X)) :- prop(X). action(tOff(X)) :- prop(X).
23 exec(tOn(X),T) :- ¬h(X,T), prop(X), step(T).
24 exec(tOff(X),T) :- h(X,T), prop(X), step(T).
25 h(X,T +1) :- occurs(tOn(X),T), step(T).
26 ¬h(X,T +1) :- occurs(tOff(X),T), step(T).
27 action(patch(X)):- prop(X).
28 exec(patch(X),T):- prop(X), availablePatch(X), ¬h(X,T), step(T).
29 h(X,T +1) :- occurs(patch(X),T), step(T).
30 ...
31 action(switM(cam,basic_mode)). action(switM(cam,advanced_mode)).
32 action(switM(sam,basic_mode)). action(switM(sam,advanced_mode)).
33 action(switM(bat,saving_mode)). action(switM(bat,normal_mode)).
34 action(switM(bat,powerful_mode)).
35 exec(switM(X,basic_mode),T) :- relation(X,basic_mode),
36 not h(active(X,basic_mode),T), comp(X), h(basic_mode,T), step(T).
37 h(active(X,basic_mode),T+1) :- occurs(switM(X,basic_mode),T), step(T).
38 ¬h(active(X,advanced_mode),T+1) :- occurs(switM(X,basic_mode),T),
39 h(active(X,advanced_mode),T), step(T).
40 exec(switM(X,advanced_mode),T) :- comp(X), relation(X,advanced_mode),
41 not h(active(X,advanced_mode),T), h(advanced_mode,T), step(T).
42 h(active(X,advanced_mode),T+1) :- occurs(switM(X,advanced_mode),T),

step(T).
43 ¬h(active(X,basic_mode),T+1):- step(T), h(active(X,basic_mode),T),

occurs(switM(X,advanced_mode),T).
44 ...

In Listing 3, Line 1 encodes the components; Lines 2–20 encode the relations; Lines 22–

29 encode the actions tOn and tOff. The remaining lines of code encode other actions in

similar fashion.

Each formula ϕ related to a concern c is associated with a unique identifier ϕI and is

converted into a CNF ϕ1∧ . . .∧ϕk, each ϕi will be associated with a unique identifier ϕIi .

The set of identifiers are declared using the predicate formula/1. It will be declared as

disjunction or conjunction. Furthermore, set notation is used to encode a disjunction or

conjunction, that is, the predicate member(X,G) states that the formulae X is a member of

a disjunction or a conjunction G. The predicate func(F,C) states that F is the functional

decomposition of concern C.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1055

Listing 4. A part of ASP program Π(Slkas)
n
encoding Γlkas for Integrity and

Authorization concerns

1 formula (0..3).
2 ...
3 concern(integrity).
4 conjunction (0). addConcern(integrity,0).
5 member(secure_boot,0). member(energy_func,0).
6 member(operation_func,0).
7 func(operation_func,integrity). func(energy_func,integrity).
8 disjunction(operation_func). formula(operation_func).
9 member(advanced_mode,operation_func).

10 member(basic_mode,operation_func).
11 disjunction(energy_func). formula(energy_func).
12 member(powerful_mode,energy_func). member(normal_mode,energy_func).
13 member(saving_mode,energy_func).
14 ...
15 concern(authorization).
16 conjunction (1). addConcern(authorization,1).
17 member(trusted_auth_device,1).
18 member(trusted_environment,1).
19 member(sign_in_func,1).
20 func(sign_in_func,authorization).
21 disjunction(sign_in_func).
22 formula(sign_in_func).
23 member(finger_printing,sign_in_func).
24 member(iris_scan,sign_in_func).
25 member(two_factors,sign_in_func).
26 member (2 ,sign_in_func). member (3 ,sign_in_func).
27 conjunction (2).
28 member(oauth,2). member(opt_code,2).
29 conjunction (3).
30 member(oauth,3). member(ip_check,3). member(email_verify,3).
31 ...

In Listing 4, the first line uses a special syntax, a short hand, declaring four

atoms formula(0),. . .,formula(3). The declaration and encoding of the Integrity con-

cern and its related formulas, properties and decomposition functions are presented

in Lines 3–13. In which, line 3 declares the concern Integrity. Lines 4–6 encode

the conjunctive formula (conjunction(0)) that addresses the Integrity concern and

its membership (e.g. the property secure boot and the two decomposition functions

of the Integrity concern). Line 7 specifies the two functional dependencies of the

Integrity concern which are operation func and energy func. Lines 8–13 specify how

the formulae address the functional decompositions. Lines 8–10 declare the disjunc-

tive formula operation func and define the membership between properties and this

formula (e.g. member(advanced mode,operation func), member(basic mode,operation func)

says that advanced mode and basic mode are elements of the disjunction operation func).

Similar encoding is applied for disjunctive formulae energy func in Lines 11–13. Lines

15–30 encode information related to the Authorization concern.

4.1.2 Encoding of the initial state

The encoding of the initial state I of a CPS theory (S , I), denoted by Π (I), contains,

for each fluent f , h (f, 0) if f is true in I or ¬h (f, 0) if f is false in I. Listing 5 shows a

snippet of the initial state of Slkas with Lines 1–7 specifying the true/false properties and

Lines 9–17 the specific information about which components operate in which properties

in LKAS in the initial state.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1056 T. H. Nguyen et al.

Listing 5. An example for a part of initial configuration of Π(Ilkas)

1 h(finger_printing,0). h(oauth,0). h(ip_check,0).
2 h(two_factors,0). h(opt_code,0).
3 h(trusted_auth_device,0). h(trusted_environment,0). h(secure_boot,0).
4 h(powerful_mode,0). h(saving_mode,0). h(normal_mode,0).
5 h(basic_mode,0). h(advanced_mode,0).
6 ...
7 ¬h(iris_scan,0). ¬h(email_verify,0). ¬h(firewall_setup,0).
8 ...
9 h(active(sam,secure_boot),0). h(active(sam,algo_RSA),0).

10 h(active(sam,basic_mode),0). h(active(sam,data_encrypted),0).
11 h(active(sam,firewall_setup),0). h(active(sam,finger_printing),0).
12 h(active(sam,trusted_environment),0).
13 h(active(cam,ip_filtering),0). h(active(cam,data_encrypted),0).
14 h(active(cam,conn_encrypted),0). h(active(cam,secure_boot),0).
15 h(active(cam,trusted_auth_device),0). h(active(cam,basic_mode),0).
16 h(active(bat,powerful_mode),0). h(active(bat,trusted_environment),0).
17 ...

The following property (see, Son et al. 2006) will be important for our discussion. It

shows that Π (S)
n
correctly computes the function ΦS .

Proposition 3

Let s be a state in S . Let Π = Π (S)
1 ∪ {h∗(f, 0) | f ∈ s}. Assume that a is an

action that is executable in s. Then, s′ ∈ ΦS (a, s) iff there exists an answer set S of

Π ∪ {occurs (a, 0)} such that {h∗(f, 1) | f ∈ s′} ⊆ A.
It is worth mentioning that Π (S)

n
allows us to reason about effects of actions in

the following sense: assume that [a0, . . . , an−1] is a sequence of actions, then Π (S)
n ∪

{occurs (ai, i) | i = 0, . . . , n − 1} has an answer set S if and only if (i) a0 is executable

in the state I; (ii) for each i > 0, ai is executable after the execution of the sequence

[a0, . . . , ai−1]; (iii) for each i, the set {f | f ∈ F, h (f, i) ∈ S}∪{¬f | f ∈ F,¬h (f, i) ∈ S}
is a state of S .

4.2 Computing satisfaction of concerns

We will next present a set of ASP rules for reasoning about the satisfaction of concerns

as specified in Definitions 3–4. Since a concern is satisfied if all of its functional de-

compositions and properties are satisfied, we define rules for computing the predicate

h (sat (C) , T) which states that concern C is satisfied at the step T. The rules are given

in Listing 6.

Listing 6. Πsat : Concern Satisfaction Reasoning in Ω

1 formula(¬G) :- formula(G).
2 prop(¬G) :- prop(G).
3 h(¬F,T):- step(T), 1{ formula(F);prop(F)}, ¬h(F,T).
4 h(F,T) :- step(T), formula(F), disjunction(F), member(G,F), h(G,T).
5 ¬h(F,T):- step(T), formula(F), disjunction(F), not h(F,T).
6 ¬h(F,T):- step(T), 1{ formula(G);prop(G)}, formula(F), conjunction(F),

member(G,F), not h(G,T).
7 h(F,T) :- step(T), formula(F), conjunction(F), not ¬h(F,T).
8 ¬h(sat(C),T) :- concern(C), addConcern(C,F), not h(F,T), step(T).
9 ¬h(sat(X),T) :- subCo(X,Y), not h(sat(Y),T), concern(X), concern(Y),

step(T).
10 ¬h(sat(X),T) :- subCo(X,Y), ¬h(sat(Y),T), concern(X), concern(Y),

step(T).
11 h(sat(C),T) :- not ¬h(sat(C),T), concern(C), step(T).

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1057

The first two lines declare that the negation of a formula or a property is also a

formula and thus can be a member of a disjunction or conjunction. The rule on Line

3 says that h (¬F, T) is true if the negation of F is true. This rule uses a special syntax

1{formula(F);prop(F)} which says that there exists at least one F is both a formula and

a property. The rule on Line 4 states that h (F, T) is true if F is a disjunction and one of

its disjuncts is true. The next rule (Line 5) states that ¬h (F, T) for a disjunction F is true

if it cannot be proven that F is true. This rule applies the well-known negation-as-failure

operator in establishing the truth value of ¬h (F, T). Similarly, the next two rules establish

the truth value of a conjunction F, that is, h(F,T) is true if none of its conjuncts is false.

The remaining rules are used to establish the truth value of h (sat (C) , T), the satisfaction

of concern C at step T. Line 8 states that if the formula addressing the concern C cannot

be proven to be true then the concern is not satisfied. Rules in line 9-10 propagate the

unsatisfaction of a concern from its subconcerns. Finally, a concern is satisfied if it cannot

be proven to be unsatisfied (Line 11). We can prove the following proposition that relates

the implementation and Definition 3.

Proposition 4 (Concern Satisfaction)

For a CPS theory Δ = (S , I) and a concern c, c is satisfied (or unsatisfied) in I if

h (sat (c) , 0) (or ¬h (sat (c) , 0)) belongs to every answer set of Π (Δ), where Π (Δ) =

Π (S)
0 ∪Π(I) ∪Πsat.

Proof

It is easy to see that for any formula ϕ over the fluents in S , the encoding and the rules

encoding a formula, and the rules in Lines 1–7, I |= Λ(c) iff h(sat(Λ(c)I), 0) belongs to

every answer set of Π(Δ) where Λ(c)I is the identifier associated to the formula Λ(c).

Lines 9–10 show that if c has a sub-concern that is not satisfied then it is not satisfied

and hence Rule 11 cannot be applied. As such, we have that h(sat(c), 0) is in an answer

set of Π(Δ) iff the formula Λ(c) is true and all sub-concerns of c are satisfied in that

answer set iff c is satisfied in I.

Since we will be working with the satisfaction of concerns in the following sections,

we will therefore need to include Πsat in Π (S)
n
. From now on, whenever we refer to

Π (S)
n
, we mean Π (S)

n ∪Π(I) ∪Πsat.

4.3 Computing most/least trustworthy components

Proposition 1 shows that �s has min/maximal elements, that is, least/most trustwor-

thy components of a system always exist. The program Πmlt (S) for computing these

components is listed below.

Listing 7. Πmlt: Computing Most/Least Trustworthy Components

1 r(X,P,C,T) :- comp(X), prop(P), concern(C), step(T), h(active(X,P),T),
h(P,T), addBy(C,P).

2 pos(X,P,C,T) :- r(X,P,C,T), positiveImpact(P,C), h(sat(C),T), step(T).
3 nPos(X,P,C,T):- r(X,P,C,T), not positiveImpact(P,C), step(T).
4 nPos(X,P,C,T):- r(X,P,C,T), not h(sat(C),T), step(T).
5 pos(X,P,C,T) :- pos(X,P,C1,T), subCo(C,C1), step(T).
6 nPos(X,P,C,T):- nPos(X,P,C1,T), subCo(C,C1), step(T).
7 twcp(X,TW,T) :- TW=#count{C,P:pos(X,P,C,T), prop(P), concern(C)},

comp(X), step(T).

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1058 T. H. Nguyen et al.

8 twcn(X,TW,T) :- TW=#count{C,P:nPos(X,P,C,T), prop(P), concern(C)},
comp(X), step(T).

9 higher(X1,X2,T) :- twcp(X1,TWp1,T), twcp(X2,TWp2,T), twcn(X1,TWn1,T),
twcn(X2,TWn2,T), d1=TWp1/(TWn1 + 1), d2=TWp2/(TWn2 + 1), d1 > d2,
step(T), TWp1 !=0, TWp2 !=0.

10 higher(X1,X2,T):- step(T), twcp(X1,0,T), twcp(X2,0,T), twcn(X1,TWn1,T),
twcn(X2,TWn2,T), TWn1 < TWn2.

11 equal(X1,X2,T) :- twcp(X1,TWp1,T), twcp(X2,TWp2,T), twcn(X1,TWn1,T),
twcn(X2,TWn2,T), d1=TWp1/(TWn1 + 1), d2=TWp2/(TWn2 + 1), d1 = d2,
step(T), TWp1 !=0, TWp2 !=0.

12 equal(X1,X2,T) :- step(T), twcp(X1,0,T), twcp(X2,0,T), twcn(X1,TWn1,T),
twcn(X2,TWn2,T), TWn1=TWn2.

13 not_highestTW (X2,T) :- comp(X1), comp(X2), higher(X1,X2,T), step(T).
14 not_lowestTW(X1,T) :- comp(X1), comp(X2), higher(X1,X2,T), step(T).
15 most(X,T) :- comp(X), not not_highestTW (X,T), step(T).
16 least(X,T) :- comp(X), not not_lowestTW(X,T), step(T).

In Listing 7, addBy(C,P) and positiveImpact(P,C) are defined in the program Π(Ω)

(Subsection 2.4). addBy(C,P) is true means that a property P addresses a concern C.

positiveImpact(P,C) is true means that the satisfaction of property P impacts posi-

tively on the satisfaction of concern C. The predicate r(X,P,C,T) (Line 1) encodes the

relationship between X, P and C at the time T which says that the component X

is working with the property P at time T and P addresses concern C. The second

rule (Line 2) defines the predicate pos(X,P,C,T) that encodes the positive affected re-

lationship between component X and concern C at time step T through property P

which is true if the concern C is satisfied and positiveImpact(P,C) and r(X,P,C,T) hold.

Lines 3–4 define nPos(X,P,C,T), which holds at time T if r(X,P,C,T) holds but either

positiveImpact(P,C) is not defined in Ω or concern C is not satisfied. This element is

used for the computation of the denominator of equation (6). The rest of the listing

defines the relationship higher between components encoding the �T where T represents

the state at the time T of the system and identifying the most and least trustworthy com-

ponents. Lines 5–6 propagate the positive affected and impact relations (pos/4, nPos/4)

of a concern from its subconcerns. twcp (x, tw, t) (resp. twcn (x, tw, t)) encodes the num-

ber of concerns positively affected (resp. impacted) by component x at step t. The atom

#count{C, P : pos (X, C, P, T) , prop (P) , concern (C)} is an aggregate atom in ASP and

encodes the cardinality of the set of all concerns positively impacted by P and X.

We can show that the following proposition holds.

Proposition 5

For a CPS theory Δ = (S , I) and an answer set S of program Π (S)
n ∪ Π(I) ∪ Πmlt,

if most (x, t) ∈ S (resp. least (x, t) ∈ S) then x is a most (resp. least) trustworthy

component in the state st.

The proof follows immediately from the definition of the predicate addBy,

positiveImpact and the definition of aggregate functions in ASP. As such, to identify

the most trustworthy component of S , we only need to compute an answer set S of

Π (S)
n ∪Π(I) ∪Πmlt and use Proposition 5.

Example 6

Consider the Slkas domain.

• Let us consider the initial configuration I1lkas of LKAS system where every

properties are observed to be true. For Δlkas =
(
Slkas, I

1
lkas

)
, we can eas-

ily see that (from Figure 2) the atoms: pos (cam, advanced mode, integrity, 0),

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1059

pos (cam, secure boot, cyber security, 0), etc. belong to every answer set of

Π (Δlkas) = Π (Slkas)
n ∪ Π

(
I1lkas

) ∪ Πlkasmlt . Similar atoms are present

to record the number of concerns affected by different properties. Fur-

thermore, twcp (cam, 28, 0), twcn (cam, 6, 0), twcp (sam, 40, 0), twcn (sam, 0, 0),

twcp (bat, 6, 0) and twcn (bat, 5, 0) belong to any answer set of Π (Slkas)
n∪Π (

I1lkas
)∪

Πlkasmlt : SAM is the most trustworthy component; BAT is the least trustworthy com-

ponents at step 0.

• Now, let us consider I2lkas of LKAS system (Figure 2) where there are two prop-

erties that are observed to be False: Firewall-Setup and Trusted-Auth-Device. For

Δlkas =
(
Slkas, I

2
lkas

)
, the computation of the program Π (Slkas)

n∪Π (
I2lkas

)∪Πlkasmlt

shows us: twcp (cam, 22, 0), twcn (cam, 6, 0), twcp (sam, 22, 0), twcn (sam, 12, 0),

twcp (bat, 0, 0) and twcn (bat, 11, 0) belong to any answer set of Π (Slkas)
n ∪

Π
(
I2lkas

)∪Πlkasmlt . In this situation, CAM is the most trustworthy component; BAT

is the least trustworthy components at step 0.

We conclude this part with a brief discussion on possible definitions of �. The proposed

definition assumes everything being equal (e.g. all concerns and properties are equally

important, the roles of every components in a CPS system are equal, etc.). In practice,

the ordering � might be qualitative and user-dependent, for example, an user might

prefer confidentiality over integrity. � can be defined over a qualitative ordering and

implemented in ASP in a similar fashion that preferences have been implemented (e.g.

Gelfond and Son 1998).

4.4 Computing mitigation strategies

The program Π (S)
n ∪ Πsat can be for computing a mitigation strategy by adding the

rules shown in Listing 8:

Listing 8. Πnplan: Generating Plan

1 1{ occurs(A,T):action(A)}1 :- step(T), T<n.
2 :- occurs(A,T), not exec(A,T).
3 :- not h(sat(c), n).

The first rule containing the atom 1{occurs (A, T) : action (A)}1 – a choice atom – is

intuitively used to generate the action occurrences and says that at any step T , exactly

one action must occur. The second rule states that an action can only occur if it is

executable. The last rule helps enforce that h (sat (c) , n) must be true in the last state,

at step n. For a set of concerns Σ, let Πnplan [Σ] be the program obtained from Πnplan by

replacing its last rule with the set {:−not h (sat (c) , n) . | c ∈ Σ}. Based on the results

in answer set planning, we can show:

Proposition 6

Let Δ = (S , I) be a CPS theory and Σ be a set of concerns in Ω. Then, [a0, . . . , an−1] is a

mitigation strategy for Σ iff Π (Δ)∪Πnplan [Σ] has an answer set S such that occurs (ai, i) ∈
S for every i = 0, . . . , n− 1.

The proof of this proposition relies on the properties of Π (Δ) discussed in previous

section and the set of constraints in Πnplan [Σ].

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1060 T. H. Nguyen et al.

4.5 Non-compliance detection in CPS systems

The program Π (S)
n∪Πsat can be used in non-compliance detection by adding the rules

shown in Listing 9:

Listing 9. Πn (SA, SC): Non-compliance Detection

1 1{ occurs(A,T):sa_action(A)}1 :- step(T), T<n, not conflict(T).
2 :- occurs(A,T), not exec(A,T), step(T).
3 1{h(F,0); ¬h(F,0)}1 :- fluent(F).
4 conflict(T) :- sc_concern(C), ¬h(sat(C),T), step(T).
5 conflict(T+1) :- conflict(T), step(T).
6 :- not conflict(n).

The first two rules are similar to the rules for the planning program, with the exception

that the action selection focuses on the actions in the set SA. The third rule generates

an arbitrary initial state. The rules 4-5 state that if some concern in SC is not satisfied

at time T then a conflict arises and the constraint on the last rule says that we would

like to create a conflict at step n.

We assume that actions in SA are specified by atoms of the form sa action (a) and

concerns in SC are specified by atoms of the form sc concern (c). It is easy to see that an

answer set S of Π (S)
n ∪Πsat ∪Πn (SA, SC) represents a situation in which the system

will eventually not satisfy some concern in SC. Specifically, if the sequence of actions

[a0, . . . , at] such that occurs (ai, i) ∈ S and, for s > t, there exists no occurs (as, s) ∈ S,
is executed in the initial state (the set {f | h (f, 0) ∈ S, f ∈ F} ∪ {¬f | ¬h (f, 0) ∈
S, f ∈ F}) then some concern in SC will not be satisfied after n steps. In other words,

to check whether S is weakly n-noncompliant, we only need to check whether πn =

Π(S)
n ∪ Πsat ∪ Πn (SA, SC) as an answer set of not. The proof of this property relies

on the definition of an answer set for a program with constraints, which say that the

constraint :- not conflict(n). must be false in the answer set, which in turn implies

that conflict(n) must be true.

If S is weakly n-noncompliant, we can do one more check to see whether it is strongly

n-complaint as follows. Let π′
n be a program obtained from πn by replacing “:- not

conflict(n)” with “:- conflict(n).” We can show that if π′
n has no answer set then

for every initial state of S no action sequence is executable or there exists some action

sequence such that conflict(n). is true. Combining with the fact that S is weakly n-

noncompliant, this implies that the domain is strongly n-noncompliant. Again, the proof

of this property relies on the definition of answer sets of programs with constraints,

which say that the constraint :- conflict(n). must be false in an answer set, which in

turn implies that conflict(n) must be false. However, the program having no answer set

implies that every executable sequence of actions will generate conflict(n).

4.6 Likelihood of concerns satisfaction and preferred mitigation strategies

In this subsection, we present an ASP program for computing LoS of concerns and pre-

ferred mitigation strategies using LoS. Listing 10 shows the ASP encoding for computing

of LoS of concerns. It defines the predicate llh sat(C,N,T) which states that the likelihood

of satisfaction of concern C at time step T is N . It starts with the definition of different

predicates nAllPosCon/3 and nActPosCon/3 representing rel+ (c) and rel+sat (c, s) at the

step T , that is, the number of all possible positively impacting properties on concern C

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1061

and the number of positively impacting properties on concern C holding in step T , re-

spectively. Recall that positiveImpact(P,C) is defined as in Subsection 4.3. Line 5 creates

an ordering between subconcerns of concern C for the computation of llh sat(C,N,T).

The LoS for a concern without a subconcern is computed in Line 8. Rules on the lines

9–12 compute the LoS of concerns in accordance with the order created by rule on Line

1. llh sat(C,N,T) is then computed using equation (8).

Listing 10. ΠLoS: Computing Likelihood of Concerns Satisfaction

1 nAllPosCon(C,N2,T):- concern(C), step(T), N2=#count{P,Com : comp(Com),
prop(P), positiveImpact(P,C), addBy(C,P), relation(Com,P)}.

2 nActPosCon(C,N1,T):- concern(C), step(T), N1=#count{P,Com : comp(Com),
prop(P), positiveImpact(P,C), addBy(C,P), relation(Com,P),

h(active(Com,P),T)}.
3 deg_pos(C,1,T) :- step(T), concern(C), nAllPosCon(C,0,T).
4 deg_pos(C,N1 *100/ N2,T) :- nAllPosCon(C,N2,T), nActPosCon(C,N1,T),

concern(C), N2!=0.
5 order(SC,C,N) :- subCo(C,SC), N={SC < SCp : subCo(C,SCp)}.
6 hSubCo(C) :- subCo(C,SC), concern(C), concern(SC).
7 ¬hSubCo(C):- concern(C), not hSubCo(C).
8 llh_sat_sub(C,1,T) :- step(T), concern(C), ¬hSubCo(C).
9 llh_sat(C,N1*N2,T) :- step(T), concern(C), llh_sat_sub(C,N1,T),

deg_pos(C,N2,T).
10 llh_sat_sub_aux (C,0,X,T) :- step(T), subCo(C,SC), order(SC,C,0),

llh_sat(SC,X,T).
11 llh_sat_sub_aux (C,N,X*Y,T) :- step(T), subCo(C,SC), order(SC,C,N),

llh_sat(SC,Y,T), llh_sat_sub_aux (C,N -1,X,T).
12 llh_sat_sub(C,X,T) :- llh_sat_sub_aux (C,N,X,T), step(T), concern(C),

not llh_sat_sub_aux (C,N+1,_,T).

It is easy to check that the above program correctly computes the values of deg+ (c, s)

and ϕLoS (c, s). Indeed, the program Π (Δlkas) = Π (Slkas)
n ∪Π(Ilkas) ∪Πclkas ∪Πsat ∪

Πnplan ∪ ΠLoS correctly computes the LoS of concerns for various concerns as shown in

Subsection 3.3.3 (Figure 5).

Having computed LoS of concerns and ϕLoS , identifying the best strategies in according

to the two approaches in Subsection 3.3.3 is simple. We only need to add rules that

aggregates the LoS of the top-level concerns specified in the CPS with their corresponding

weights or preferences. This is done as follows:

• Weighted LoS : Listing 11 computes the weighted LoS of the final state. The rule is

self-explanatory.

Listing 11. Computing Weighted LoS

1 scoreLoS(Sc,T) :- llh_sat(functionality,Vfun,T), wLoS(
functionality,Wfun), llh_sat(business,Vbus,T), wLoS(business,
Wbus), llh_sat(human,Vhum,T), wLoS(human,Whum), llh_sat(
trustworthiness,Vtru,T), wLoS(trustworthiness,Wtru), llh_sat(
timing,Vtim,T), wLoS(timing,Wtim), llh_sat(data,Vdat,T), wLoS(
data,Wdat), llh_sat(boundaries,Vbou,T), wLoS(boundaries,Wbou),
llh_sat(composition,Vcom,T), wLoS(composition,Wcom), llh_sat(
lifestyle,V lif ,T), wLoS(lifestyle,W lif), Sc = Vfun*Wfun + Vbus*W

bus + Vhum*Whum + Vtru*Wtru + Vtim*Wtim + Vdat*Wdat + Vbou*Wbou + V

com*Wcom + Vlif *,Wlif .

• Specified Preferences LoS : ASP solver provides a convenient way for computing

preferences based on lexicographic order among elements of a set. Assume that

Trustworthiness is preferred to Business then the two statements

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1062 T. H. Nguyen et al.

#maximize{V1@k : llh sat(trustworthiness, V1, n)}
#maximize{V2@k’: llh sat(business, V2, n)}

with k > k′ and n is the length of the plan will return answer sets in the lexico-

graphic order, preferring the concern Trustworthiness over Business. With these

statements, any specified preferred LoS over the set of top-level concern can be

implemented easily.

4.7 Computing mitigation strategy with the best chance to succeed

To compute strategies with the maximal probability of success, we only need to extend

the program Πnplan with the following rules:

• for each statement “a success with v if p1, . . . , pn,” the two rules:

pr (a, v, T) :− h∗ (p1, T) , . . . , h∗ (pn, T) .
dpr (a, T) :− h∗ (p1, T) , . . . , h∗ (pn, T) .

which check for the satisfaction of the condition in a statement defining the prob-

ability of success in the step T and states that it is defined.

• the rule:

pr (A, 1, T) :− exec (A, T) , not dpr (A, T) .

which says that by default, the probability of success of a at step T is 1.

• computing the probability of the state at step T :

prob (1, 0) .

prob (U ∗ V, T+1) :− prob (U, T) , occurs (A, T) , pr (A, V, T) .

where the first rule says that the probability of the state at the time 0 is 1; prob (v, t)

states that the probability of reaching the state at the step t is v and is computed

using the second rule.

Let ΠnbestPrS be Πnplan and the above rules. We have that if [a0, . . . , an−1] and S

is an answer set of Π (Δ) ∪ ΠnbestPrS ∪ {occurs (ai, i) | i = 0, . . . , n − 1} then

prob
(
Πn−1
i=0 pr (ai, si) , n

) ∈ S. To compute the best strategy, we add the rule

#maximize{V : prob (V, n)}.
to the program ΠnbestPrS .

Example 7

Continue with Example 2 after a cyber-attack occurs and causes the property basic-mode

to be False. As in Section 4.4, the five mitigation strategies (α1, α2, α3, α4 and α5)

are generated to restore the LKAS system. Assume that the probability of success of

tOn (basic mode), switM (cam, advanced mode), and switM (sam, advanced mode) are 0.2,

0.6, 0.7 in every state, respectively. In this case, the strategies α2 and α3 have the maximal

probability to succeed.

5 Towards a decision-support system for CPSF

As a demonstration of the potential use of our approach, in this section we give a brief

overview of a decision-support system (version 0.1) that is being built for use by CPS

designers, managers and operators. We also include preliminary considerations on per-

formance aspects.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1063

Fig. 6. Computing satisfaction of concerns in reasoning component.

Fig. 7. Other reasoning modules in reasoning component.

The decision-support system relies on an ASP-based implementation for reasoning

tasks in CPS theories (described in Section 4) with the different modules for answering

queries described in Section 3.3, and comprises a reasoning component and a visualization

component. Figure 6 shows the reasoning component at work on computing satisfaction

of concerns related to the LKAS domain example (described in Section 4.2). Figure 7

illustrates the reasoning component at work on other modules (Sections 4.3–4.7) with

different situations related to the LKAS domain. Notice how the user can ask the system

to reason about satisfaction of concerns, to produce mitigation plans as well as to select

the most preferred mitigation strategy, etc.

The output of the reasoning component can then be fed to the visualization component,

where advanced visualization techniques allow practitioners to get a birds-eye view of the

CPS or dive into specific details. For instance, the sunburst visual from Figure 8 provides

a view of the CPS from Figure 2 where the aspects are presented in the inner most ring.

Moving outwards, the visualization shows concerns from increasingly deeper parts of the

concern tree and properties. The left-hand side of the figure depicts the visualization in

the case in which all concerns are satisfied (blue), while the right-hand side shows how the

sunburst changes when certain concerns (highlighted as red) are not satisfied. Focusing

on the right-hand side, the text box open over the visual reports that the trustworthiness

aspect is currently not satisfied and the level at which this concern is not being met is the

concern of privacy and the property of manageability. The visual allows for a pinpoint

where within the CPS framework issues have arisen that when addressed can enable a

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1064 T. H. Nguyen et al.

Fig. 8. Visualization component.

working state. We omit the details of visualization component description as it is not the

focus of this paper.

To ensure flexibility and to allow for investigation on the scalability on larger CPS,

the decision-support system is designed to support a variety of hybrid ontology-ASP

reasoning engines. Currently, we consider four reasoning engines: the näıve engine is im-

plemented by connecting, in a loosely-coupled manner,11 the SPARQL reasoner12 and the

Clingo ASP solver. This engine issues a single SPARQL query to the ontology reasoner at

the beginning of the computation, fetching all necessary data. The Clingo-Python engine

is another loosely-coupled engine, leveraging Clingo’s ability to run Python code at the

beginning of the computation. This engine issues multiple queries in correspondence to

the occurrences of special “external predicates” in the ASP program, which in principle

allows for a more focused selection of the content of the ontology. The DLVHex2 en-

gine also uses a similar fragmentation of queries, but the underlying solver allows for the

queries to be executed at run-time, which potentially results in more focused queries, exe-

cuted only when strictly needed. Finally, the Hexlite engine leverages a similar approach,

but was specifically designed as a smaller, more performant alternative to DLVHex2.

In this preliminary phase of our investigation on scalability, all reasoning engines have

exhibited similar performance, as exemplified by Table 2. The table summarizes the

results of question-answering experiments on the Lane Keeping/Assist System (LKAS)

domain and on the Smart Elevator domain (Nguyen et al. 2020a). The reasoning tasks

considered are for answering queries discussed earlier, including:

• (Q1) Computing satisfaction of concerns.

• (Q2) Computing most/least trustworthy components.

• (Q3) Generating mitigation strategies.

• (Q4) Non-compliance detection in a CPS.

• (Q5) Selecting the best mitigation strategy by preferred mitigation strategies.

• (Q6) Computing the likelihood of concerns satisfaction.

11 By loosely-coupled, we mean that the components see each other as black-boxes and only exchange
information, via simple interfaces, at the end of their respective computations. Compare this with a
tightly-coupled architecture, where the components have a richer interfaces for exchange state infor-
mation and controlling each other’s execution flow while their computations are still running.

12 https://www.w3.org/TR/rdf-sparql-query/.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1065

Table 2. CPS domains querying, extracting and reasoning summary

LKAS domain Smart elevator domain
Reasoning Clingo- Clingo-

tasks Näıve Python DLVHex2 Hexlite Näıve Python DLVHex2 Hexlite

Q1 1.35s 1.48s 1.32s 1.37s 1.31s 1.45s 1.30s 1.35s

Q2 1.28s 1.43s 1.29s 1.32s 1.25s 1.32s 1.22s 1.30s

Q3 1.36s 1.52s 1.38s 1.41s 1.33s 1.49s 1.37s 1.39s

Q4 1.41s 1.52s 1.41s 1.45s 1.40s 1.53s 1.41s 1.47s

Q5 1.38s 1.47s 1.42s 1.39s 1.26s 1.39s 1.33s 1.35s

Q6 1.74s 1.93s 1.79s 1.81s 1.78s 1.95s 1.77s 1.86s

In Table 2, the performance of the execution for each query (Q1-Q6)
13 is measured by

the average processing time of reasoning computations in our experiment CPS theories

(LKAS and Smart Elevator) with different initial situations (different initial configura-

tions). While the results show that the näıve engine is marginally better than the others,

the differences are quite negligible, all within 10%. It is conceivable that larger-scale

experiments will eventually exhibit similar patterns to those found in other research on

the scalability of hybrid systems (e.g. Balduccini and Lierler 2017). A thorough analysis

will be the subject of a separate paper where we have done some preliminary experiment

with our CPS reasoning system and found that it can work ontologies with more than

150K triples, 85 classes, 61K individuals, 30 object properties, 40 data properties, and

45 subclass relations within a minute.

6 Related work

Due to the difference in level of abstraction, most of the approaches from the literature

can be viewed as orthogonal and complementary to ours. Thus, we focus our review of

related work on what we consider to be the most relevant approaches.

The literature from the area of cybersecurity is often focused on the notion of graph-

based attack models. Of particular relevance is the work on Attack-Countermeasure Trees

(ACT) (Roy et al. 2012). An ACT specifies how an attacker can achieve a specific goal

on a IT system, even when mitigation or detection measures are in place. While ACT

are focused on the Cybersecurity concern, our approach is rather generally applicable to

the broader Trustworthiness aspect of CPS and can in principle be extended to arbitrary

aspects of CPS and their dependencies. The underlying formalization methodology also

allows for capturing sophisticated temporal models and ramified effects of actions. In

13 We use a Macbook Pro 16 running macOS Big Sur Version 11.5.2, 32GB RAM DDR4, 2.6Ghz 6-Core
Intel Core i9, and ASP solver Clingo.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

1066 T. H. Nguyen et al.

principle, our approach can be extended to allow for quantitative reasoning, for example,

by leveraging recent work on Constraint ASP and probabilistic ASP (Balduccini and

Lierler 2017; Baral et al. 2009; Ostrowski and Schaub 2012). As we showed above, one

may then generate answers to queries that are optimal with respect to some metrics. It is

worth pointing out that the combination of physical (non-linear) interaction and logical

(discrete or Boolean) interaction of CPS can be modeled as a mixed-integer, non-linear

optimization problem (MINLP) extended with logical inference. MINLP approaches can

support a limited form of logic, for example, through disjunctive programming (Balas

1975). But these methods seem to struggle with supporting richer logics and inferences

such as “what-if” explorations. For relevant work in this direction, we refer the reader

to Mistr et al. (2017), D’Iddio and Huth (2017).

One major focus in the area of cybersecurity is the identification and mitigation

of compromised devices. Behavior analysis and behavioral detection are some of the

approaches used in this area. Uluagac et al. (2019) proposes a system-level framework

for the identification of compromised smart grid devices. The approach employs a com-

bination of system call and function call tracing, which are paired with signal processing

and statistical analysis. In a similar vein, Shoukry et al. (2018) covers model-based

techniques for addressing the problem of sensors that can be manipulated by an attacker.

It is worth noting that, in our methodology, the presence or lack of compromised devices

or components – and even the type of compromise – can be captured by means of prop-

erties, which in turn affect specific concerns. Techniques such as those described in the

cited papers can then be used to determine whether such properties are satisfied or not.

Another related, complementary approach is presented in Aerts et al. (2017), where

the authors tackle the problem of validation and verification of requirements. The paper

proposes model-based testing as a solution to two key problems in validation and verifica-

tion of requirements: translating requirements into concrete test inputs and determining

what the outcome of such tests says about the satisfaction of the requirements. From

this point of view, the approach from Aerts et al. (2017) can be used to provide the

information about satisfaction of requirements that is necessary for the reasoning tasks

covered by in our investigation.

Lee (2016) analyzes the role of models in the engineering of CPS and argues for classes

of models that trade accuracy and detail in favor of simplicity and clarity of semantics.

This idea is in line with the considerations that prompted the development of CPSF,

and which are infused in our work through its legacy. In a related fashion, Roehm et al.

(2019) proposes a survey of conformance relations, where the term describes the link

between functional behavior of a model and the behavior of the implemented system (or

of a more concretized model). Conformance relations are typically applied to the task

of analyzing requirements and their link to the CPS being modeled, and in that sense

(Roehm et al. 2019) is orthogonal to our work. On the other hand, the paper elicits the

interesting issue of whether the characterization of CPS from CPSF might be viewed,

itself, as a conformance relation. This is an open question, which we plan to address in

the future.

Tepjit et al. (2019) presents a rich survey of frameworks for implementing reasoning

mechanisms in smart CPS. It is to be noted that the focus of the paper is on the reasoning

mechanisms that occur within a CPS in order to achieve “smartness” (Tepjit et al.

2019), while our focus is on reasoning mechanisms that allow designers, maintainers and

operators to reason about a CPS – where the CPS itself may or may not be “smart.”

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1067

There is certainly a certain degree of overlap between this paper and our work, but also

of important differences. In particular, the reasoning mechanisms we discussed here are

not always applicable at the system level, which is the focus of Tepjit et al. (2019). For

instance, our techniques could be used in real-time by a CPS to determine whether its

functional aspect is satisfied, but it may be unrealistic for a CPS to reason about its

own trustworthiness. From another point of view, reasoning mechanisms discussed in

Tepjit et al. (2019), such as planning and decision-making, can be viewed as tools for the

satisfaction of properties. In this sense, a designer might want to use the results of that

paper to ensure that the decision-making mechanisms implemented within a CPS satisfy

certain properties that are responsible for ensuring the functional aspect of the CPS or

even its trustworthiness.

The methodologies proposed in our paper build on a vast number of research results

in ASP and related areas such as answer set planning, reasoning about actions, etc.

and could be easily extended to deal with other aspects discussed in CPSF. They are

well-positioned for real-world applications given the efficiency and scalability of ASP-

solvers (e.g. clingo Gebser et al. 2007) that can deal with millions of atoms, incomplete

information, default reasoning, and features that allow ASP to interact with constraint

solvers and external systems.

7 Conclusions and future work

The paper presents a precise definition of a CPS, which, in conjunction with the CPS On-

tology Framework by NIST, allows for the representing and reasoning of various problems

that are of interest in the study of CPS. Specifically, the paper defines several problems

related to the satisfaction of concerns of a CPS theories such as the problem of identify-

ing non-compliant CPS systems, the problem of identifying the most/least trustworthy

or vulnerable components, computing mitigation strategies, a most preferred mitigation

strategies, or strategies with the best chance to succeed. For each problem, the paper

presents a formal definition of “what is the problem?” and provides an ASP program

that can automatically verify such properties. To the best of our knowledge, all of these

contributions are new to the research in Cyber-Physical Systems.

The current ASP implementation14 (version 0.1) provides a first step towards devel-

oping a tool for CPS practitioners and designers. It automatically translates a system

specification as an ontological description (e.g. as seen in Figure 5) to ASP code and

allows users to ask questions related to the aforementioned issues. It has been validated

against small systems. One of our goals in the immediate near future is to develop an

user-friendly interface that allows users to design or model their real-world CPS and

identify potential issues within their systems and possible ways to address these issues

before these issues become harmful.

Disclaimer

Official contribution of the National Institute of Standards and Technology; not subject

to copyright in the United States. Certain commercial products are identified in order to

14 Available at https://github.com/thanhnh-infinity/Research CPS.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://github.com/thanhnh-infinity/Research_CPS
https://doi.org/10.1017/S1471068422000035

1068 T. H. Nguyen et al.

adequately specify the procedure; this does not imply endorsement or recommendation by

NIST, nor does it imply that such products are necessarily the best available for the pur-

pose. Portions of this publication and research effort are made possible through the help

and support of NIST via cooperative agreements 70NANB18H257 and 70NANB21H167.

References

Aerts, A., Reniers, M. A. and Mousavi, M. R. 2017. Cyber-Physical Systems - Foundations,
Principles and Applications, chapter 19. Model-Based Testing of Cyber-Physical Systems.
Intelligent Data-Centric Systems, 287–304.

Balas, E. 1975. Disjunctive programming: Cutting planes from logical conditions. In Nonlinear
Programming 2. Elsevier, 279–312.

Balduccini, M., Griffor, E., Huth, M., Vishik, C., Burns, M. and Wollman, D. A.

2018. Ontology-based reasoning about the trustworthiness of cyber-physical systems. ArXiv,
abs/1803.07438, 1.

Balduccini, M. and Lierler, Y. 2017. Constraint answer set solver EZCSP and why integra-
tion schemas matter. Journal of Theory and Practice of Logic Programming (TPLP), 17, 4,
462–515.

Baral, C., Gelfond, M. and Rushton, N. 2009. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9, 1, 57–144.

Baral, C., Tran, N. and Tuan, L.-C. Reasoning about actions in a probabilistic setting. In
AAAI/IAAI 2002, 507–512.

D’Iddio, A. C. and Huth, M. 2017. ManyOpt: An Extensible Tool for Mixed, Non-Linear
Optimization Through SMT Solving. CoRR, abs/1702.01332.

Eiter, T. 2007. Answer set programming for the semantic web. In Logic Programming, 23rd
International Conference, ICLP 2007, Porto, Portugal, September 8–13, 2007, Proceedings,
V. Dahl and I. Niemelä, Eds., Lecture Notes in Computer Science, vol. 4670. Springer, 23–26.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. clasp: A conflict-driven answer
set solver. In Proceedings of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), C. Baral, G. Brewka and J. Schlipf, Eds., Lecture
Notes in Artificial Intelligence, vol. 4483. Springer-Verlag, 260–265.

Gelfond, M. and Lifschitz, V. 1990. Logic programs with classical negation. In Logic Pro-
gramming: Proceedings of the Seventh International Conference, D. Warren and P. Szeredi,
Eds, 579–597.

Gelfond, M. and Lifschitz, V. 1993. Representing actions and change by logic programs.
Journal of Logic Programming, 17, 2,3,4, 301–323.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electronic Transactions on Artificial
Intelligence, 3, 6.

Gelfond, M. and Son, T. C. 1998. Prioritized default theory. In Selected Papers from the
Workshop on Logic Programming and Knowledge Representation 1997, LNAI, vol. 1471.
Springer Verlag, 164–223.

Ghallab, M., Nau, D. and Traverso, P. 2004. Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers.

Griffor, E., Greer, C., Wollman, D. A. and Burns, M. J. 2017a. Framework for cyber-
physical systems: Volume 1, overview.

Griffor, E., Greer, C., Wollman, D. A. and Burns, M. J. 2017b. Framework for cyber-
physical systems: Volume 2, working group reports.

Lee, E. A. 2016. Fundamental limits of cyber-physical systems modeling. ACM Transactions
on Cyber-Physical Systems, 1, 1, 1–26.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://arxiv.org/abs/1803.07438
https://doi.org/10.1017/S1471068422000035

Specifying and reasoning about CPS through the lens of the NIST CPS framework 1069

Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: A 25-year Perspective, 375–398.

Mistr, M., D’Iddio, A. C., Huth, M. and Misener, R. 2017. Satisfiability modulo theories
for process systems engineering. eprints for the optimization community.

Moschopoulos, J. 2001. Ship control technology; A US Navy perspective. IFAC Proceedings
Volumes, 34, 7, 381–388.

Nguyen, T., Son, T. C., Bundas, M., Balduccini, M., Garwood, K. C. and Griffor,

E. 2020a. Reasoning about trustworthiness in cyber-physical systems using ontology-based
representation and asp. In PRIMA.

Nguyen, T. H., Pontelli, E. and Son, T. C. 2020b. On repairing web services workflows. In
Practical Aspects of Declarative Languages, E. Komendantskaya and Y. A. Liu, Eds. Springer
International Publishing, Cham, 37–53.

Nguyen, T. H., Potelli, E. and Son, T. C. 2018a. Phylotastic: An experiment in creating,
manipulating, and evolving phylogenetic biology workflows using logic programming. Theory
and Practice of Logic Programming, 18a, 3-4, 656–672.

Nguyen, T. H., Son, T. C. and Pontelli, E. 2018b. Automatic web services composition for
phylotastic. In PADL, Los Angeles, CA, USA, January 8–9, 2018, Proceedings, 186–202.

Niemelä, I. 1999. Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25, 3,4, 241–273.

Niemelä, I., Simons, P. and Soininen, T. 1999. Stable model semantics for weight constraint
rules. In Proceedings of the 5th International Conference on on Logic Programming and Non-
monotonic Reasoning, 315–332.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: The clingcon system. Journal of
Theory and Practice of Logic Programming (TPLP), 12, 4–5, 485–503.

Roehm, H., Oehlerking, J., Woehrle, M. and Althoff, M. 2019. Model conformance for
cyber-physical systems: A survey. ACM Transactions on Cyber-Physical Systems, 3, 3, 1–26.

Roy, A., Kim, D. S. and Trivedi, K. S. 2012. Attack countermeasure trees (ACT): Towards
unifying the constructs of attack and defense trees. Security and Communication Networks,
5, 8, 929–943.

Shoukry, Y., Chong, M., Wakaiki, M., Nuzzo, P., Seshia, S. A., Hespanha, J. P. and

Tabuada, P. 2018. SMT-based observer design for cyber-physical systems under sensor at-
tacks. ACM Transactions on Cyber-Physical Systems, 2, 1, 1–27.

Son, T., Baral, C., Tran, N. and McIlraith, S. 2006. Domain-dependent knowledge in
answer set planning. ACM Transactions on Computational Logic, 7, 4, 613–657.

Tepjit, S., Horvath, I. and Rusak, Z. 2019. The state of framework development for imple-
menting reasoning mechanisms in smart cyber-Physical systems: A literature review. Journal
of Computational Design and Engineering, 6, 527–541.

Uluagac, C. S., Aksu, H. and Babun, L. 2019. A system-level behavioral detection frame-
work for compromised CPS devices: Smart-grid case. ACM Transactions on Cyber-Physical
Systems, 4, 2.

Wollman, D. A., Weiss, M. A., Li-Baboud, Y.-S., Griffor, E. and Burns, M. J. Frame-
work for cyber-physical systems: Volume 3, timing annex 2017.

https://doi.org/10.1017/S1471068422000035 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000035

	Introduction
	Background
	NIST CPS framework and the CPS ontology
	Answer set programming
	Action language B
	Representation and reasoning with CPS ontology in ASP

	CPS theory specification
	Formal definition
	The semantics of CPS theories
	Reasoning tasks in CPS

	An ASP-based implementation for reasoning tasks in CPS theories
	ASP encoding of a CPS theory
	Computing satisfaction of concerns
	Computing most/least trustworthy components
	Computing mitigation strategies
	Non-compliance detection in CPS systems
	Likelihood of concerns satisfaction and preferred mitigation strategies
	Computing mitigation strategy with the best chance to succeed

	Towards a decision-support system for CPSF
	Related work
	Conclusions and future work
	References

