
Environment and Development Economics (2023), 28, 409–428
doi:10.1017/S1355770X22000377 EDE
RESEARCH ARTICLE

The effect of air pollution on China’s
internal migration
Wenbo Li*

Ma Yinchu School of Economics, Tianjin University, Tianjin, China
*Corresponding author. E-mail: bulldogwl2013@gmail.com

(Submitted 31 December 2021; revised 30 October 2022; accepted 30 November 2022; first published
online 6 January 2023)

Abstract
Have people in China moved from more polluted cities to less polluted ones? We merge
city-level air pollution data from 2003 to 2016 with migration data from a nationally repre-
sentative sample. We estimate a linear model and a conditional logit model, and employ air
pollution from distant sources carried by the wind as an instrument for local air pollution
to address the potential concern that air pollution is endogenous to local economic activi-
ties. We make a distinction between out-migration that left some family members behind
and whole-household out-migration, and discover that the former was more responsive to
air pollution than the latter. The decline in net in-migration in response to an increase in
air pollution was driven by both a decrease in gross in-migration and an increase in gross
out-migration. We find suggestive evidence that out-migrants brought their children with
them, but some aged parents were left behind.
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1. Introduction
Air pollution in China is substantial and has health impacts. Among the 20 cities with
the worst air quality globally in 2016, four are located in China (World Health Organiza-
tion, 2016). China’s increased industrial activities and rising number of vehicles are the
two primary emission sources to blame. A coal-rich country, China primarily depends
on coal for its electricity production and winter heating, aggravating the problem with
its air quality. Air pollution is now recognized as an increasing concern impacting the
cardiopulmonary health of people living in China. The 2017 Global Burden of Disease
Study suggests that air pollution is the fourth leading health risk factor contributing
to deaths and disability-adjusted life-years for Chinese people (Zhou et al., 2019). The
health impact of air pollution has also been documented in other countries, but with
much lower levels of air pollution. For example, Chay and Greenstone (2003) show that
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a 1 per cent reduction in total suspended particulates caused a 0.35 per cent decline in
infant mortality rate in the United States between 1980 and 1982.1

An important feature of air pollution shocks is that they vary spatially across cities
due to their distinct industrial composition, environmental policies, and geographic and
meteorological conditions. This spatial variation creates incentives for people to migrate
in order to avoid the negative impacts of these adverse shocks. There are two reasonswhy
ignoring the effect on migration may understate the true impact of air pollution. First, if
peoplemove frommore polluted cities to less polluted ones, migration will have reduced
the impact of air pollution shocks on people’s health outcomes. It also implies that, if
residents do not have the option to migrate, they may find alternative ways to cope with
air pollution, including coercing local authorities to curb it. In this way, as having the
current rates of migration induced by air pollution is revealed to be preferred to having
no migration, the existing migration caused by air pollution is welfare-improving com-
pared to no migration. Second, the forced displacement of people due to air pollution
may distort the population distribution across regions in China. This distortionmay also
depend on age, education, income, etc.

In this paper, we address the question of whether people have moved frommore pol-
luted cities to less polluted cities in China. It is unclear, a priori, whether air pollution
impacts migration. On the one hand, migration allows an opportunity for migrants to
accrue additional health capital. On the other hand, it is possible that air pollution does
not affect people’s decision-making in a developing country such as China, as the income
level there is not adequately high. Thus, the effect of air pollution on migration is an
empirical question.

Ideally, to answer this question empirically, we would analyze both the effect of air
pollution in the origin on out-migration and the effect of air pollution in the destination
on in-migration on a common set of data that: (1) documents both the origin and the
destination of eachmigration episode, (2) records both seasonal or long-termmigration,
and (3) possesses a long timespan and a broad geographic span. As we do not have such a
dataset, we utilize two pieces of information on migration from a nationally representa-
tive sample. Specifically, we conduct the first part of our analysis using household-level
migration data that record both seasonal and long-term migration from 2014 to 2016.
Simultaneously, we perform the second part of our analysis employing individual-level
migration data that only record migration episodes that lasted for more than six months
from 2003 to 2010. Since long-term migrants would expect to benefit from improve-
ments in air quality longer, we expect them to be more responsive to air pollution than
seasonal migrants. Thus, the second part of our analysis, which focuses on migration
episodes that lasted for more than six months, could disclose a larger effect.

Methodologically, we adopt remote-sensing satellite data of the annual averages of
particulate matter with a diameter of less than 2.5 micrometers ( PM2.5) concentrations
in each city. We first estimate a linear model to explore the effect of the average PM2.5
concentrations in the origin on out-migration. Then, we estimate a conditional logit
model to study the effect of air pollution on location choice. The advantage of the condi-
tional logit model is that it captures the relative characteristics of a place, and thus allows
for a role of both the origin and the destination. In bothmodels, we employ instrumental
variables (IV) strategies to address the potential concern that air pollution is endogenous

1In 2003, the annual average PM2.5 concentration in the U.S. was 12μg/m3 (US Environmental Pro-
tection Agency, 2004), compared to 36μg/m3 in China calculated using our sample data, which will be
discussed in Sec. 2.
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to local economic activities. Part of the air pollution in an area is carried from distant
sources by the wind, so we use air pollution from distant sources carried by the wind
as an instrument for local air pollution. To incorporate an IV framework in the condi-
tional logit model, we estimate the conditional logit model through generalized method
of moments (GMM), following (Train, 2009: 326).

We compare the type of out-migration that left some family members behind (here-
after ‘partial out-migration’) with whole-household out-migration. We find that the
former type of out-migration was more responsive to air pollution than the latter type
of out-migration. In particular, a one standard deviation increase in the average PM2.5
concentrations increased the probability of having amigrant in the household by 20 per-
centage points, and air pollution either did not affect or slightly increased the probability
that the household moved away. We postulate the different sensitivity to air pollution
by age groups to elucidate why partial out-migration was more responsive to air pollu-
tion than whole-household out-migration. It includes studying the people left behind by
the out-migrants. Notably, we find that a one standard deviation increase in the aver-
age PM2.5 concentrations reduced the probability that a child was present in the origin
household by 8 percentage points, but had no effect on the probability that an elderly
person was present in the origin household. Moreover, we find that migrants were less
likely to choose a more polluted city, and residents were more likely to leave such a city.
Thus, the decline in net in-migration as a result of an increase in air pollution was driven
by both a decline in gross in-migration and an increase in gross out-migration. Further-
more, the conditional logit model predicts that a hypothetical one standard deviation
increase in the average PM2.5 concentration in each person’s current location would
induce 24million people in China to leave their current locations; migration would have
extended each person’s life expectancy by 3.5 weeks.

Our paper contributes to the extant literature in three ways. First, our paper con-
trasts partial out-migration with whole-household out-migration. Existing studies have
investigated the effect of air pollution on migration (Banzhaf and Walsh, 2008; Bayer
et al., 2009; Sullivan, 2016; Qin and Zhu, 2018; Chen et al., 2021, 2022; Khanna et al.,
2021), and among them, Khanna et al. (2021) and Chen et al. (2022) have explored the
long-term effect of air pollution on the internal migration in China. Moreover, Li and
Zhang (2019), Luo et al. (2019), Sun et al. (2019), andWang et al. (2021) have protracted
this discussion in Chinese. Nevertheless, on the one hand, Khanna et al. (2021) define
out-migration as leaving one’sHukou (or Household Registration System) city, and Luo
et al. (2019) similarly define out-migration as applying for a patent from a different city
than one previously did; these definitions of out-migration consider both partial and
whole-household out-migration. On the other hand, Wang et al. (2021) specify house-
holds of short-term out-migrants as households with minimal electricity consumption,
a definition that covers only whole-household out-migration. Comparing partial out-
migration and whole-household out-migration is critical, because family separation can
impose psychological costs on themigrants and the familymembers left behind. In prin-
ciple, partial out-migration could respond to air pollution more than whole-household
out-migration. This is because the strong attachment to their origin would render par-
tial out-migrantsmore likely to be circularmigrants. To the extent that circularmigrants
had more information regarding a reduction in air pollution in their origins, the partial
migrants in our sample could be more sensitive to the air pollution in their origins. Cir-
cular migrants constitute a substantial fraction of migrants in China (Hu et al., 2011).
Hence, comparing partial out-migration and whole-household out-migration is unique
and empirically crucial.
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Second, while (Graves and Waldman, 1991; Sun et al., 2019; Chen et al., 2022) study
heterogeneity by age groups, we expand the scope of this analysis to comprise children
under the age of 15, an age group that is potentially more vulnerable to air pollution.
This inclusion is critical, because theHukou system in China makes it exceedingly costly
for migrants to bring their children with them, but at the same time, parents may want
to invest in their children’s health capital. Thus, parents may place more weight on the
air pollution in their origin when they decide whether or not to bring their children with
them. In addition, unlike previous studies conducted at the county level (Graves and
Waldman, 1991; Chen et al., 2022) or at the individual level (Sun et al., 2019), the corre-
sponding part of our analysis is conducted at the household level. Thus, to the extent that
migration decisions of family members were jointly made by a household, our approach
accounts for the bias caused by the fact that some households had more than one child
and the possibility that these householdsmight respondmore or less to air pollution than
households with an only child.We find that air pollution in the origin reduced the prob-
ability of a child’s presence in the origin household, but did not affect the probability of
an elderly person’s presence in the origin household. To that end, air pollution would
have changed the spatial distribution of the population by age through migration. This
change impacts the long-term wellbeing of the origin cities and the provision of public
goods in the destination.

Third, our paper differentiated whether air pollution caused out-migration or
whether it ‘only’ determined a destination once an individual had already decided to
migrate. This distinction discloses whether air pollution caused gross out-migration or
whether it ‘only’ caused gross in-migration. The extant literature posits that an increase
in air pollution in a city caused a decline in net in-migration (Bayer et al., 2009; Khanna
et al., 2021), an increase in net out-migration (Chen et al., 2022), and a decline in gross
in-migration (Li and Zhang, 2019; Sun et al., 2019; Chen et al., 2022), but these net and
gross population flows could be driven exclusively by a decline in gross in-migration
with no accompanying increase in gross out-migration, if air pollution did not cause out-
migration, but only determined a destination once an individual had already decided to
migrate. This is possible if the preferences of individuals changed when they acquired
more information once they had decided to leave a city. This is also possible if individ-
uals only considered the levels of air pollution in their destination relative to those in
their origin; in particular, individuals became accustomed to the levels of air pollution
in their current city, but moving to a more polluted city required costly adaptation, so
they would only move to an equally or less polluted city. Making the distinction between
gross out-migration and gross in-migration is vital, because workers might accrue city-
specific human capital over time, and only if air pollution caused gross out-migration do
cities need to improve their air quality in order to retain talent.2 In this paper, we make
this distinction in two ways. First, we directly observe out-migration in the survey data
we adopt, although in most existing studies, including Chen et al. (2022), this is not the
case. Second, in the conditional logit model, our paper explores whether a person chose
his/her current city again as an additional source of heterogeneity. We find in both cases
that air pollution did cause gross out-migration, so the net and gross population flows in
response to an increase in air pollution as observed in the existing literature were driven
by both a decline in gross in-migration and an increase in gross out-migration.

2See, for example, Topel (1991) for the related accumulation of job-specific human capital.
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The rest of the paper is organized as follows. Section 2 describes the data and section
3 illustrates the empirical strategy. Section 4 reports the results and section 5 concludes.
We provide the background of the analysis, including discussions on theHukou system,
a comparison between the causes and consequences of partial out-migration and those
of whole-household out-migration, the overall trend of air pollution in China, and the
choice of PM2.5 as our air pollution measure, in the online appendix.

2. Data
2.1. Air quality
Existing studies have documented the lack of reliability regarding the Air Pollution
Index data from land-based monitoring stations officially published by the Ministry of
Environmental Protection of China from2000 to 2013 (Andrews, 2008; Chen et al., 2012;
Ghanem and Zhang, 2014), and have instead demonstrated that remote-sensing satellite
data can measure air pollution relatively well (Kumar et al., 2011). For this reason, we
adopt the remote-sensing satellite data developed by Van Donkelaar et al. (2019) and
Hammer et al. (2020) to measure PM2.5 concentrations.

Remote-sensing satellite data depend primarily on aerosol optical depth (AOD),
which measures surface reflectances. In the dataset we adopt, the AOD is retrieved
from radiances measured by four satellite instruments: twin MODIS (MODerate Res-
olution Imaging Spectroradiometer) instruments, which are onboard the polar-orbiting
Terra and Aqua satellites and have provided daily global coverage; the MISR (Multi-
angle Imaging Spectroradiometer) instrument, which is onboard the Terra satellite and
have provided global coverage once a week; and the SeaWiFS (Sea-ViewingWide Field-
of-View Sensor) instrument, which was onboard the SeaStar satellite and offered daily
global coverage. Van Donkelaar et al. (2019) and Hammer et al. (2020) apply a chemical
transport model, whose simulation is driven by meteorological data, to determine sur-
face PM2.5 concentrations using AOD and other inputs such as land-based monitoring
station readings. The calculated PM2.5 concentrations are highly consistent with out-of-
sample cross-validated land-based monitoring station readings with an R2 of 0.90-0.92
and a slope of 0.90-0.97. PM2.5 concentrations are aggregated to the city level by taking
a simple average of PM2.5 concentrations within the city boundary. Our adopted data
are the annual averages of city-level PM2.5 concentrations from 2003 to 2016 for all 370
cities in China. Over this period, average PM2.5 concentrations ranged from 2μg/m3 to
101μg/m3, and had a mean of 39μg/m3 and a standard deviation of 20 μg/m3.3

2.2. CLDS
We use the information on migration from the China Labor-Force Dynamics Survey
(CLDS).4 The CLDS comprises a nationally representative sample of individuals, house-
holds, and districts/counties from 29 provinces and provincial-level municipalities.
The survey adopts a multistage and stratified sampling strategy, with the 2282 dis-
tricts/counties in the 29 provinces and provincial-level municipalities being the primary

3Figures A1 and A2 in the online appendix demonstrate the spatial distribution of annual average PM2.5
concentrations across cities in China in 2014 and 2016, respectively.

4Data used in this paper are from the CLDS conducted by the Center for Social Science Survey at Sun
Yat-sen University in Guangzhou, China. The opinions are the author’s alone. Readers can refer to http://
css.sysu.edu.cn for more information about the CLDS data.
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sampling units. The villages/neighborhoods in the randomly selected districts/counties
are randomly divided into four groups, with each group being nationally-representative.
In each wave of every two years, one of the four groups rotates out and another group
rotates in.

We employ the 2014 and 2016 household-level CLDS sample to investigate the effect
of air pollution in the origin on out-migration. We specify two out-migration types.
In the first type, some family members were left behind. We derive the migration sta-
tus of each family member from the survey question: ‘Is this person currently living at
home?’ We describe people not living at home as migrants exclusively if they went away
long-term for work. Among the people living away from home, only those living in a dis-
trict/county different from their home are deemedmigrants.5 The essential information
regarding the familymembers away fromhome, such as themigrants, was gathered from
a family member living at home during the survey. Because this type of out-migration
occurred and was recorded in the 2014 and 2016 sample households, we use the panel
component of the 2014 and 2016 CLDS, i.e., 7744 households that were interviewed in
both survey years. Fig. A3 in the online appendix depicts the locations of cities repre-
sented by this panel. As reported in table 1, households with migrants, on average, had
more children and less income compared to households without migrants. On average,
the household heads in the households with migrants were also older, less educated, and
more likely to have rural Hukou.

In merging the air quality data with the CLDS, we measure the air quality that each
CLDS household experienced in each wave of the survey by the average PM2.5 concen-
tration of that calendar year of the city where the household resided. Nevertheless, no
household could respond to the air quality after the interview dates in that calendar year.
Since most CLDS surveys were conducted between July and August of each survey year,
we collect air quality data for the month betweenMay 13th and June 12th of each survey
year, and let their average be an alternative measure of air quality before the interview
dates in each survey year. In the online appendix, we discuss the robustness of our results
by adopting this alternative measure of air quality.

Whole-householdmigration is the second type of out-migration. Since theCLDSonly
conducted face-to-face interviews at the location where a household was first selected,
the households that moved away entirely did not appear in subsequent waves of the
survey. Thus, the households that moved away entirely from 2014 to 2016 were only
observed in the 2014CLDSbut not in the 2016CLDS. In each survey year, a quarter of the
CLDS households rotated out of the sample by design, and the rotation was performed at
the village/neighborhood level.6 Since theCLDS includes the village/neighborhood iden-
tifier, we can identify whether a household rotated out in 2016 by determining whether
the village/neighborhood was unobserved in the 2016 CLDS. Using this method, we find
that, from the 2014 CLDS, 24.8 per cent of the households rotated out in 2016. Another
20.3 per cent of households in the 2014 CLDS dropped out in 2016, because the CLDS
could not track these households, and we consider these households as having experi-
enced whole-household migration. Nevertheless, it is possible that elderly people who
were alive in 2014 were more likely to die by 2016 given an increase in air pollution,

5Although the CLDS records whether an individual lived in the same district/county as their home, it
does not provide any information on whether the individual lived in the same city as their home.

6There are almost always 35 households in each village/neighborhood. For each attrited household not
due to rotate out, the CLDS supplements the household with another household randomly selected from
the same village/neighborhood.
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Table 1. Summary statistics
2014 CLDS 2014 Households 2014 Households 2014 2016 CLDS 2016 Households 2016 Households 2016
Households with migrants without migrants Difference Households with migrants without migrants Difference

(1) (2) (3) (2)–(3) (4) (5) (6) (5)–(6)

Number of children 0.74 0.96 0.69 0.27 0.77 0.95 0.68 0.27
in household (0.93) (1.10) (0.88) [0.03] (0.96) (1.08) (0.88) [0.02]

Household 53.69 55.39 53.29 2.10 55.28 55.80 55.04 0.76
head age (13.31) (11.72) (13.62) [0.39] (13.21) (11.53) (13.93) [0.32]

Household head 8.09 7.15 8.30 −1.15 8.20 7.36 8.59 −1.23
years of education (4.07) (3.64) (4.13) [0.12] (3.97) (3.57) (4.09) [0.10]

Household head Hukou 0.73 0.90 0.69 0.21 0.74 0.90 0.66 0.24
(1=Rural) (0.44) (0.29) (0.46) [0.01] (0.44) (0.30) (0.47) [0.01]

Total family income 51.07 41.92 53.15 −11.23 56.79 45.55 62.14 −16.59
(in thousand Yuan) (86.94) (82.89) (87.71) [2.54] (95.28) (74.61) (103.25) [2.31]

N 7744 1434 6310 7744 2493 5251

Notes: Standard deviations are in parentheses; standard errors are in square brackets.
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and we might mistake households that consisted only of left-behind elderly people in
2014 and disappeared from the sample in 2016 due to the death of the elderly people for
households that had whole-household out-migrated. In the online appendix, we discuss
the potential bias resulting from this likelihood, and offer a bound for this bias.

To study the effect of air pollution on location choice, we utilize the full sample of
23,594 individuals from the 2014 CLDS. In particular, the individual-level data of the
2014 CLDS comprise the complete migration history of each individual in the sample.
The migration history includes the destination city, the year, and the primary reason for
eachmigration episode.We employ this piece of information to retrospectively construct
a panel of individual location choices for each year from 2003 to 2010. Most people (98
per cent) never migrated from 2003 to 2010; 2 per cent of individuals at least once; 0.3
per cent of individuals more than once. For individuals who moved more than once in
a given year, we let their final location after the last move be their location in that year.

2.3. Control variables
Air pollution is endogenous to local economic activities. Besides the IV strategy to be
discussed in the next section, we control for per capita GDP, gross industrial output,
and the unemployment rate, three socio-economic variables derived from theChinaCity
Statistical Yearbook, in our linear model. Furthermore, since weather conditions may
determine air pollution and independently affect location choice, as a robustness check
in the online appendix, we also control for the annual averages of mean, maximum, and
minimum temperature, dew point, precipitation, and wind speed, all collected from the
National Oceanic and Atmospheric Administration.

3. Methods
3.1. Out-migration
In the first part of our analysis, we estimate a linear probability model to study the effect
of air pollution in the origin on out-migration. For partial out-migration, we estimate
the following equation on the panel component of the 2014 and 2016 CLDS households,

SentMigrantict = β1AveragePM2.5ct + β2Xct + β3Wict + μi + δt + εict (1)

where i stands for a household, c stands for the city, and t stands for the year.
SentMigrantict is an indicator for having a migrant in household i in year t.
AveragePM2.5ct is the average PM2.5 concentration in year t of city c in which house-
hold i was located. Xct is the city-level socio-economic controls, including per capita
GDP, gross industrial output, and the unemployment rate. Wict is the household-level
controls, including age, years of education, andHukou of the household head, as well as
total family income. μi is the household fixed effect; δt is the year fixed effect, with 2014
being the base year. εict is the error term. Since the CLDS does not track the households
that moved between 2014 and 2016, all households in the panel of the 2014 and 2016
CLDS households were stationary between these two survey years. Thus, the household
fixed effect also removes the location-specific time-invariant characteristics. Standard
errors are clustered at the household level to allow for serial correlation in the error term.

For whole-household migration, we estimate the following equation on a cross-
section of the 2014 CLDS households that were not due to rotate out in 2016,

OutMigrateict = β0 + β1�PM2.5ct + β2�Xct + εict (2)
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where OutMigrateict is an indicator taking the value of one, if household imigrated out
between 2014 and 2016; �PM2.5ct is the change in average PM2.5 concentrations of city
c between 2014 and 2016; and �Xct is the change in city-level socio-economic controls
between 2014 and 2016.

3.2. Identification strategy
We aim to address a potential source of endogeneity: air pollution is endogenous to local
economic activities. Many unexplained economic factors impact both air pollution and
migration. For example, a city experiencing a negative economic shock and closing its
polluting factories may have a decline in air pollution but an outflow of workers pre-
viously employed by the factories. This potential source of endogeneity can cause the
ordinary least squares (OLS) coefficient estimates for the average PM2.5 concentrations
in equation (1) and the change in average PM2.5 concentrations in equation (2) to be
downward biased.

To address this concern, we instrument for the average PM2.5 concentrations using
the air pollution from distant sources carried by the wind. Bayer et al. (2009) were the
first to employ air pollution from distant sources as an instrument for local air pollution.
They use a detailed source-receptor matrix developed for the United States Environ-
mental Protection Agency that relates emissions from nearly 6000 sources to particulate
matter with a diameter of less than 10 micrometers (PM10) in each county in the U.S. to
determine themarginal willingness to pay for clean air in the U.S. Using this matrix, they
can calculate howmuch the pollution sourcesmore than 80 km away from a county con-
tributed to the PM10 levels in that county. Zheng et al. (2014) and Barwick et al. (2018)
later employ a similar IV strategy based on air pollution from distant sources, the former
to study the long-term effect of air pollution on China’s housing prices, and the latter to
study the short-term effect of air pollution on healthcare expenditure in China. Since
the same source-receptor matrix used in Bayer et al. (2009) does not exist in China, we
adopt the formulation of the instrument from Zheng et al. (2014),

NEIGHBORit =
∑

j
wij · smoke emissionjt · e−dij , dij > 80 km, (3)

where NEIGHBORit is air pollution from distant sources for receiving city i in year t,
and thus the instrument; wij is a dummy variable taking the value of one if source city j
is located in the prevailing wind direction of receiving city i; smoke emissionjt is city j’s
emission level in year t; dij is the distance between city i and city j; e−dij is the value of
a continuous and exponential decreasing function, and hence the weight declines as the
distance between city j and city i increases.

In constructing this instrument, we conduct the following procedure. First, we obtain
data on the prevailing wind direction, defined as the most frequent wind direction from
1981 to 2010, at each of all 1156 monitoring stations across China from the China
Meteorological Data Service Center. Wind could take 16 different directions, with each
direction spanning 22.5 degrees. When two or more wind monitoring stations exist in a
receiving city, and the prevailing wind directions differ, we take the most common pre-
vailing wind direction to be the prevailing wind direction of this receiving city. In the
online appendix, we provide a falsification test by rotating this prevailing wind direction
clockwise by 90 degrees. Second, we gather data on the soot (or dust) emission levels
for 290 Chinese cities in each year from 2003 to 2010, 2014, and 2016 from the China
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City Statistical Yearbook. The amount of soot (or dust) emitted by a city in a given year
represents the emission level of that city in that year. Third, we measure the distance dij
by the great circle distance given in degrees of longitude, and determine the direction of
one city toward another city using the Haversine formula.

The remaining step is to choose the exclusion distance within which the emissions do
not count toward air pollution from distant sources. An ideal distance would correlate
the instrument with local PM2.5 concentrations but not with local economic activities.
Increasing this distance would weaken both correlations, and decreasing this distance
would strengthen both. To select the exclusion distance that makes the instrument sat-
isfy both relevance and the exclusion restriction, we summarize the correlation between
air qualitymeasures, including instruments using 50 km, 80 km, and 120 kmas the exclu-
sion distances, and observable local economic activities variables collected from the
China City Statistical Yearbook in table A1 of the online appendix. One of the observ-
able local economic activities variables, gross industrial output, is correlatedwith average
PM2.5 concentrations, but no observable local economic activities variable is correlated
with air pollution fromdistant sources.We choose 80 km as the exclusion distance in our
baseline estimates, because it is the safest and because the first stage is still strong. This
choice of 80 km as the exclusion distance is consistent with that in Bayer et al. (2009).
We disclose that our results are robust to choosing alternative exclusion distances in the
online appendix.

The crucial assumption behind this identification strategy suggests that local eco-
nomic activities do not affect air pollution emissions beyond 80 km, but local economic
activities are allowed to affect air pollution emissions within 80 km. It implies that the
economic activities of a potential destination within 80 km may be correlated with both
local air pollution and out-migration, and thus pose a challenge formeeting the exclusion
restriction. To address this concern, we calculate the migration distance of each of the
536migration episodes in the individual-level retrospective panel from2003 to 2010. The
migration distance has amean of 5.4 degrees (590 km), amedian of 3.3 degrees (360 km),
and a mode of 1 degree (110 km). Due to confidentiality concerns of the CLDS, we can
only identify the migration distance from the origin city to the destination one, and not
at the more granular county level. Nevertheless, we can still exclude migration episodes
to the nearest city as the most dominant type of migration. As a result, there is little rea-
son to suggest that an individual’s migration motives were substantially driven by the
economic activities of a potential destination within 80 km.

Table 2 reports the first stage estimated on the panel component of the 2014 and 2016
household-level CLDS. The first stage is strong, with an F-statistic of 844. The average
PM2.5 concentrations and air pollution from distant sources are both standardized to z-
scores with a mean of zero and a standard deviation of one. As expected, average PM2.5
concentrations were increasing in air pollution from distant sources. On average, a one
standard deviation increase in air pollution from distant sources was associated with a
0.14 standard deviation increase in the average PM2.5 concentrations. Thus, around 14
per cent of local air pollution came from distant sources.

3.3. Location choice
For the second part of our analysis, we estimate a conditional logit model (McFadden,
1974) to explore the effect of air pollution on location choice. This part of our analysis
allows us to exploit the long retrospective timespan of the PM2.5 data. The advantage of
the choicemodel is that it captures the relative characteristics of a place, thus allowing for
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Table 2. The effect of air pollution in the origin on partial out-migration

(1) (2) (3)
Dependent var.: Having a migrant in the household OLS FE IV

Average PM2.5 concentrations 0.006 0.080 0.204
(0.004) (0.024) (0.069)

First stage

Air pollution from distant sources 0.141
(0.005)

F of first stage 844.05

R2 0.08 0.08 0.07

Mean of dep. var. 0.281 0.281 0.281

F of second stage 164.843 – 38.545

N 14,263 14,263 14,046

Notes: The IV regression uses air pollution from distant sources as the instrument for average PM2.5 concentrations. The
average PM2.5 concentrations and air pollution from distant sources are normalized to z-scores. All regressions have per
capita GDP, gross industrial output, and the unemployment rate as city-level controls and age, years of education, and
Hukou of the household head, as well as total family income as household-level controls. Both column (2) and column (3)
include household fixed effect and year fixed effect. All regressions apply sampling weights. Standard errors are clustered
at the household level. Standard errors are in parentheses.

a role of both the origin and the destination. With this model, the identification comes
from the revealed preference of the individuals over locations with varied levels of air
pollution. That is, an observation is at the individual level, and the levels of air pollution
in the cities an individual chose or did not choose play amore prominent role thanwhich
city the individual finally chose.

A set of 124 cities was represented by the final locations of individuals in the 2014
CLDS sample, but a more extensive set of 214 cities was epitomized by the previous loca-
tions of these individuals, as these individuals might have come from cities outside of the
former set. Whether an individual previously chose outside the former set of 124 cities
is less important in the conditional logit model than it would be in a gravity-type model,
where the migration effect of air pollution is identified off pairwise city-level migration
flows. For this reason, we opt for the conditional logit model instead of a gravity-type
model. The conditional logit model assumes that the error term has i.i.d. type-I extreme
value distribution. Because the error terms are assumed to be independent, the model
also assumes independence of irrelevant alternatives. In particular, the error terms for
close-by locations are assumed to be uncorrelated with one another. We estimate the
following equation:

Uijt = αLocationPM2.5ijt + βCurrentijt + γCurrentijt
× LocationPM2.5ijt + φDistanceijt + νijt ,

(4)

whereUijt is individual i’s utility of choosing city j in year t; LocationPM2.5ijt is the aver-
age PM2.5 concentration, standardized to z-score, of city j in year t;Currentijt is a dummy
for whether individual i was located in city j in year t − 1; Distanceijt is the distance in
degrees of longitude between city j and the city where individual i was located in year
t − 1; and νijt is the error term.

A marginal effect is the product of a coefficient estimate, the probability of choos-
ing the city in which a change occurred, and the probability of choosing the destination.
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When multiplied by the probability of choosing a destination where an individual was
not located the year before, and one minus this probability, α corresponds to the effect
of the average PM2.5 concentration in the destination on the probability that the city was
chosen that year, and thus the effect of air pollution in the destination on in-migration.
Similarly, β relates to (and has the same sign as) the probability that an individual stayed
where he/she was the year before. α + γ relates to (and has the same sign as) the effect of
the averagePM2.5 concentration in a citywhere an individual currently lived on the prob-
ability that the person stayed where he/she was. Since staying is the opposite of leaving,
the product of α + γ , the probability of choosing the origin, and one minus this proba-
bility, becomes the additive inverse of the effect of the average PM2.5 concentrations in
the origin on out-migration. We control for the distance between the potential destina-
tion and the city where an individual currently lived as a proxy for migration cost. We
expect that α < 0, β > 0, and φ < 0. It is possible that an individual knew better about
the air quality in his/her current location, and the uncertainty regarding the air pollution
in the destination implies that a migrant might not always end up in a less polluted city.
Hence, an individual might be more responsive to the air pollution in his/her current
location; it would imply γ < 0.

Migration can be viewed as a two-step process: First, an individual decides to leave
a city, and second, that individual chooses the place to go. The factors influencing the
individual’s decision to leave a city may not be the same as those influencing individual’s
decision onwhere to go. The existing literature has found that an increase in air pollution
in a city causes a decline in net in-migration (Bayer et al., 2009; Khanna et al., 2021), an
increase in net out-migration (Chen et al., 2022), and a decline in gross in-migration
(Li and Zhang, 2019; Sun et al., 2019; Chen et al., 2022), but net population flows are a
product of gross population inflows and outflows. If an increase in air pollution led to a
decline in gross in-migration, it would imply a decline in net in-migration, as observed
in the literature.

Nevertheless, it does not necessarily imply that gross out-migration has increased in
response to the increase in air pollution. This is because, even if air pollution determined
a destination once an individual had already decided to migrate, air pollution might not
have caused out-migration. This is possible if the preferences of an individual changed
when he/she acquired more information after having decided to leave a city. This is also
possible if an individual only considered the levels of air pollution in his/her destination
relative to those in his/her origin; in particular, an individual became accustomed to the
air pollution in his/her current city, but moving to a more polluted city demanded costly
adaptation, so the individual would only move to an equally or less polluted city.

The inclusion of the interaction term between Currentijt and LocationPM2.5ijt
enables us to determine whether a decline in net in-migration in response to an increase
in air pollution was caused by both a decline in gross in-migration and an increase in
gross out-migration, and contributes to the existing literature. On the one hand, if α < 0
and α + γ < 0, the decline in net in-migration in response to an increase in air pollu-
tion would have been driven by both a decline in gross in-migration and an increase in
gross out-migration. On the other hand, if α < 0 but α + γ = 0, the decline in net in-
migration would have been driven exclusively by a decline in gross in-migration, and no
increase in gross out-migration would occur. In this case, air pollution did not cause out-
migration, but only determined a destination once an individual had already decided to
migrate.

Since the average PM2.5 concentrations are endogenous to local economic activities,
α̂ may be upward-biased (in contrast to the downward bias in the linear model on the
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analysis of out-migration). In addition, since an individual may be more familiar with
the economic opportunities of his/her current location, γ̂ may also be upward-biased.
To instrument for LocationPM2.5ijt and Currentijt × LocationPM2.5ijt , we estimate
equation (4) via GMM. Following (Train, 2009: 326), we derive the following moment
condition, ∑

i,t

∑

j
(Yijt − P(Yijt = 1|Xijt))Zijt = 0,

where Yijt is 1 if individual i was located in city j in year t; P(Yijt = 1|Xijt) is the condi-
tional probability that individual i was located in city j in year t; Xijt are the regressors in
equation (4) including LocationPM2.5ijt , Currentijt , Currentijt × LocationPM2.5ijt , and
Distanceijt ; and Zijt is the instrument. The moment condition has an intuitive construct:
the observed mean of the instrument (i.e.,

∑
i,t

∑
j YijtZijt) equals the mean predicted by

the model (i.e.,
∑

i,t
∑

j P(Yijt = 1|Xijt)Zijt). Under the assumption that the error term
has i.i.d. type-I extreme value distribution, P(Yijt = 1|Xijt) has a closed-form solution
(McFadden, 1974):

P(Yijt = 1|Xijt) = eπ
′Xijt

∑
k eπ

′Xikt
.

As in the analysis of out-migration, we instrument for LocationPM2.5ijt using air pol-
lution from distant sources, and instrument for Currentijt × LocationPM2.5ijt using
the interaction term between Currentijt and air pollution from distant sources, while
Currentijt and Distanceijt serve as their own instruments. Thus, the model is exactly
identified.

To compare the results from the conditional logit model with the previous results
from the linear model in Sec. 3.1, we translate the coefficient estimates into marginal
effects. The effect of the average PM2.5 concentration in a city where an individual
currently lived on the probability that he/she stayed there is conveniently given as:

MarginalEffect = (α + γ )P(Yijt = 1|Xijt)[1 − P(Yijt = 1|Xijt)]. (5)

This marginal effect depends on P(Yijt = 1|Xijt), i.e., the probability that individual i
chose his/her current city j again in year t. The additive inverse of this marginal effect is
the effect of air pollution in the origin on out-migration, comparable to the effect in the
linear model in Sec. 3.1.

4. Results
4.1. Out-migration
Table 2 reports the results for the effect of the average PM2.5 concentrations in the ori-
gin on the probability that a household had a migrant. The OLS result in column (1)
suggests that PM2.5 concentrations in the origin were not associated with the probability
of having a migrant. A downward bias may be expected, because local economic activ-
ities were positively correlated with air pollution but negatively correlated with partial
out-migration. For example, a city experiencing a negative economic shock and clos-
ing its polluting factories might experience decreased air pollution but an outflow of
workers previously employed by the factories. Column (2) shows the result after adding
household and year fixed effects. The fixed effects absorb all the household-specific time-
invariant and time-specific household-invariant characteristics, and partially correct
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the potential downward bias of the coefficient estimate by absorbing the between-city
variations in unobserved local economic activities.

Column (3) reports the IV result. The IV regression also includes household fixed
effect and year fixed effect. Furthermore, it corrects this downward bias caused by the
within-city and within-year changes in unobserved local economic activities that were
correlated with both changes in local air pollution and changes in partial out-migration.
The coefficient estimate implies that a one standard deviation increase in the average
PM2.5 concentrations increased the probability of having a migrant by 20 percentage
points. Given that the mean probability of having a migrant is 28 per cent, the 20
percentage point increase, as suggested by the IV result, is sizable.

It is noteworthy, however, that this interpretation refers to one standard deviation of
the levels in air pollution and not one standard deviation of the changes in air pollution,
so a one standard deviation increase in air pollution is very large. In fact, given the two-
way fixed effects setup, the change in air pollution of the 118 cities in our sample from
2014 to 2016 relative to the overall changes in air pollution across cities ranges from -0.62
to 0.78 standard deviation of air pollution levels. Only 11 per cent of the sample cities
experienced a change in partial out-migration relative to the overall changes in partial
out-migration greater than 10 percentage points due to changes in air pollution from
2014 to 2016. Thus, the magnitude of the effect we identify is not unreasonably large.

In China, a county is a smaller geographical unit than a city, with a city typically com-
prising several districts and counties. Given that the sampling of the CLDS is conducted
at the district/county level, our coefficient of interest has the interpretation of the effect
of air pollution in the origin city on partial out-migration. For confidentiality reasons,
the CLDS does not provide any geographic identifier within a city, thus precluding an
analysis at a more granular level. Since county-level air pollution may be measured with
an error by the air pollution in the city where the county is located, the classical errors-in-
variables model predicts a potential attenuation bias. In particular, the effect we estimate
would be biased toward zero.

Nevertheless, the magnitude of the effects we find is comparable to that in the exist-
ing literature. Given that the average household in the CLDS sample had 4.2 people, and
since each household with out-migrants had 2.2 out-migrants on average, the 20 per-
centage point increase in the probability of having a migrant approximately means that
the population declined through partial out-migration by 11 per cent in a city with a one
standard deviation increase in PM2.5 concentrations. Chen et al. (2022) disclose that a
one standard deviation increase inPM2.5 concentrations decreased the population in any
given county through net out-migration by 15 per cent. Thus, the effect we find is similar
in magnitude to that of Chen et al. (2022).

Table 3 reports the results for the effect of the average PM2.5 concentrations in the
origin on the probability that a household moved away entirely. We estimate these
regressions on a cross section of the 2014 CLDS households not due to rotate out in
2016, and thus do not include any fixed effect. Column (1) shows the OLS results, which
suggest no effect of changes in air pollution onwhole-household out-migration. Adown-
ward bias is similarly expected, since local economic activities are correlated with both
air pollution in the origin and whole-household out-migration. Column (2) demon-
strates the IV results with changes in air pollution fromdistant sources as the instrument.
The coefficient estimate is positive, but still statistically insignificant, indicating that
whole-household out-migration did not respond to air pollution.

Two reasons might explain why partial out-migration could be more responsive to
air pollution than whole-household migration. First, the strong attachment to their
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Table 3. The effect of air pollution in the origin on whole-household out-migration

(1) (2)
Dependent var.: Whole household moved away by 2016 OLS IV

Changes in average PM2.5 concentrations from 2014 to 2016 −0.005 0.066
(0.016) (0.046)

First stage

Changes in air pollution from distant sources 0.138
(0.004)

F of first stage –

R2 0.01 –

Mean of dep. var. 0.262 0.262

F of second stage – –

N 9759 9759

Notes: Both regressions are estimated on a cross-section of the 2014 CLDS households not due to rotate out in 2016,
and use changes in air pollution from distant sources from 2014 to 2016 as the instrument for changes in average PM2.5
concentrations from 2014 to 2016. The average PM2.5 concentrations and air pollution from distant sources are normal-
ized to z-scores. Both regressions have the changes in per capita GDP, gross industrial output, and the unemployment
rate as controls. Neither column includes any fixed effect. All regressions apply sampling weights. Standard errors are in
parentheses.

origin would make partial out-migrants more likely to be circular migrants, and circu-
lar migrants might possess more information concerning a reduction in air pollution in
their origins. Second, people of different ages benefit differently frommoving away from
air pollution. For example, due to the restrictions on migration under the Hukou sys-
tem, China’s migrants are known to leave their children behind. Nevertheless, children
are more vulnerable to air pollution, and parents may want to invest in their children’s
health capital. Thus, migrating parents may place more weight on the air pollution in
their origin when deciding whether or not to bring their children with them. At the same
time, older people might be more used to the changes in air pollution in their current
locations, and thus might stay behind despite an increase in air pollution.

Table 4 tests this latter hypothesis. Although we do not observe the location where
each migrant lived, we follow the age of each member of the origin household. Thus,
we estimate equation (1) with a child or an elderly person being present in the origin
household as the dependent variables. We find that a one standard deviation increase in
the average PM2.5 concentrations reduced the probability that a child was present in the
origin household by 8 percentage points. Against a mean of 43 per cent, this translates
into a 19 per cent increase, and is very sizable. In contrast, air pollution in the origin did
not change the probability that an elderly person was present in the origin household.
Thus, at least some of the pollution-induced migrants brought their children with them,
but some aging parents were left behind.

While Graves and Waldman (1991), Sun et al. (2019), and Chen et al. (2022) study
heterogeneity by age groups, we expand the scope of this analysis to include children
under the age of 15, an age group that is potentially more vulnerable to air pollution. Our
results align with the finding of Chen et al. (2022) that young working-age individuals
were more responsive to air pollution, but differ from the finding of Sun et al. (2019)
that the sensitivity to air pollution increased with age. This discrepancy may be because
the analysis in Sun et al. (2019) was conducted at the individual level, while ours is at
the household level. It is possible that air pollution only induced one elderly person who
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Table 4. The effect of air pollution in the origin - who were left behind

A child present in An elderly person present
the origin household in the origin household

(1) (2)
Dependent var.: IV IV

Average PM2.5 concentrations −0.080 −0.093
(0.039) (0.075)

R2 −0.00 0.02

Mean of dep. var. 0.430 0.080

F 1.750 11.170

N 14,046 14,046

Notes: A child is defined as a person under 18 years of age, and an elderly person is defined as a person over 60 years of age.
Both regressions use air pollution from distant sources as the instrument for average PM2.5 concentrations. The average
PM2.5 concentrations and air pollution from distant sources are normalized to z-scores. Both regressions have per capita
GDP, gross industrial output, and the unemployment rate as city-level controls and age, years of education, and Hukou of
the household head, as well as total family income as household-level controls. All regressions include household fixed
effect and year fixed effect. Standard errors are clustered at the household level. Standard errors are in parentheses.

Table 5. Coefficient estimates of conditional logit model

Dependent var.: City being chosen
(1) (2) (3)

Estimation method: MLE GMM GMM
Instrument for PM2.5: No No Yes

Location PM2.5 −0.200 −0.200 −2.003
(0.050) (0.044) (0.185)

Current 8.991 8.991 9.765
(0.077) (0.191) (1.502)

Current×Location PM2.5 0.475 0.475 −0.140
(0.059) (0.041) (0.955)

Distance −0.268 −0.268 −0.692
(0.012) (0.030) (0.152)

N 40,390,360 40,390,360 40,390,360

Notes: The sample is a retrospective panel from 2003 to 2010 constructed from the 2014 individual-level CLDS. Each year,
the individuals chose among 214 cities, determined by the cities that all individuals in the sample chose across all sample
years. Location PM2.5 and the instrument, air pollution from distant sources, are standardized to z-scores. Standard errors
are in parentheses.

was more vulnerable to air pollution within a household to migrate, but his/her spouse
stayed behind.

4.2. Location choice
Table 5 reports the results from estimating the conditional logit model in equation (4).
Because the marginal effects depend on the probability of choosing the city where a
change in a covariate occurred as well as the probability of choosing the destination,
we report the more succinct coefficient estimates instead. The coefficient estimates are
informative by themselves because, given a change in a covariate in a city, the signs
of the coefficient estimates align with the signs of the marginal effects on choosing a
destination.

Column (1) demonstrates the results estimated via maximum likelihood estimation
(MLE) without instrumenting for LocationPM2.5ijt and Currentijt × LocationPM2.5ijt .
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We find that the coefficient estimate for LocationPM2.5ijt is negative and statistically sig-
nificant, indicating that migrants not currently living in a city were less likely to choose
the city if it had more air pollution. The coefficient estimate for Currentijt is positive
and statistically significant, suggesting that most people stayed where they were the year
before. The coefficient estimate of Currentijt × LocationPM2.5ijt is positive and signifi-
cant. It means that air pollution had a weaker deterrent effect in the current city, and can
be due to the endogeneity created by LocationPM2.5ijt ; in particular, a person might
be more familiar with the economic opportunities of his/her current location, mak-
ing him/her appear less sensitive to the air pollution there. The coefficient estimate of
Distanceijt is negative and statistically significant, indicating that people were less likely
to choose a faraway city, which presumably involved higher migration costs.

We then estimate the conditional logit model via GMM. Column (2) reports the
results without instrumenting for LocationPM2.5ijt and Currentijt × LocationPM2.5ijt .
The coefficient estimates we obtain via GMM are the same as those obtained via MLE.
The standard errors are different because, as in most cases, the GMM estimator is not
efficient. Column (3) reports the results after we instrument for LocationPM2.5ijt with
air pollution from distant sources and Currentijt × LocationPM2.5ijt with the interac-
tion term between Currentijt and air pollution from distant sources. The coefficient
estimate for LocationPM2.5ijt is slightly more negative, suggesting that a slight upward
bias will exist if we do not instrument for LocationPM2.5ijt . The upward bias is expected,
because local economic activities were positively correlated with both air pollution and
in-migration. The negative coefficient estimate suggests that more air pollution in the
destination did lead to less gross in-migration.

The coefficient estimate for the interaction term, Currentijt × LocationPM2.5ijt , is
also more negative, albeit statistically insignificant. It implies that, without instrument-
ing for Currentijt × LocationPM2.5ijt , an upward bias may exist, because the person
might be more familiar with the economic opportunities of his/her current location.
Furthermore, if air pollution did not cause out-migration but ‘only’ determined a des-
tination once an individual had already decided to migrate, we should only observe a
negative effect of air pollution in the destination on gross in-migration (i.e., α̂ < 0),
and we should not observe a positive effect of air pollution in the origin on gross out-
migration (i.e., α̂ + γ̂ = 0). Nevertheless, our estimates suggest that α̂ + γ̂ < 0, and the
p-value for testing the hypothesis that α̂ + γ̂ = 0 is 0.04. This implies thatmore air pollu-
tion in the origin resulted inmore gross out-migration.Moreover, figureA4 in the online
appendix compares the effect of air pollution in the origin on out-migration between the
linear model and the conditional logit model, and finds that the magnitudes are similar.

In addition, the ratio between the coefficient estimate for LocationPM2.5ijt and that
for Distanceijt is three. Since the ratio between parameters is independent of scale, we
interpret this ratio as the distance that an individual was willing to sacrifice to avoid a
one standard deviation increase in location PM2.5 concentrations. Thus, to relocate to a
city with one standard deviation less air pollution, an individual was willing to migrate 3
degrees farther away, which is roughly equivalent to 320 km, or around a quarter of the
distance between Beijing and Shanghai.

4.3. Counterfactual
To illustrate the role migration played in reducing the exposure to air pollution, we
use the conditional logit model to predict the number of out-migrants when the aver-
age PM2.5 concentration of everyone’s current location hypothetically increased by one
standard deviation (or 18.6μg/m3), a large shock. Notably, whether we increase a city’s
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air pollution is person-specific. For example, if Person 1 was located in City A, for Per-
son 1, we would only increase City A’s air pollution and not City B’s, even though City B
was someone else’s current location. To conduct the simulation, we perform the follow-
ing procedure. We simulate choices using observable data, increase the average PM2.5
concentration of everyone’s current location by one standard deviation, and then simu-
late migration. After we scale the predicted number of migrants up by the population of
China, we estimate that the increase in air pollution would induce 24 million migrants
to move away from their current cities.

This simulation also predicts the change in each individual’s exposure to air pollu-
tion.We calculate that the observed level of migration would have reduced each person’s
exposure to the increase in the average PM2.5 concentrations by 0.06 standard deviation,
or 6 per cent of the presumed increase in the average PM2.5 concentration of the person’s
current location. Since a 10 μg/m3 increase in PM2.5 concentrations has been shown to
decrease life expectancy by 0.61 year (Pope III et al., 2009), we calculate that migration
would have extended each person’s life expectancy by 0.07 year, or 3.5 weeks.

5. Conclusions
In this paper, we have shown that migration could mitigate the health impacts of air pol-
lution. It implies that, if residents did not have the option to migrate, they would choose
alternative ways to cope with air pollution, such as wearing face masks, purchasing air
filters, or coercing local authorities to curb air pollution. These alternatives might pose a
higher cost to the residents and society. Our study is consistent with the existing litera-
ture in suggesting that improving its air quality can allow a city to attract more migrants,
but our findings also reveal three other conclusions with policy implications.

First, we have contrasted partial out-migration with whole-household out-migration.
We found that a one standard deviation increase in the average PM2.5 concentrations
increased the probability of having a migrant by 20 percentage points, and air pollu-
tion either did not affect or slightly increased the probability that the household moved
away. Nevertheless, our results are suggestive at best. On the one hand, as shown in the
online appendix, the coefficient estimate for partial out-migration is only statistically
significant at the 10 per cent level, when standard errors are clustered at the city level.
The rise in standard errors is presumably due to the lack of within-city-year variation
in air pollution. On the other hand, as discussed in the online appendix, in constructing
our air pollution measure, we assume that all households responded to the air pollution
in the same time period, but the air pollution each household experienced may depend
on the date on which the household was interviewed. This measurement error would
bias the coefficient estimate for air pollution and the t-statistic towards zero, so the true
migration response to air pollution could be larger than what we estimate.

Despite these shortcomings, our results for partial out-migration align with Chen et
al. (2022), but we have also suggested the differential response to air pollution by age
as a potential reason why partial out-migration was more responsive to air pollution
than whole-household out-migration. In particular, we have found that a one standard
deviation increase in the average PM2.5 concentrations reduced the probability that a
child was present in the origin household by 8 percentage points. That is, air pollution
might have affected the household decision to bring the children with the migrants. In
this way, our results suggest that air pollution can change the spatial distribution of the
population by age through migration. Areas with more air pollution would experience
an outflow not only of working-age adults but also of children, who in turn might have
less attachment to their origin when they came of age. In contrast, areas with less air
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pollution would experience an influx of children and growing pressure to provide them
with local public goods, including education and healthcare. Since air pollution did not
affect the probability of an elderly person being present in the origin household, air pol-
lutionmight have caused family separation through partial migration, whichmight have
imposed psychological costs on the migrants and the family members left behind.

Second, we have found that air pollution not only determined a destination once an
individual had already decided to migrate, but also caused out-migration. That is, the
decline in net in-migration as a result of an increase in air pollution was driven by both
a decline in gross in-migration and an increase in gross out-migration. This implies that
cities wishing to retain talent can do so by improving their air quality.

Finally, even though we cannot predict whether people would respond more to air
pollution if the government lowered the barriers to migration, our findings indicate that
the existing migration caused by air pollution is welfare-improving compared to having
no one move. Specifically, the conditional logit model predicts that a hypothetical one
standard deviation increase in the average PM2.5 concentration in each person’s current
location would induce 24million people in China to move away from their current loca-
tions. Based on the model’s prediction, the observed level of migration would reduce 6
per cent of each person’s exposure to this increase in air pollution.

To sum up, we conclude that the current level of migration due to air pollution
was beneficial to residents compared to having no one move, but air pollution also
caused some damages to families or regions through migration. This observation rein-
forces the importance of controlling air pollution in regions where it is the most severe.
The extent to which a country accomplishes this goal will determine the role migration
plays in distributing environmental amenities for individuals and promoting sustainable
development for regions across the country.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X22000377
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