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Abstract. In this survey we discuss spectral and quantum dynamical properties of discrete
one-dimensional Schrödinger operators whose potentials are obtained by real-valued
sampling along the orbits of an ergodic invertible transformation. After an introductory
part explaining basic spectral concepts and fundamental results, we present the general
theory of such operators, and then provide an overview of known results for specific
classes of potentials. Here we focus primarily on the cases of random and almost periodic
potentials.
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1. Introduction
The spectral theory of Schrödinger operators with random or almost periodic potentials has
been an area of very active study since the late 1970s. Essentially, from the very beginning,
it has been understood and emphasized that these two classes of models share an important
property, namely, that the potentials can be generated dynamically. On the one hand, this
makes a unified proof of basic spectral results possible, such as the almost sure constancy
of the spectrum and the spectral type, since they hold as soon as the dynamical framework
is fixed and an ergodic measure is chosen. On the other hand, by the very nature of the
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dynamical definition of the potentials, it comes as no surprise that tools from dynamics
will enter the spectral analysis of these operators.

The field has made striking progress in the past ten years. This era was ushered in by
Puig’s proof that localization implies Cantor spectrum for the almost Mathieu operator
via Aubry duality and reducibility [182], and by the proof of zero-measure spectrum for
the critical almost Mathieu operator with recurrent Diophantine frequencies by Avila and
Krikorian [17]. Both of these papers were released about ten years ago. Since then, Avila
has gone on to solve many of the major open problems for one-frequency quasi-periodic
Schrödinger operators, and this work partly led to him being awarded the Fields medal in
2014. Moreover, through a series of papers in the past six years, the fine spectral properties
of the Fibonacci Hamiltonian, which is the central quasicrystal model in one dimension,
have been understood more or less completely, and this development was only possible
after Gorodetski and his students had introduced new ideas from uniformly and partially
hyperbolic dynamics in the spectral analysis of this operator.

This only reinforces the second point above. Many advances in the spectral theory of
Schrödinger operators with dynamically defined potentials are only possible through the
application of sophisticated techniques from dynamical systems, and this came to a whole
new level of fruition once researchers with a primary background in dynamics entered the
field.

The purpose of this survey is to introduce the non-specialist reader to this field and some
of the recent advances. We will assume that the reader has no detailed knowledge of the
spectral analysis of Schrödinger operators.

A particular goal of ours is to explain why the recent results are interesting and for this
reason we will begin with a section on quantum dynamics and spectral theory. Statements
such as a certain operator having purely absolutely continuous spectrum are not very
meaningful without the connection between such a spectral property and its consequences
for the associated quantum evolution. We will explain this connection and survey the
known results on how to derive bounds on the quantum evolution from statements about
the operator driving the system.

Even though this paper is not short, to keep the length of it in check, very few ideas,
arguments and proofs can be presented. The proofs of most of the results stated here, and
much more material, will be contained in the forthcoming monograph [66].

2. Quantum dynamics and spectral theory
In this section, we discuss the dynamics of the time-dependent Schrödinger equation
and ways of bounding the time-evolution. The classical way of doing this proceeds via
separation of variables. That is, one studies the time-independent Schrödinger equation and
establishes connections between the solutions of this equation and the spectral properties
of the associated Schrödinger operator. In the second step, one relates the latter to the
behavior of the solutions of the time-dependent equation. The net result is the following:
the slower the solutions of the time-independent equation decay or grow, the more
continuous are the spectral measures of the Schrödinger operator in question, and the more
rapid is the transport through the medium as modeled by the time-dependent Schrödinger
equation. These connections are quantitative and allow one, in principle, to establish fine,
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and sometimes tight, estimates on the spreading behavior of a wavepacket. An important
caveat is that these are, in general, only one-sided connections, but spectral information
may sometimes be supplemented by further information in order to bound transport in the
other direction as well.

2.1. The time-dependent Schrödinger equation. Let us discuss the time-dependent
Schrödinger equation. For the sake of simplicity we will focus on the special case that
we will be interested in: namely, the evolution takes place in the Hilbert space

`2(Z)=
{
ψ : Z→ C :

∑
n∈Z
|ψ(n)|2 <∞

}
,

equipped with the inner product

〈ϕ, ψ〉 =
∑
n∈Z

ϕ(n)ψ(n),

the norm

‖ψ‖ =
√
〈ψ, ψ〉 =

√∑
n∈Z
|ψ(n)|2,

and the metric
d(ϕ, ψ)= ‖ϕ − ψ‖.

Moreover, we consider a bounded self-adjoint operator H in `2(Z): that is, H :
`2(Z)→ `2(Z) is a linear map that is everywhere defined and obeys

‖H‖ := sup
ψ 6=0

‖Hψ‖
‖ψ‖

<∞

and
〈ϕ, Hψ〉 = 〈Hϕ, ψ〉

for every ϕ, ψ ∈ `2(Z). The resolvent set of H is defined by

ρ(H)= {E ∈ C : (H − E)−1 exists and is bounded}.

Here, H − E is shorthand for H − E · I , where I denotes the identity operator I (ψ)= ψ .
Existence of (H − E)−1 means that H − E is one-to-one and onto, and boundedness of
(H − E)−1 means that

sup
ψ 6=0

‖(H − E)−1ψ‖

‖ψ‖
<∞.

The spectrum of H is the set C\ρ(H). All points E in the spectrum of H satisfy |E | ≤
‖H‖.

The self-adjointness of H has a number of important consequences. First of all, the
spectrum is real and boundedness of the inverse is automatic whenever H − E is invertible:
that is,

σ(H)= {E ∈ R : (H − E)−1 does not exist}. (1)

Moreover, the functional calculus allows one to apply functions to H . Finally, the spectral
theorem associates Borel measures with vectors in `2(Z), which are called spectral

https://doi.org/10.1017/etds.2015.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.120


Schrödinger operators with dynamically defined potentials 1685

measures. In particular, if µψ denotes the spectral measure associated with ψ ∈ `2(Z),
then

〈ψ, g(H)ψ〉 =
∫

g dµψ (2)

for every locally bounded measurable function g : R→ C. Every measure µψ is supported
by the spectrum, and conversely the spectrum is the smallest closed set that supports all
spectral measures.

The time-independent Schrödinger equation associated with H is

i∂tψ = Hψ, ψ(·, 0)= ψ0. (3)

The functional calculus allows one to write the solution of this equation in the form

ψ(·, t)= e−i t Hψ0. (4)

2.2. The RAGE theorem. Recall that the spectral theorem associates with each ψ ∈
`2(Z) a Borel measure µψ on R so that (2) holds. It follows in particular that µψ (R)=
‖ψ‖2 (choose g(E)≡ 1 in (2)). Let us consider the (unique) decomposition of µψ into an
absolutely continuous piece, a singular continuous piece and a pure point piece: that is, we
consider

µψ = µψ,ac + µψ,sc + µψ,pp, (5)

where µψ,ac gives zero weight to sets of zero Lebesgue measure, µψ,sc gives zero weight
to individual points and is supported by some set of zero Lebesgue measure, and µψ,pp is
supported by some countable set.

Given this measure decomposition, one can define the following subsets of `2(Z):

`2(Z)ac = {ψ ∈ `
2(Z) : µψ = µψ,ac},

`2(Z)sc = {ψ ∈ `
2(Z) : µψ = µψ,sc},

`2(Z)pp = {ψ ∈ `
2(Z) : µψ = µψ,pp}.

Each of these subsets turns out to be a closed subspace, and

`2(Z)= `2(Z)ac ⊕ `
2(Z)sc ⊕ `

2(Z)pp.

One also considers the continuous subspace

`2(Z)c = `2(Z)ac ⊕ `
2(Z)sc

and the singular subspace

`2(Z)s = `2(Z)sc ⊕ `
2(Z)pp.

Then, ψ ∈ `2(Z)c (respectively, ψ ∈ `2(Z)s) if and only if µψ = µψ,c := µψ,ac + µψ,sc

(respectively, µψ = µψ,s := µψ,sc + µψ,pp).
Each of the subspaces above reduces the operator H , and hence we can consider the

restriction of H to it. The spectrum of the restriction of H to `2(Z)ac is denoted by σac(H)
and called the absolutely continuous spectrum of H . The sets σsc(H), σpp(H), σc(H) and
σs(H) are defined similarly. By convention, one of these sets is empty if and only if the
corresponding subspace is trivial (i.e. consists only of the zero vector).
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One says that H has purely absolutely continuous spectrum if `2(Z)ac = `
2(Z), and

similarly for the other cases. Note that having purely absolutely continuous spectrum is
not equivalent to σ(H)= σac(H)! If H has purely absolutely continuous spectrum, it
does follow that σ(H)= σac(H) (and σsc(H)= σpp(H)= ∅), but conversely it is possible
to have σ(H)= σac(H) and `2(Z)ac 6= `

2(Z). Determining which of the subspaces
`2(Z)ac, `

2(Z)sc, `
2(Z)pp are non-trivial is referred to as determining the spectral type

of H .
The RAGE theorem makes statements about the behavior of the solutions (4) of the

time-dependent Schrödinger equation (3) in cases when the initial state ψ0 belongs to one
of the subspaces above.

THEOREM 2.1. (RAGE theorem)
(a) We have ψ0 ∈ `

2(Z)pp if and only if for every ε > 0, there is N ∈ Z+ such that∑
|n|≥N

|〈δn, e−i t Hψ0〉|
2 < ε for every t ∈ R.

(b) We have ψ0 ∈ `
2(Z)c if and only if for every N ∈ Z+,

lim
T→∞

1
2T

∫ T

−T

∑
|n|≤N

|〈δn, e−i t Hψ0〉|
2 dt = 0.

(c) If ψ0 ∈ `
2(Z)ac, then for every N ∈ Z+,

lim
|t |→∞

∑
|n|≤N

|〈δn, e−i t Hψ0〉|
2
= 0.

In other words, if the spectral measure of the initial state is pure point, then the evolution
is confined to a suitable finite set up to an arbitrarily small portion of the total weight; if the
spectral measure of the initial state is continuous, then the time-averaged evolution leaves
any finite set, and if the spectral measure of the initial state is absolutely continuous, then
the evolution leaves any finite set even without any time-averaging.

This is the most basic instance of a general principle: the more continuous the spectral
measure, the more the evolution spreads out in space with time. An implication of this kind
can be made more quantitative. This is the objective of the following subsection.

2.3. Hausdorff-dimensional properties of spectral measures. While the measure
decomposition (5) is standard, the following refinement turns out to be useful as well.
While the decomposition (5) is obtained by decomposing the measure in question relative
to Lebesgue measure and counting measure, one can interpolate between them by
considering Hausdorff measures hα , α ∈ [0, 1].

Recall that the α-dimensional Hausdorff measure hα is defined by

hα(S)= lim
δ→0

inf
δ-covers

of S

∑
|Im |

α,

where S ⊆ R is a Borel set and a δ-cover is a countable collection of intervals Im of length
bounded by δ such that the union of these intervals contains the set in question. Note that
h1 coincides with Lebesgue measure and h0 is the counting measure.

https://doi.org/10.1017/etds.2015.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.120


Schrödinger operators with dynamically defined potentials 1687

Given a finite Borel measure µ on R and α ∈ [0, 1], the upper α-derivative of µ is
defined by

Dα
µ(E)= lim sup

ε↓0

µ((E − ε, E + ε))
(2ε)α

.

Denote T f = {E : Dα
µ(E) <∞} and T∞ = {E : Dα

µ(E)=∞}. Then, by [187], we have
the following theorem.

THEOREM 2.2. We have hα(T∞)= 0 and µ(S ∩ T f )= 0 for any S with hα(S)= 0.

This suggests the following decomposition of µ. Let µαc(·)= µ(· ∩ T f ) and µαs(·)=

µ(· ∩ T∞). Then,

µ= µαc + µαs . (6)

We say that µ is α-continuous if µαs = 0 and α-singular if µαc = 0. We also say that µ is
zero-dimensional if µαc = 0 for every α > 0.

The following result was proved by Last [162]. Similar bounds were shown earlier
under more restrictive assumptions by Guarneri [118] and Combes [52].

THEOREM 2.3. If µψ0,αc 6= 0, then for every p > 0, there is a constant C = C(H, ψ0, p)
such that

1
2T

∫ T

−T

∑
n∈Z
|n|p|〈δn, e−i t Hψ0〉|

2 dt ≥ CT αp. (7)

If the assumption µψ0,αc 6= 0 holds with some α > 0, (7) gives a lower bound on how
fast (at least a part of) the evolution leaves a finite set. In this sense, Theorem 2.3 provides
a quantitative counterpart to the RAGE theorem.

It should be noted that these are strictly one-sided bounds. That is, growth of the left-
hand side in (7) does not imply any continuity properties for µψ0 .

There is a convenient way to capture the essence of the estimate (7) via the introduction
of so-called transport exponents. If we denote, for p > 0,

X p(t)=
∑
n∈Z
|n|p|〈δn, e−i t Hψ0〉|

2

and

X̃ p(T )=
1

2T

∫ T

−T

∑
n∈Z
|n|p|〈δn, e−i t Hψ0〉|

2 dt,

describing the pth moment of the position operator and a corresponding time-averaged
quantity, then the associated transport exponents are given by

β+(p) = lim sup
t→∞

log X p(t)
p log t

,

β−(p) = lim inf
t→∞

log X p(t)
p log t

,

β̃+(p) = lim sup
T→∞

log X̃ p(T )
p log T

,

β̃−(p) = lim inf
T→∞

log X̃ p(T )
p log T

.
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It can be shown that each of these four functions of p ∈ (0,∞) takes values in [0, 1] and
is non-decreasing in p (cf. [90]). Consequently, the limits

α+u = lim
p→∞

β+(p), α−u = lim
p→∞

β−(p),

α+l = lim
p→0

β+(p), α−l = lim
p→0

β−(p),

α̃+u = lim
p→∞

β̃+(p), α̃−u = lim
p→∞

β̃−(p),

α̃+l = lim
p→0

β̃+(p), α̃−l = lim
p→0

β̃−(p)

exist and belong to [0, 1]. Note that the dependence of these transport exponents on the
initial state ψ0 is left implicit.

The Guarneri–Combes–Last bound (7) can then be succinctly stated as

α̃−l ≥ dimH µψ0 . (8)

where dimH µ denotes the upper Hausdorff dimension of a measureµ, given by dimH µ=

inf{dimH S : µ(R\S)= 0}. Replacing Hausdorff dimension with packing dimension, one
can estimate the time-averaged ‘+’ quantities. Indeed, Guarneri and Schulz-Baldes
showed in [119] that

α̃+l ≥ dimP µψ0 , (9)

2.4. The Schrödinger operator. Up to this point it has only been assumed that H is
a bounded self-adjoint operator in `2(Z). While all the results mentioned so far hold in
this general case, the fact of the matter is that the operator H appearing in the time-
dependent Schrödinger equation (3) is not some arbitrary operator, but rather a very
specific operator, namely, the one that arises by quantization from the Hamiltonian (the
total energy function) in classical mechanics. Specifically, if V : Z→ R is bounded, then
H acts on ψ ∈ `2(Z) as

[Hψ](n)= ψ(n + 1)+ ψ(n − 1)+ V (n)ψ(n). (10)

The function V is called the potential, and it models the medium to which the quantum
state ψ is exposed. The quantization procedure associates with the potential energy
function V the operator that acts by multiplication with V . The term

[1ψ](n)= ψ(n + 1)+ ψ(n − 1) (11)

in H is the discrete Laplacian, and it arises from the kinetic energy by quantization†.
Since V is bounded and real-valued, it is easy to see that H is a bounded self-adjoint

operator. Thus, as soon as V is fixed, we have an associated quantum evolution, given by
(3), and spectral measures obeying (2). Our goal in this paper is to discuss this evolution
and these measures in cases where V is generated by some discrete-time dynamical system.
We will describe this setting in detail in §3.1. Towards the end of this section, however,
we will consider the general case, where V is merely assumed to be bounded and real-
valued.
† It would be more accurate to also include the term −2ψ(n) on the right-hand side of (11), but it is a standard
convention to drop this term and essentially subsume it in the energy. Similarly, it would also be more accurate
to consider −1 in (10), rather than 1, but this is another standard convention, which we follow here as well.
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Thus, given some initial state ψ0, we are interested in the time-evolution (3). As
discussed in §§ 2.2 and 2.3, we would therefore like to understand the continuity properties
of the spectral measure µψ0 . In many cases, this type of analysis is carried out for all
possible initial states ψ0 simultaneously. More precisely, one tries to identify a universal
measure with respect to which all spectral measures are absolutely continuous. In cases
where there is a cyclic vector, one can just take the spectral measure associated with this
vector. Here, a vector ψ is called cyclic if the linear span of {Hmψ : m ≥ 0} is dense in
`2(Z). Unfortunately, in our case at hand (a Schrödinger operator in `2(Z)), there is, in
general, no cyclic vector†. There is, however, a canonical choice of a universal spectral
measure. Indeed, if we consider

µuniv = µδ0 + µδ1 , (12)

then every spectral measure is absolutely continuous with respect to this measure. That is,
if B is a Borel set with µuniv(B)= 0, then µψ (B)= 0 for every ψ ∈ `2(Z).

With the universal spectral measure µuniv, one can conveniently describe the sets σ(H),
σac(H), σsc(H) and σpp(H). Let us denote the topological support of a measure µ of
supp µ: that is, supp µ is the complement of the largest open set that has zero weight with
respect to µ.

THEOREM 2.4. We have σ(H)= supp µuniv, σac(H)= supp µuniv,ac, σsc(H)=
supp µuniv,sc and σpp(H)= supp µuniv,pp.

There is an important alternative way to view µuniv,pp. A minimal support of this
measure is given by the set of eigenvalues of H . That is, the complement of the set of
eigenvalues has zero weight with respect to µuniv,pp, and each eigenvalue has positive
weight with respect to µuniv,pp. This has the following consequence.

COROLLARY 2.5. The set σpp(H) is equal to the closure of the set of eigenvalues of H:
that is,

σpp(H)= {E ∈ R : ∃ψ ∈ `2(Z)\{0} such that Hψ = Eψ}.

We end this subsection with a useful formula connecting solutions and Green functions.
For [n1, n2] = {n ∈ Z : n1 ≤ n ≤ n2}, denote by H[n1,n2] the restriction of H to this
interval: that is, H[n1,n2] = P[n1,n2]H P∗

[n1,n2]
, where P[n1,n2] : `

2(Z)→ `2([n1, n2]) is the
canonical projection and P∗

[n1,n2]
: `2([n1, n2])→ `2(Z) is the canonical embedding.

Moreover, for E 6∈ σ(H[n1,n2]) and n, m ∈ [n1, n2], let

G[n1,n2](n, m; E) := 〈δn, (H[n1,n2] − E)−1δm〉.

Then, the following formula holds.

LEMMA 2.6. Suppose n ∈ [n1, n2] ⊂ Z and u is a solution of the difference equation
Hu = Eu. If E 6∈ σ(H[n1,n2]) and n ∈ [n1, n2], then

u(n)=−G[n1,n2](n, n1; E)u(n1 − 1)− G[n1,n2](n, n2; E)u(n2 + 1).

† If, on the other hand, one considers Schrödinger operators on the half-line Z+ = {1, 2, 3, . . .}, then the vector
δ1 is cyclic and one can consider the universal spectral measure µδ1 .
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2.5. Solutions of the time-independent Schrödinger equation. Suppose V : Z→ R is
bounded and consider the bounded self-adjoint operator H from (10) and the associated
universal spectral measure µuniv from (12). In this subsection we consider the difference
equation

u(n + 1)+ u(n − 1)+ V (n)u(n)= Eu(n) (13)

for E ∈ C, and relate the behavior of these solutions to properties of the measure µuniv.
The equation (13) is called the time-independent Schrödinger equation.

While (13) looks like the eigenvalue equation for the operator H , we emphasize that the
solutions of (13) that we consider do not have to belong to `2(Z). Thus, for each E ∈ C,
the solutions of (13) form a two-dimensional vector space. Indeed, as soon as we fix two
consecutive values of u, the whole solution is completely determined by (13). For example,
suppose we fix u(0) and u(1), then any u(n) is obtained by solving the difference equation
‘from the origin to n’. This can be formalized using transfer matrices as follows. If we set

T (m; E)=
(

E − V (m) −1
1 0

)
(14)

and

A(n; E)=


T (n; E)× · · · × T (1; E) if n ≥ 1,

I if n = 0,

T (n + 1; E)−1
× · · · × T (0; E)−1 if n ≤−1,

(15)

then u solves (13) for every n ∈ Z if and only if(
u(n + 1)

u(n)

)
= A(n; E)

(
u(1)
u(0)

)
(16)

for every n ∈ Z. More generally, we denote the matrix that maps solution data from m to
n by A(n, m; E): that is,(

u(n + 1)
u(n)

)
= A(n, m; E)

(
u(m + 1)

u(m)

)
. (17)

This matrix is also given by a suitable product of one-step transfer matrices similar to (15).
A convenient way to choose a basis of the solution space of (13) is to prescribe a pair

of initial conditions. For θ ∈ (−π/2, π/2], consider the pair uθ , vθ of solutions of (13)
satisfying (

uθ (1) vθ (1)
uθ (0) vθ (0)

)
=

(
cos θ sin θ
− sin θ cos θ

)
. (18)

Clearly, uθ , vθ are linearly independent and hence form a basis of {u : Z→ C :
u solves (13)}. The relations (16) and (18) imply(

uθ (n + 1) vθ (n + 1)
uθ (n) vθ (n)

)
= A(n; E)

(
cos θ sin θ
− sin θ cos θ

)
. (19)

Note that the determinant of the right-hand side is 1, so that

uθ (n + 1)vθ (n)− vθ (n + 1)uθ (n)= 1 for every n ∈ Z. (20)
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For θ = 0, (19) becomes

A(n; E)=
(

u0(n + 1) v0(n + 1)
u0(n) v0(n)

)
, (21)

which shows that the entries of the transfer matrices are given by suitable solutions of
(13) (namely the Dirichlet solution and the Neumann solution). In particular, we can
obtain estimates for the norms of transfer matrices if we have estimates for the norms
of solutions. For example, if (13) admits exponentially growing or decaying solutions,
then the transfer matrix norms must grow exponentially (this is clear in the case of an
exponentially growing solution; in the case of an exponentially decaying solution, apply
the Wronskian conservation law (20)). There is a certain converse to this correspondence in
the setting of exponential growth, which follows from the following abstract result proved
by Ruelle in [188].

THEOREM 2.7. Suppose Tn ∈ SL(2, R) obey

lim
n→∞

1
n
‖Tn‖ = 0

and

lim
n→∞

1
n

log ‖Tn · · · T1‖ = L > 0.

Then there exists a one-dimensional subspace V ⊂ R2 such that

lim
n→∞

1
n

log ‖Tn · · · T1v‖ = −L for v ∈ V \{0}

and

lim
n→∞

1
n

log ‖Tn · · · T1v‖ = L for v 6∈ V .

Applied to the transfer matrices, Theorem 2.7 gives that the condition
limn→∞ (1/n) log ‖A(n; E)‖ = L > 0 implies that there exists (up to a constant
multiple) exactly one solution that decays exponentially, in fact, at the same rate,
at ∞, while all other solutions increase exponentially, also at the same rate. The
same statement holds near −∞. For dynamically defined potentials, the condition
limn→∞ (1/n) log ‖A(n; E)‖ = L > 0 will hold almost surely whenever the Lyapunov
exponent L(E) is positive; see our discussion below. Thus, the result just discussed is
relevant in this situation.

An energy E is an eigenvalue of H if and only if (13) admits a non-trivial `2 solution u.
There is a simple way of excluding the existence of (and, in fact, decaying) `2 solutions u,
that relies on local (almost) repetitions of the potential, which goes back to Gordon [116]
(see also [59, 93, 202]). The history of this lemma is discussed in [115]. The most
elementary statement of this kind is given in the following lemma.

LEMMA 2.8. Suppose the potential V obeys V (m + p)= V (m), −p ≤ m ≤ p − 1. Then,
every solution u of (13) satisfies

max
{∥∥∥∥(u(2p + 1)

u(2p)

)∥∥∥∥ , ∥∥∥∥(u(p + 1)
u(p)

)∥∥∥∥ , ∥∥∥∥(u(−p + 1)
u(−p)

)∥∥∥∥}≥ 1
2

∥∥∥∥(u(1)
u(0)

)∥∥∥∥ .
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This lemma follows quickly from the Cayley–Hamilton theorem, which gives
A(p; E)2 − [TrA(p; E)]A(p; E)+ I = 0. Applying this to either (u(−p + 1), u(−p))T

or (u(1), u(0))T , depending on whether |Tr A(p; E)|> 1 or |Tr A(p; E)| ≤ 1, implies the
lemma. Notice that, as an immediate consequence, no non-trivial solution u of (13) can
decay at both ±∞ when Lemma 2.8 applies for arbitrarily large p (i.e. there is a sequence
pk→∞ for which one has the required three-block symmetries).

In fact, the same proof shows that if one is able to control the trace of the transfer matrix,
one can work exclusively on one half-line.

LEMMA 2.9. Suppose the potential V obeys V (m + p)= V (m), 0≤ m ≤ p − 1. Then,
every solution u of (13) satisfies

max
{∥∥∥∥(u(2p + 1)

u(2p)

)∥∥∥∥ , ∥∥∥∥(u(p + 1)
u(p)

)∥∥∥∥}≥ 1
2 max{|TrA(p; E)|, 1}

∥∥∥∥(u(1)
u(0)

)∥∥∥∥ .
This is useful in some situations, for example when studying the Fibonacci Hamiltonian

and its generalizations, which are discussed in later sections.
Another useful remark is that one does not need exact repetitions, and can instead allow

errors that are (super-) exponentially small in the local period. A bounded potential V :
Z→ R is called a Gordon potential if there are positive integers pk→∞ such that

for all C > 0 : lim
k→∞

max
1≤n≤pk

|V (n)− V (n ± pk)|C pk = 0.

LEMMA 2.10. Suppose V is a Gordon potential. Then, the operator H has purely
continuous spectrum. More precisely, for every E ∈ R and every solution u of (13),

lim sup
|n|→∞

∥∥∥∥(u(n + 1)
u(n)

)∥∥∥∥≥ 1
2

∥∥∥∥(u(1)
u(0)

)∥∥∥∥ .
Let us now discuss how to characterize the spectrum and the spectral type of H in terms

of solutions of (13). We say that E is a generalized eigenvalue of H if (13) has a non-trivial
solution, called the corresponding generalized eigenfunction, that satisfies

|u(n)| ≤ C(1+ |n|)δ (22)

for suitable finite constants C, δ > 0, and every n ∈ Z.

THEOREM 2.11.
(a) Every generalized eigenvalue of H belongs to σ(H) and hence is necessarily real.
(b) Fix δ > 1

2 . Then, for µuniv-almost every E ∈ R, there exists a generalized
eigenfunction satisfying (22).

(c) The spectrum of H is given by the closure of the set of generalized eigenvalues of H.

This theorem shows that the spectrum σ(H) as a set is completely determined by the
behavior of the solutions of (13). In fact the sets σac(H), σsc(H) and σpp(H) can also be
described in terms of solutions. The case of σpp(H) is the easiest. Recall from Corollary 2.5
that it is simply given by the closure of the eigenvalues of H . Now, E is an eigenvalue of
H if and only if (13) has a non-trivial solution that is square-summable at both ±∞.
Thus, square-summability is the way to discriminate between supports of supp µuniv,c
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and supp µuniv,pp. This raises the following natural question: is there a similar way to
discriminate between supports of supp µuniv,ac and supp µuniv,s?

It turns out that there is such a way, and the following important definition is due to
Gilbert and Pearson. A non-trivial solution u of (13) is called subordinate at +∞ if

lim
L→∞

‖u‖L

‖v‖L
= 0

for any linearly independent solution v of (13), where ‖ · ‖L denotes the norm of the
solution over a lattice interval of length L: that is, for L > 0 we define

‖u‖L ≡

[ bLc∑
n=1

|u(n)|2 + (L − bLc)|u(bLc + 1)|2
]1/2

,

where bLc denotes the integer part of L . Subordinacy at −∞ is defined similarly, by
considering solutions on [L , 0) for L < 0 and sending L→−∞. Finally, we say that a
solution u of (13) is called subordinate if it is subordinate at both ±∞.

The notion of subordinacy turns out to be the counterpart to square-summability and
provides the desired split between the supports of supp µuniv,ac and supp µuniv,s (see [110,
111]).

THEOREM 2.12.
(a) The singular part µuniv,s is supported by

S = {E ∈ R : (13) has a subordinate solution} :

that is, the complement of S has zero weight with respect to µuniv,s.
(b) The set N = N+ ∪ N−, where

N± = {E ∈ R : (13) has no solution that is subordinate at ±∞},

is an essential support of µuniv,ac: that is, µuniv,ac(R\N )= 0, and for any
measurable set A with µuniv,ac(R\A)= 0, we have Leb(N\A)= 0.

Combining this result with the earlier result for µuniv,pp, we can state the following
corollary.

COROLLARY 2.13.

σac(H) = {E ∈ R : at∞ or −∞, (13) has no subordinate solution}
ess
,

σsc(H) ⊆ {E ∈ R : (13) has a subordinate solution, which is not square-summable},

σpp(H) = {E ∈ R : (13) has a non-trivial square-summable solution}.

Note that we, unfortunately, cannot claim equality in the description of σsc(H).
Of course, in cases where {E ∈ R : at∞ or −∞, (13) has no subordinate solution}
and {E ∈ R : (13) has a non-trivial square-summable solution} are both empty, we must
have equality†, but, in general, there is no mechanism that deduces from the presence

† The right-hand side is always contained in σ(H), and by the two sets above being empty, we must have
σsc(H)= σ(H); this gives the reverse inclusion.
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of subordinate non-square-summable solutions the presence of a singular continuous
spectrum.

An important special case of an energy E in N± is where the transfer matrix A(n; E) is
bounded as a function of n ∈ Z±. This case occurs in many applications, so, for the sake of
easy reference, we formulate the following corollary (cf., for example, [22, 136, 194, 201]).

COROLLARY 2.14. Denote

B± = {E ∈ R : ‖A(n; E)‖ is uniformly bounded for n ∈ Z±}.

Then, µuniv is purely absolutely continuous on B = B+ ∪ B−.

On the one hand, it is not hard to see that B± ⊆ N±, so that Corollary 2.14 follows
from Theorem 2.12. On the other hand, Corollary 2.14 is also an explicit consequence of
Theorem 2.15 below.

Absolute continuity of the spectral measure on some set is very often established
through Corollary 2.14, that is, by showing boundedness of all solutions for the energies
in question. As a consequence, it was quite tempting to conjecture that boundedness of
solutions is not only sufficient, but also necessary, for absolute continuity. This conjecture
was often referred to as the Schrödinger conjecture. It was recently disproved by Avila
in [8]. We will say more about this work in a later section.

As discussed in §2.3, in order to prove quantitative transport bounds, we consider the
decomposition (6) of a spectral measure or the universal spectral measure with α as large
as possible so that the α-continuous piece of the measure is non-zero. Thus we ask if it is
possible to study this decomposition via solutions of (13). It turns out that it is possible to
introduce a notion of an α-subordinate solution of (13), which coincides with the notion of
a subordinate solution for α = 1, such that the decomposition (6) of the universal spectral
measure can be related to those sets of energies where such solutions do or do not exist.
This definition is due to Jitomirskaya and Last [136]. For α ∈ [0, 1], we say that a non-
trivial solution u of (13) is α-subordinate at +∞ if

lim inf
L→∞

‖u‖2−αL
‖v‖αL

= 0

for any linearly independent solution v of (13). Note that, for α = 1, we recover a weak
form of the definition of subordinacy at +∞, while, for α = 0, we recover the definition
of square-summability at +∞. Again, α-subordinacy at −∞ of a solution u is defined
similarly on the left half-line. In analogy to Theorem 2.12, one would hope that

Sα = {E ∈ R : (13) has a solution that is α-subordinate at both ±∞}

is a support of µuniv,αs and that Sα has zero weight with respect to µuniv,αc. Alas, this is
at present unknown, even though it is a natural conjecture to make. What is known, on the
other hand, is the following somewhat weaker statement [78].

THEOREM 2.15. Suppose B ⊂ R is a bounded Borel set. Assume that there are constants
γ1, γ2 such that, for every E ∈ B, there are constants C1(E), C2(E) so that every solution
u of (13) that is normalized in the sense that |u(0)|2 + |u(1)|2 = 1 obeys the estimate

C1(E)Lγ1 ≤ ‖u‖L ≤ C2(E)Lγ2 (23)
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for L > 0 sufficiently large. Set

α =
2γ1

γ1 + γ2
.

Then the restriction of µuniv is purely α-continuous: that is, µuniv,αs(B)= 0.

Let us add a few remarks. First of all, every E in B is a generalized eigenvalue and hence
belongs to the spectrum of H . Moreover, as was the case in the description of µuniv,ac in
Theorem 2.12.(b), information on one half-line is sufficient. Indeed, the conclusion of
Theorem 2.15 holds true if the assumptions about the solutions are phrased in terms of
conditions on the left half-line. Finally, while the validity of the power-law bounds (23) is,
formally speaking, stronger than the absence of solutions that are α-subordinate at +∞,
this is the usual way in which this absence is established.

2.6. Further ways to establish transport bounds. While the combination of α-
subordinacy and the Guarneri–Combes–Last transport estimate provide a nice one-two
punch, it is often quite difficult to actually establish the required power-law solution
estimates (23). Moreover, the results are strictly one-sided in the sense that transport may
be fast even if µuniv is very singular. There are some extreme cases such as examples
displaying almost ballistic transport and pure point spectral measures. In these cases,
fast transport cannot be established via the spectral continuity route and hence a different
method is required.

A method to show transport bounds without resorting to spectral measures at all was
suggested by Damanik and Tcheremchantsev. While this method has gone through several
stages of evolution [85–89], let us state here the simplest version of it.

The starting point is the following simple lemma.

LEMMA 2.16.∫
∞

0
e−2t/T

|〈δn, e−i t Hψ0〉|
2 dt =

1
2π

∫
R

∣∣∣∣〈δn,

(
H − E −

i
T

)−1

ψ0

〉∣∣∣∣2 d E .

The proof uses the spectral theorem twice to write the inner products as integrals
over suitable spectral measures. This formula suggests replacing the Cesàro time-averages
considered in §2.3 with the following average,

2
T

∫
∞

0
e−2t/T

|〈δn, e−i t Hψ0〉|
2 dt,

which, by Lemma 2.16, is equal to

1
πT

∫
R

∣∣∣∣〈δn,

(
H − E −

i
T

)−1

ψ0

〉∣∣∣∣2 d E .

Thus, the modified time-averaged moments of the position operator are

X̃ p(T )=
2
T

∫
∞

0
e−2t/T

∑
n∈Z
|n|p|〈δn, e−i t Hψ0〉|

2 dt,

and one can now define the resulting modified time-averaged transport exponents β̃±(p),
as before. The fact of the matter is that they are actually not modified at all (see [90,
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§2.6]): that is, the values of β̃±(p) coincide in the two cases, and hence when studying
these transport exponents, one can choose the underlying way of time-averaging that is
more convenient.

Why is this change of perspective useful? Consider the special case ψ0 = δ0, for
simplicity. Notice that, in this case,〈

δn,

(
H − E −

i
T

)−1

ψ0

〉
=

〈
δn,

(
H − E −

i
T

)−1

δ0

〉
is simply a Green’s function entry. There are powerful tools that one can use to estimate
these quantities, especially in the one-dimensional case that we are interested in. In fact,
the Green’s function can be expressed in terms of solutions of Hu = (E + i/T )u, which,
in turn, can be expressed with the help of transfer matrices. Thus, we can study time-
averaged transport directly by estimating transfer matrices! Note, however, that this needs
to happen at energies with non-trivial imaginary part.

Pursuing this further, Damanik and Tcheremchantsev established the following result
in [86].

THEOREM 2.17. Suppose that for some K , C, α > 0, the following condition holds: for
any N > 0 large enough, there exists a non-empty Borel set A(N )⊂ R such that E(N )⊂
[−K , K ] and

‖A(n, m; E)‖ ≤ C Nα for all E ∈ E(N ) for all n, m : |n| ≤ N , |m| ≤ N . (24)

Let N (T )= T 1/(1+α) and let N (T ) be the 1/T -neighborhood of the set E(N (T )): that is,

N (T )= {E ∈ R : ∃E ′ ∈ E(N (T )), |E − E ′| ≤ 1/T }.

Then, for all T > 1 large enough, the bound∑
|n|≥N (T )/2

2
T

∫
∞

0
e−2t/T

|〈δn, e−i t H δ0〉|
2 dt ≥

Ĉ
T
|N (T )|N 1−2α(T ),

holds, where Ĉ is some uniform positive constant and | · | denotes Lebesgue measure.
In particular, for any p > 0, one has the bound for the time-averaged moments of the

position operator given by

X̃ p(T )≥
Ĉ
T
|N (T )|N p+1−2α(T ).

This result is useful even if the set of energies for which one can control transfer matrix
norms consists of a single element.

COROLLARY 2.18. If

‖A(n, m; E0)‖ ≤ C(E0)(|n| + |m|)α

for some E0 ∈ R, uniformly in n, m ∈ Z, then

α̃−u ≥
1

1+ α
.
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Contrary to relying on spectral continuity properties, this approach can also be used to
show dynamical upper bounds. Indeed, the following theorem was shown in [88].

THEOREM 2.19. Suppose H is as in (10), and K ≥ 4 is such that σ(H)⊆ [−K + 1,
K − 1]. Suppose that, for some C ∈ (0,∞) and α ∈ (0, 1),∫ K

−K

(
max

1≤n≤CT α

∥∥∥∥A
(

n; E +
i
T

)∥∥∥∥2)−1

d E = O(T−m) (25)

and ∫ K

−K

(
max

1≤−n≤CT α

∥∥∥∥A
(

n; E +
i
T

)∥∥∥∥2)−1

d E = O(T−m) (26)

for every m ≥ 1. Then

α̃+u ≤ α. (27)

In particular,

β̃+(p)≤ α for every p > 0. (28)

The paper [89] shows how to obtain analogous upper bounds for non-time-averaged
transport exponents in terms of transfer matrix estimates.

3. Schrödinger operators with dynamically defined potentials
3.1. Basic definitions and examples. Suppose we are given a probability measure
space (�, B, µ). We will usually leave the σ -algebra B implicit and just write (�, µ).
Integration with respect to µ will be denoted by E(·): that is, if f ∈ L1(�, dµ), then

E( f )=
∫

f (ω) dµ(ω).

Suppose further that T :�→� is an invertible measure-preserving transformation:
that is, T is a one-to-one and onto map so that, for every B ∈ B, we have T B, T−1 B ∈ B
and µ(B)= µ(T B)= µ(T−1 B). Conversely, given (�, B, T ), a probability measure µ
with the invariance property above is called an invariant probability measure for T , or just
T -invariant.

Example 3.1. Translation on a torus. � is the d-dimensional torus Td
= Rd/Zd , B is the

Borel σ -algebra, µ is normalized Lebesgue measure, denoted by Leb, and T is given by a
translation: that is,

T (ω1, . . . , ωd)= (ω1 + α1, . . . , ωd + αd),

where α1, . . . , αd are real numbers, which can, and will, be chosen in the interval [0, 1).
The interesting case is where 1, α1, . . . , αd are linearly independent over the rational
numbers, and we will assume this unless noted otherwise.

Example 3.2. Skew-shift on a torus. � is the 2-torus T2, B is the Borel σ -algebra, µ is
Leb and T is given by

T (ω1, ω2)= (ω1 + α, ω1 + ω2),

where α ∈ (0, 1) is irrational.
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Example 3.3. Hyperbolic toral automorphism. �= T2, B is the Borel σ -algebra, µ is Leb
and T is given by

T (ω1, ω2)= (2ω1 + ω2, ω1 + ω2).

Example 3.4. Shift on a sequence space. Fix some compact interval I ⊂ R with the
induced topology and consider the infinite product �= IZ with the product topology and
the Borel σ -algebra B. The shift transformation T :�→� is given by

(Tω)n = ωn+1.

There are many T -invariant measures µ. An important class is obtained by taking µ= ρZ,
where ρ is a Borel probability measure on I .

Example 3.5. Shift on a symbolic sequence space. This is a slight variation of the previous
example. Fix a finite (or at most countable) set A, called the alphabet, equipped with the
discrete topology. Consider the infinite product�=AZ with the product topology and the
Borel σ -algebra B. The shift transformation T :�→� is again given by

(Tω)n = ωn+1.

As before, there are many T -invariant measures µ and an important class of examples
is obtained by taking µ= ρZ, where ρ is a probability measure on A. Other interesting
examples are given by Markov measures.

We say that (�, µ, T ) is ergodic if, in addition, every invariant function is constant.
More precisely, this means that if f is a measurable function on � and f (ω)= f (Tω)=
f (T−1ω) for µ-almost every ω ∈�, then there is a constant f∗ and a set �∗ ⊆� of full
µ-measure so that f (ω)= f∗ for every ω ∈�∗. Equivalently, every measurable set E ⊂�
with T−1 E = E must satisfy µ(E)= 0 or 1. It turns out that all the examples listed above
are ergodic.

We are now ready to define the central object of interest in this paper, namely,
Schrödinger operators with dynamically defined potentials. Suppose (�, µ, T ) is ergodic
and f :�→ R is measurable and bounded. Define potentials,

Vω(n)= f (T nω), ω ∈�, n ∈ Z, (29)

and Schrödinger operators on H= `2(Z),

[Hωψ](n)= ψ(n + 1)+ ψ(n − 1)+ Vω(n)ψ(n). (30)

The family {Hω}ω∈� is called an ergodic family of Schrödinger operators. Our goal is to
study the spectral properties of the operators Hω. The canonical spectral measure of Hω
will be denoted by µω: that is,∫

R

dµω(E ′)
E ′ − E

= 〈δ0, (Hω − E)−1δ0〉 + 〈δ1, (Hω − E)−1δ1〉

for E ∈ C+. The Lebesgue decomposition of µω will be denoted by

µω = µω,ac + µω,sc + µω,pp.
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3.2. Invariance of the spectrum and the spectral type. A central result of the theory says
that the spectrum of Hω is non-random in the sense that this set is actually independent of
ω for a full-measure set of ω. This theorem was shown by Pastur in 1980 (see [181]).

THEOREM 3.6. Given an ergodic family {Hω}ω∈�, there exists a set 6 ⊆ R such that
for µ-almost every ω, σ(Hω)=6 and σdisc(Hω)= ∅. Moreover, for every E, µ({ω :
E is an eigenvalue of Hω})= 0.

The idea behind the proof is simple. By ergodicity, any T -invariant measurable
function is almost everywhere constant. One may, for example, consider the function that
associates, for some fixed open energy interval J ⊂ R, the dimension of the range of the
associated spectral projection: that is, TrχJ (Hω). This dimension is zero if and only if
J does not intersect the spectrum of Hω. Thus, almost everywhere constancy implies that
either J almost surely does intersect the spectrum, or that it almost surely does not. Varying
J in a countable way (choose rational endpoints, for example) then allows one to conclude
the almost sure constancy of the spectrum.

It is possible to modify this way of reasoning, somewhat, to focus on the partial spectra.
This allowed Kunz and Souillard [159] to prove the following result, also in 1980.

THEOREM 3.7. Given an ergodic family {Hω}ω∈�, there exist sets6ac, 6ac, 6pp ⊆ R such
that, for µ-almost every ω, σ•(Hω)=6•, • ∈ {ac, sc, pp}.

As a consequence, whenever an ergodic family of Schrödinger operators {Hω}ω∈� is
specified, it is one of the most basic goals to identify the sets 6, 6ac, 6sc, 6pp.

In general, one cannot claim more than mere full-measure statements. For instance, in
Examples 3.3–3.5 above, it is quite easy to see that there are many outliers, for which the
spectrum and/or the spectral parts differ from the typical behavior.

On the other hand, sometimes it is possible to go beyond that. This usually works by
approximation and hence requires additional structure from�. Suppose, in addition to our
general assumptions, that � is in fact a compact metric space, T is a homeomorphism and
the sampling function f :�→ R is continuous. We say that (�, T ) is minimal if the orbit
O(ω)= {T nω : n ∈ Z} is dense in � for every ω ∈�. If (�, T ) is minimal, then for each
pair ω, ω′ ∈�, ω can be approximated by a sequence chosen from the orbit of ω′. For the
associated potentials, this means pointwise convergence, and, for the associated operators,
this means strong operator convergence. The net result is that σ(Hω)⊆ σ(Hω′). Reversing
roles, we obtain the following result.

PROPOSITION 3.8. Suppose that� is a compact metric space, T is a homeomorphism and
the sampling function f :�→ R is continuous. If (�, T ) is minimal, then there exists a
set 6 ⊆ R such that for every ω ∈�, σ(Hω)=6.

A similar approximation argument works for the absolutely continuous spectrum, as
shown by Last and Simon [163]. The details regarding the necessary semi-continuity
statement are far more involved, however.
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THEOREM 3.9. Suppose that � is a compact metric space, T is a homeomorphism and
the sampling function f :�→ R is continuous. If (�, T ) is minimal, then there exists a
set 6ac ⊆ R such that, for every ω ∈�, σac(Hω)=6ac.

On the other hand, there is no such result for the singular continuous spectrum and the
point spectrum. The simplest counterexample is given by the super-critical almost Mathieu
operator with Diophantine frequency (cf. §6.5).

Minimality may be replaced by unique ergodicity. We still assume that � is a compact
metric space, T is a homeomorphism, and the sampling function f :�→ R is continuous.
We say that (�, T ) is uniquely ergodic if there is exactly one ergodic Borel probability
measure µ. This is equivalent to there being exactly one T -invariant Borel probability
measure µ (this measure must then necessarily be ergodic). Moreover, (�, T ) is called
strictly ergodic if it is both minimal and uniquely ergodic. Finally, we sometimes just
say that T is minimal, uniquely ergodic, or strictly ergodic when we are referring to the
respective property of the topological dynamical system (�, T ).

The pair of results above holds in the uniquely ergodic situation, as shown by
Kotani [154].

THEOREM 3.10. Suppose that � is a compact metric space, T is a homeomorphism and
the sampling function f :�→ R is continuous. If (�, T ) is uniquely ergodic with unique
invariant measure µ, then there exist sets 6, 6ac ⊆ R such that, for every ω ∈ supp µ, we
have σ(Hω)=6 and σac(Hω)=6ac.

For our key examples, the following statements hold true regarding minimality and
unique ergodicity. A torus translation is minimal if and only if it is uniquely ergodic,
which in turns holds if and only if 1, α1, . . . , αd are linearly independent over the rational
numbers. The skew-shift is minimal if and only if it is uniquely ergodic, which, in turn,
holds if and only if α is irrational. Examples 3.3–3.5 are neither minimal nor uniquely
ergodic (assuming they are non-degenerate: i.e. the shift spaces do not consist of only a
single element).

3.3. Lyapunov exponents and the integrated density of states.

3.3.1. The cocycles generating the transfer matrices. Recall that, for any potential
V : Z→ R, we associate transfer matrices via (14)–(15). In our present setting, the
potential depends on the parameter ω ∈�, and we will therefore denote the transfer
matrices associated with Vω by Tω and Aω. Thus, the solutions to

u(n + 1)+ u(n − 1)+ Vω(n)u(n)= Eu(n) (31)

obey (
u(n + 1)

u(n)

)
= Aω(n; E)

(
u(1)
u(0)

)
. (32)

Since the potentials {Vω} are dynamically defined, it is not surprising that the transfer
matrices are dynamically defined as well. Concretely, consider for E ∈ C, the skew-
product

(T, AE ) :�× C2
→�× C2, (ω, v) 7→ (Tω, AE (Tω)v),
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where

AE (ω)=

(
E − f (ω) −1

1 0

)
.

The iterates of (T, AE ) may be written in the form (T, AE )
n
= (T n, An

E ) with a suitable
choice of matrix function ω 7→ An

E (ω). In fact, it is easy to check that

An
E (ω)= Aω(n; E).

In other words, the iteration of the map (T, AE ) generates the transfer matrices Aω(n; E)
in the second component.

The cocycle AE is said to be uniformly hyperbolic if there are C > 0 and λ > 1 such
that ‖An

E (ω)‖ ≥ Cλ|n| for every ω ∈� and n ∈ Z. We write

UH= {E ∈ C : AE is uniformly hyperbolic} and UHR = UH ∩ R.

All non-real E belong to UH: that is,

C\R⊆ UH. (33)

3.3.2. Lyapunov exponents. It is readily seen that the so-called cocycle condition
holds; Am+n

E (ω)= Am
E (T

nω)An
E (ω). Since norms are submultiplicative, this shows that

fn(ω, E)= log ‖An
E (ω)‖ satisfies the subadditivity condition fn+m(ω, E)≤ fn(ω, E)+

fm(T nω, E). Kingman’s subadditive ergodic theorem therefore implies the following
proposition.

PROPOSITION 3.11. For every E ∈ C, there is a number L(E) ∈ [0,∞), called the
Lyapunov exponent, so that

L(E) = inf
n≥1

1
n
E(log ‖An

E (ω)‖)

= lim
n→∞

1
n
E(log ‖An

E (ω)‖)

= lim
n→∞

1
n

log ‖An
E (ω)‖ for µ-almost every ω ∈�.

Clearly, L(E) > 0 for every E ∈ UH. The converse is, in general, not true, and hence
we denote the set of energies at which AE is non-uniformly hyperbolic by

NUH= {E ∈ C : L(E) > 0 and E 6∈ UH}. (34)

Note that, by (33), NUH⊆ R. Finally, we also set

Z = {E ∈ C : L(E)= 0}, (35)

so that
R= UHR tNUH t Z.

Here is how this partition relates to the spectrum.

THEOREM 3.12. In general,

Z ⊆6 ⊆NUH t Z. (36)
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Moreover, if� is a compact metric space, T is a homeomorphism, f is continuous and the
T -orbit of ω ∈� is dense, then

σ(Hω)=NUH t Z. (37)

In particular, if (�, T ) is minimal and f is continuous, then

σ(Hω)=6 =NUH t Z (38)

for every ω ∈�.

This result is generally referred to as Johnson’s theorem (cf. [145]). Thus, in the minimal
situation, we have

R\6 = UHR. (39)

This suggests a way of proving that the spectrum is ‘small,’ namely, by showing that
‘many’ or ‘most’ energies E belong to UH. Dating back to the early 1980s, the appearance
of Cantor spectra, phenomena earlier thought to be exotic, has been a topic of intense study.
Originally observed for almost periodic potentials, it turned out to be much more prevalent.
Let us describe a result that shows that the appearance of Cantor spectra is generic in a
suitable sense.

Recall that a compact subset C of R is called a Cantor set if it contains no isolated points
and no intervals. A spectrum 6 arising in the ergodic setting does not contain isolated
points, due to Theorem 3.6. Thus, in order to establish that 6 is a Cantor set, one needs to
show that it contains no intervals. If the identity (39) holds, this is equivalent to proving that
‘uniform hyperbolity is dense’: that is, for a dense set of energies E ∈ R, the associated
cocycle AE is uniformly hyperbolic. Such a result was shown under suitable assumptions
by Avila et al [9].

THEOREM 3.13. Suppose� is a compact metric space and T :�→� is a strictly ergodic
homeomorphism that fibers over an almost periodic dynamical system. This means that
there exists an infinite compact abelian group G, some α ∈ G and an onto continuous map
h :�→ G such that h(T (ω))= h(ω)+ α for every ω ∈�. Then, for every E ∈ R, the set

UHE = { f ∈ C(�, R) : AE is uniformly hyperbolic}

is open and dense. In particular, the set

CS = { f ∈ C(�, R) :6 is a Cantor set}

is residual.

This shows that the Cantor spectrum is generic for base transformations that are much
more general than almost periodic ones. It suffices that they contain an almost periodic
factor. In particular, this result applies to the skew-shift, for which the result is quite
surprising. Skew-shift models were expected to not have Cantor spectra, but this turned
out to be wrong at least C0-generically.

In fact, the real obstruction to generic Cantor spectra can be formulated in terms of
the Schwartzman asymptotic cycle [189], with which one can describe the possible gap
labels (the possible values the integrated density of states can take in gaps of 6) (cf., for
example, [24, 145]). Whenever the possible gap labels are dense, Cantor spectrum will be
generic, as shown by Avila et al in [10].
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3.3.3. The integrated density of states. Define the probability measure ν on R by∫
g(E) dν(E)= E(〈δ0, g(Hω)δ0〉) (40)

for bounded measurable g. The measure ν is called the density of states measure associated
with the family {Hω}ω∈�. Note that, by definition, ν is the µ-average of the spectral
measure corresponding to the pair (Hω, δ0), but also half of the µ-average of the canonical
spectral measure associated with Hω. The function N defined by

N (E)=
∫
χ(−∞,E](E ′) dν(E ′)

is called the integrated density of states.
The following result of Avron and Simon [20] follows quickly from the definition of ν.

THEOREM 3.14. The almost sure spectrum is given by the points of increase of N: that is,
6 = supp ν.

Here, as usual, supp ν denotes the topological support of the measure ν.
Some of the statements in Theorem 3.6 are reflected in the integrated density of states,

as shown by Delyon and Souillard [95].

THEOREM 3.15. The integrated density of states is continuous.

Here is a different approach to the density of states measure. Denote the restriction
of Hω to [1, n] with Dirichlet boundary conditions by H (n)

ω . For ω ∈� and n ≥ 1, define
probability measures νω,n , by placing uniformly distributed point masses at the eigenvalues
E (n)ω (1) < · · ·< E (n)ω (n) of H (n)

ω : that is,∫
g(E) dνω,n(E)=

1
n

n∑
j=1

g(E (n)ω ( j)).

Then, for µ-almost every ω ∈�, the measures νω,n converge weakly to ν as n→∞.

3.3.4. The Thouless formula. Avron and Simon [20] proved the following formula
connecting the density of states measure and the Lyapunov exponent (see also Craig and
Simon [54] for an alternative proof).

THEOREM 3.16. For every E ∈ C,

L(E)=
∫

log |E ′ − E | dν(E ′). (41)

This formula is called the Thouless formula and it says that the Lyapunov exponent
is the negative of the logarithmic potential of the density of states measure. Using this
interpretation, the following result of Simon [196] (which is essentially already in [200])
is not too difficult to deduce.

THEOREM 3.17. If L vanishes identically on 6, then ν is the equilibrium measure of the
compact set 6.
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The equilibrium measure is the unique probability measure supported on 6 that
minimizes the logarithmic energy

E(ρ)=−
∫ ∫

log |x − y| dρ(x) dρ(y)

among such measures. By a standard result in logarithmic potential theory, the existence
and the uniqueness of the minimizer follow as soon as at least one measure with finite
logarithmic energy exists. In the case at hand, the Thouless formula implies that the density
of states measure ν has finite logarithmic energy (since the spectrum 6 is compact and the
Lyapunov exponent is bounded on it).

The Thouless formula also implies the following general regularity result for the
integrated density of states, as shown by Craig and Simon [54].

THEOREM 3.18. The integrated density of states is log-Hölder continuous: that is, there
is some uniform constant C such that, for real E1, E2 with |E1 − E2|< 1/2,

|N (E1)− N (E2)| ≤ C(log(|E1 − E2|
−1))−1.

In this general setting, this bound is optimal (cf. Craig [53] and Gan and Krüger [107]).
The regularity statement can often be improved for specific cases. We will describe some
results of this kind in later sections.

3.4. Kotani theory. Given a set A ⊆ R, the essential closure of A is defined as

A
ess
= {E ∈ R : |(E − ε, E + ε) ∩ A|> 0 for every ε > 0}.

Here, | · | denotes Lebesgue measure on R. Note that A
ess
= ∅ if and only if |A| = 0.

Recall that Z denotes the set {E ∈ R : L(E)= 0}.

THEOREM 3.19. 6ac = Zess
.

The inclusion ‘⊆’ was proved by Ishii [127] and Pastur [181]. The other inclusion
was proved by Kotani [151] and is a much deeper result. In fact, the Ishii–Pastur half
of the result is really an immediate consequence of the general theory of one-dimensional
Schrödinger operators (See, for example, [44, 92, 163]). Moreover, the Ishii–Pastur half
of the result can be strengthened considerably, as shown by Simon in [196]. Not only are
the spectral measures purely singular on NUH for µ-almost every ω ∈�, they must be
purely zero-dimensional there! (In fact, an even stronger statement is true: for µ-almost
every ω ∈�, the restriction of the spectral measures to NUH admits a support of capacity
zero (see [196]).)

Denote the spectral measure associated with Hω and δ0 by νω. In particular, the
density of states measure ν is the µ-average of the measures νω. Consider the absolutely
continuous parts of these measures and their Radon–Nikodym derivatives. Kotani [154]
has shown that they are related as shown in the following theorem.

THEOREM 3.20. For almost every E ∈ Z ,

dν(ac)

d E
(E)= E

(
dν(ac)
ω

d E
(E)

)
. (42)
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This result has a useful consequence [154]:

COROLLARY 3.21. The spectrum of Hω is purely absolutely continuous for µ-almost
every ω ∈� if and only if the density of states measure is purely absolutely continuous
and the Lyapunov exponent vanishes almost everywhere with respect to it.

Let us pass from a measurable setting to a topological setting. To fix a universal
topology, we consider spaces of sequences on which the topology will be given by
pointwise convergence. Given an ergodic dynamical system (�, µ, T ) and a measurable
bounded sampling function f :�→ R, defining potentials Vω(n)= f (T nω) as before,
we associate the following dynamical system (RZ, µ̃, S): R is a compact interval that
contains the range of f , µ̃ is the Borel measure on RZ induced by µ via 8(ω)= Vω
(i.e. µ̃(A)= µ(8−1(A))) and S is the standard shift transformation on RZ. Clearly, the
topological support supp µ̃ is closed and S-invariant.

For an S-ergodic Borel measure µ̃ on RZ, let 6ac(µ̃)⊆ R denote the almost sure
absolutely continuous spectrum: that is, σac(1+ V )=6ac(ν) for µ̃ almost every V . If
µ̃ comes from (�, µ, T, f ), then 6ac(µ̃) coincides with the set 6ac, introduced earlier.
The support theorem [152] says that 6ac(µ̃) is monotonically decreasing in the support
of µ̃.

THEOREM 3.22. For every V ∈ supp µ̃, we have σac(1+ V )⊇6ac(µ̃), and hence

6ac(µ̃)=
⋂

V∈ supp µ̃

σac(1+ V ).

In particular, supp µ̃1 ⊆ supp µ̃2 implies that 6ac(µ̃1)⊇6ac(µ̃2).

Here is a typical application of the support theorem.

COROLLARY 3.23. Let Perµ̃ be the set of V ∈ supp µ̃ that are periodic: that is, S pV = V
for some p ∈ Z+. Then,

6ac(µ̃)⊆
⋂

V∈Perµ̃

σ(1+ V ).

If there is a sufficient number of gaps in the spectra of these periodic operators, one can
show, in this way, that 6ac(ν) is empty.

The following result shows that ergodic Schrödinger operators with non-empty
absolutely continuous spectrum are deterministic.

THEOREM 3.24. Assume that Leb(Z) > 0. Then:
(a) each V ∈ supp µ̃ is determined completely (among all elements of supp µ̃) by V− =

V |Z− (respectively, V+ = V |Z+ ); and
(b) if we let

(supp µ̃)± = {V± : V ∈ supp µ̃},

then the mappings
(supp µ̃)± 3 V± 7→ V∓ ∈ (supp µ̃)∓

are continuous with respect to pointwise convergence.
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Negating this statement, one obtains a criterion for a purely singular spectrum. Namely,
call (�, µ, T, f ) topologically deterministic if there exist continuous mappings E± :
(supp µ̃)±→ (supp µ̃)∓ that are formal inverses of one another and obey V #

− ∈ supp µ̃
for every V− ∈ (supp ν)−, where

V #
−(n)=

{
V−(n) if n ≤ 0,

E−(V−)(n) if n ≥ 1.

This also implies V #
+ ∈ supp µ̃ for every V+ ∈ (supp µ̃)+, where

V #
+(n)=

{
V+(n) if n ≥ 1,

E+(V+)(n) if n ≤ 0.

Otherwise, (�, µ, T, f ) is said to be topologically non-deterministic.

COROLLARY 3.25. If (�, µ, T, f ) is topologically non-deterministic, Leb(Z)= 0, and
therefore 6ac = ∅.

This readily applies to the random case, but also to certain models with weak
correlations. Here is another, less obvious, application, which turns out to have far-
reaching consequences.

THEOREM 3.26. Suppose that (�, T, µ) is ergodic, f :�→ R takes a finite number of
values and the resulting potentials Vω areµ-almost surely not periodic. Then, Leb(Z)= 0,
and therefore 6ac = ∅.

This was shown by Kotani in [153]. The proof is actually quite short, given
Theorem 3.24 above. The almost everywhere positivity of the Lyapunov exponent for non-
periodic ergodic potentials taking a finite number of values is the basis for quite extensive
work on subshift potentials, some of which will be discussed in §8.

The fact that the potentials take a finite number of values is actually not that crucial.
It suffices that the sampling function has a discontinuity that can be exploited. This, of
course, needs the topological situation to be present from the outset. Consider the case
where � is a compact metric space, T is a homeomorphism and µ is an ergodic Borel
probability measure. We say that l ∈ R is an essential limit of f at ω0 if there exists a
sequence {�k} of sets, each of positive measure, such that, for any sequence {ωk} with
ωk ∈�k , both ωk→ ω0 and f (ωk)→ l. If f has more than one essential limit at ω0, we
say that f is essentially discontinuous at this point. Damanik and Killip [77] showed the
following theorem.

THEOREM 3.27. Suppose� is a compact metric space, T :�→� a homeomorphism and
µ an ergodic Borel probability measure. If there is an ω0 ∈� such that f is essentially
discontinuous at ω0 but continuous at all points T nω0, n < 0, then Leb(Z)= 0, and hence
6ac = ∅.

Let us now turn to the case of continuous sampling functions f . The proof of
Theorem 3.27 certainly breaks down and it is not clear where some sort of non-
determinism should come from in the quasi-periodic case, for example. Of course, absence
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of an absolutely continuous spectrum does not hold for a general continuous f . Thus, the
following result by Avila and Damanik [12] is somewhat surprising.

THEOREM 3.28. Suppose � is a compact metric space, T :�→� a homeomorphism
and µ a non-atomic ergodic Borel probability measure. Then there is a residual set of
functions f in C(�) such that 6ac( f )= ∅.

Recall that a subset of C(�) is called residual if it contains a countable intersection of
dense open sets. A residual set is locally uncountable.

One would expect some absolutely continuous spectra for weak perturbations with
sufficiently nice potentials; especially in the one-frequency quasi-periodic case. However,
the proof of Theorem 3.28 can easily be adapted to yield the following result, also
contained in [12], which shows that continuity of the sampling function is not sufficient to
ensure the existence of absolutely continuous spectra for weakly coupled quasi-periodic
potentials.

THEOREM 3.29. Suppose � is a compact metric space, T :�→� a homeomorphism
and µ a non-atomic ergodic Borel probability measure. Then there is a residual set of
functions f in C(�) such that 6ac(λ f )= ∅ for almost every λ > 0.

As we have seen, there are many situations in which 6ac = ∅. Of course, there are
also cases where 6ac 6= ∅, the most obvious being the periodic case. There are also
some aperiodic cases, as we will see later when we discuss specific classes of potentials.
Nevertheless, for a long time all known examples with6ac 6= ∅ were almost periodic. This
has led a number of people to conjecture that 6ac 6= ∅ in fact implies almost periodicity of
the potentials. Two of them were Kotani and Last, and hence this conjecture was sometimes
called the Kotani–Last conjecture. It was recently explicitly stated in [63, 133, 196].
However, the conjecture turned out to be wrong. It was disproved (in the form stated here
and in [63, 133, 196]) by Avila in [8]†. We will say more about this work in a later section.

Let us also mention the surveys [63, 154] of Kotani theory and its applications, where
the interested reader can find further related material.

Moreover, it is a perhaps surprising, but certainly amazing, fact that much of Kotani
theory has a deterministic counterpart, without any need of a dynamical definition of the
potentials and an underlying ergodic measure, as shown by Remling in [185].

4. Random potentials
In this section we discuss the case of random potentials. Random potentials arise in the
setting of Example 3.4, where �= IZ with a compact interval I ⊂ R. T :�→� is given
by the shift transformation (Tω)n = ωn+1, µ= ρZ, where ρ is a Borel probability measure
on I , and the sampling function is given by the evaluation at the origin, f (ω)= ω0‡:

† There are related results for Jacobi matrices by Volberg and Yuditskii [205] and for continuum Schrödinger
operators by Avila [8], Damanik and Yuditskii [91], and You and Zhou [208].
‡ This paper focused on the one-dimensional case. We wish to point out, however, that random potentials have
been studied in great depth in higher dimensions as well. One understands the behavior near the edges of the
spectrum very well. The methods employed in the analysis of random operators in dimensions greater than one
are quite different; the two most prominent ones are based on a multi-scale analysis or the fractional moment
method.
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that is, the elements ω of � themselves serve as the potentials of the operators (30). Of
course, we will assume that ρ is non-degenerate in the sense that supp ρ contains more
than one element. In this case, the resulting family {Hω}ω∈� of operators is referred to as
the Anderson model. The special case in which supp ρ contains precisely two elements is
called the Bernoulli–Anderson model. This is the case with the least amount of randomness
and, as a consequence, the proofs of the expected results for the Anderson model are the
most difficult in the Bernoulli case. In fact, for nicer single-site distributions ρ, the proofs
can be simpler by orders of magnitude.

4.1. The spectrum. The spectrum of the Anderson model has a very simple description
(where the sum below denotes the sum set A + B = {a + b : a ∈ A, b ∈ B}).

THEOREM 4.1. For the Anderson model,

6 = [−2, 2] + supp ρ. (43)

The proof of this result is not difficult; let us sketch it. First of all, µ-almost all elements
ω ∈� will be such that the range of Vω is dense in supp ρ. In other words, for these ω, we
have σ(Vω)= supp ρ. Since the norm of the Laplacian is bounded by (in fact, it is equal to)
two, it follows for these ω that σ(Hω)⊆ [−2, 2] + supp ρ. This establishes the inclusion
‘⊆’ in (43). Conversely, for µ-almost surely there are, for each E ∈ supp ρ, long stretches
where Vω only takes values very close to E . By considering suitable trial functions for the
Laplacian, one can derive from this that [−2, 2] + E must be contained in the almost sure
spectrum. Since this is true for every E ∈ supp ρ, the inclusion ‘⊇’ in (43) follows.

Theorem 4.1 shows that the spectrum of an Anderson model cannot be arbitrary. In fact,
it will always be given by a finite union of compact intervals since the spectrum is bounded
and each of its connected components has length at least four. Conversely, any compact
set with the property that each of its connected components has length at least four arises
as the almost sure spectrum of a suitably chosen Anderson model.

4.2. Various notions of Anderson localization. So, what are the expected results? One
says that the Anderson model exhibits Anderson localization. There are usually two
different statements that are referred to, a spectral statement and a (quantum) dynamical
statement. Spectral Anderson localization is the assertion that for µ-almost every ω ∈�,
the operator Hω has pure point spectrum with exponentially decaying eigenfunctions.
More precisely, for µ-almost every ω ∈�, there are Ek(ω) ∈ R and uk(ω) ∈ `

2(Z) such
that Hωuk(ω)= Ek(ω)uk(ω) for every k, {uk(ω)}k form a basis of `2(Z), and

|uk(n; ω)| ≤ Ck;ωe−γk;ω|n| (44)

with suitable constants Ck;ω, γk;ω > 0. Dynamical Anderson localization is a less well-
defined notion, but it typically means, at least, that for µ-almost every ω ∈�,

sup
t

∑
n∈Z
|n|p|〈δn, e−i t Hωδ0〉|

2 <∞ (45)

for every p > 0. There are stronger statements that can be proved in some cases, such
as replacing the µ-almost everywhere statement by an expectation E(·), or by claiming
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explicit (semi-)uniform exponential decay of |〈δn, e−i t Hωδ0〉|. But in any event, dynamical
Anderson localization refers to the absence of transport in a random medium.

The two notions of Anderson localization are related, though not equivalent. Indeed,
dynamical localization in a suitable formulation implies spectral localization, while the
converse does not hold in general. For an example with a good amount of randomness,
for which the implication ‘spectral localization ⇒ dynamical localization’ fails fairly
spectacularly, one can consider the so-called random dimer model. Starting with the
Bernoulli–Anderson model, with supp ρ = {0, λ}, say, the random dimer model results
from doubling up all the sites: that is, the operator Hω has the potential Vω with

Vω(2n − 1)= Vω(2n)= ωn

for every n ∈ Z. This model can be realized in our framework by using Example 3.5 with
a suitable Markov measure (compare the discussion in [11]).

When considering the transfer matrices Aω(n; E) associated with the random dimer
model, it is natural to group the factors in pairs, which are(

E −1
1 0

)2

and
(

E − λ −1
1 0

)2

.

In particular, for the energy E = 0, we have the basic building blocks(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
and

(
−λ −1
1 0

)2

.

In particular, up to a sign, the matrix Aω(2n; 0) will be given by a power of the matrix(
−λ −1
1 0

)
,

which means that ‖Aω(2n; 0)‖ remains bounded in n, provided that |λ|< 2. This, of
course, implies that ‖Aω(n; 0)‖ is bounded as well. The methods of §2.6 therefore imply
quasi-ballistic transport for every ω ∈�! In particular, dynamical localization fails in a
rather extreme way (see [142, 143] for a precise description of the quantum dynamics
of this model). On the other hand, the method of proof outlined below applies to the
random dimer model and implies that spectral localization holds for this model (cf. [28]).
Moreover, it is a general result of Simon that pure point spectrum implies the absence of
genuine ballistic transport [192].

There are ways to supplement the requirement that there be an orthonormal basis
of exponentially decaying eigenvectors in such a way that dynamical localization in a
suitable formulation is indeed a consequence. Such connections were first established in
the paper [186] by del Rio, Jitomirskaya, Last and Simon. For example, if for some ω ∈�,
one has semi-uniformly localized eigenfunctions (SULE) in the sense that there are α > 0
and {nm} ⊆ Z such that, for each δ > 0, there is Cδ so that the eigenvectors um obey

|um(n)| ≤ Cδeδ|nm |−α|n−nm |,

then it follows that semi-uniform dynamical localization (SUDL) holds: that is,

sup
t∈R
|〈δn, e−i t Hωδm〉| ≤ Cδeδ|m|−α|n−m|.
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4.3. Positivity of the Lyapunov exponent. The first step in a proof of Anderson
localization is the proof of positivity for the Lyapunov exponent. Indeed, as discussed
earlier, the positivity of the Lyapunov exponent is a necessary condition for exponential
decay of solutions of (31), which, in turn, is necessary for there to exist exponentially
decaying eigenvectors of Hω.

A general theorem of Fürstenberg about products of random matrices is tailor-made
for this particular goal. In fact, the general result applies easily and in full generality to
yield the positivity of the Lyapunov exponent at all energies for every realization of the
Anderson model. Let us first state Fürstenberg’s theorem and then show how it may be
applied to the Anderson model.

Let ρ̃ be a probability measure on SL(2, R) which satisfies∫
log ‖M‖ dρ̃(M) <∞. (46)

Let us consider independent and identically distributed matrices T1, T2, . . . , each
distributed according to ρ̃. Write Mn = Tn · · · T1. We are interested in the Lyapunov
exponent L ≥ 0, given by

L = lim
n→∞

1
n

log ‖Mn‖, ρ̃Z+ − a.s.

We are interested in conditions that ensure L > 0. To motivate the result below, let us give
some examples with L = 0.
• If ρ̃ is supported in SO(2, R), then L = 0.
• If

ρ̃

{(
2 0
0 1/2

)}
=

1
2

and ρ

{(
1/2 0
0 2

)}
=

1
2
,

then L = 0. We have that

Mn =

(
mn 0
0 m−1

n

)
,

where log mn = a1 + · · · + an and {a j } are independent and identically distributed
random variables taking values ± log 2, each with probability 1/2. Thus, log ‖Mn‖ =

|a1 + · · · + an| and the strong law of large numbers gives (1/n) log ‖Mn‖→ 0 almost
surely.

• If p ∈ (0, 1) and

ρ̃

{(
2 0
0 1/2

)}
= p and ρ̃

{(
0 1
−1 0

)}
= 1− p,

then L = 0.
Fürstenberg’s theorem shows that this list is essentially exhaustive in the sense that the

two mechanisms above, no growth of norms or a finite (cardinality two) invariant set of
directions, are the only ones that can preclude a positive Lyapunov exponent.

Call two non-zero vectors v1, v2 in R2 equivalent if v2 = λv1 for some λ ∈ R. The set of
equivalence classes is denoted by RP1. Since every M ∈ SL(2, R) is invertible, it induces
a mapping from RP1 to RP1 in the obvious way.
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THEOREM 4.2. Let ρ̃ be a probability measure on SL(2, R) which satisfies (46). Denote
by G ρ̃ the smallest closed subgroup of SL(2, R) which contains supp ρ̃.

Assume:
(i) G ρ̃ is not compact; and
(ii) there is no set L ⊆ RP1 of cardinality one or two such that M(L)= L for all M ∈

G ρ̃ .
Then, L > 0.

This is a special case of a much more general result proved by Fürstenberg in [105].
Note that the assumptions are monotonic in the support of the measure in the sense that if
Theorem 4.2 applies to ρ̃, then it applies to measures whose support contains the support
of ρ̃.

Let us now apply Fürstenberg’s theorem to the Anderson model. Recall that supp ρ has
cardinality greater than or equal to two, and f :�→ R is given by f (ω)= ω0.

For every E ∈ R fixed, the measure ρ on the interval J induces the measure ρ̃ on
SL(2, R) by push-forward via

v 7→

(
E − v −1

1 0

)
.

The definitions are such that the Lyapunov exponent L associated with this ρ̃ is equal to
L(E), defined earlier.

Let us check that Fürstenberg’s theorem applies. Since supp ρ has cardinality at least
two, supp ρ̃ has cardinality at least two, and hence G ρ̃ contains at least two distinct
elements of the form

Mx =

(
x −1
1 0

)
,

for example, Ma and Mb with a 6= b. Note that

M (1)
= Ma M−1

b =

(
1 a − b
0 1

)
∈ G ρ̃ .

Taking powers of the matrix M (1), we see that G ρ̃ is not compact.
Consider the equivalence class of e1 = (1, 0)T in RP1. Then M (1)e1 = e1 and for every

v ∈ RP1, (M (1))nv converges to e1. Thus, if there is a finite invariant set of directions L , it
must be equal to {e1}. However,

M (2)
= M−1

a Mb =

(
1 0

a − b 1

)
∈ G ρ̃

and M (2)e1 6= e1, which is a contradiction. Thus, the conditions (i) and (ii) of Theorem 4.2
hold and, consequently, L = L(E) > 0.

Since E ∈ R was arbitrary and all we needed was # supp ρ ≥ 2, we obtain the following
consequence that holds in full generality.

THEOREM 4.3. For the Anderson model, L(E) > 0 for every E ∈ R.
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4.4. Spectral localization via spectral averaging. Theorem 4.3 suggests that we are
already tantalizingly close to being able to deduce one of our primary goals, namely,
spectral Anderson localization. Indeed, combined with Proposition 3.11, Theorem 4.3
implies that, for every E ∈ R,

lim
|n|→∞

1
|n|

log ‖An
E (ω)‖ = L(E) > 0 for µ-almost every ω ∈�.

Thus, Theorem 2.7 is applicable and shows that at both ±∞, the solutions of

u(n + 1)+ u(n − 1)+ Vω(n)u(n)= Eu(n) (47)

either decay or increase exponentially. By Theorem 2.11, we can focus our attention on
those energies E for which polynomially bounded solutions exist. In the presence of our
exponential dichotomy, this means that we can exclude exponential growth, and hence
the generalized eigenfunctions are, in fact, exponentially decaying. This implies both that
spectrally every energy is an eigenvalue, and that the corresponding eigenvectors decay
exponentially!

So why is this not already a complete proof? The cheat here lies in a change of
quantifiers. We have passed from a ‘for every energy E and almost every ω’ statement to a
statement of the form ‘for almost every ω and every energy E .’ A more honest application
of Fubini only allows us to conclude a ‘for almost every ω and Lebesgue almost every
energy E’ statement, and the exclusion of a set of zero Lebesgue measure still makes it
possible that we lost some singular continuous spectrum in the process.

All is not lost, however. If we could force spectral measures away from the set of zero
Lebesgue measure that needs to be excluded, the argument above still works and then
allows us to conclude as desired. The mechanism that can be employed to force spectral
measures away from sets of zero Lebesgue measure is called spectral averaging. In the
context of the Anderson model it can be applied whenever the single-site distribution has
a non-trivial absolutely continuous component. In this subsection, we explain how this
works and how one may deduce spectral Anderson localization for such ‘nice’ single-site
distributions in a rather elegant way. For a paper pioneering spectral averaging methods
in proofs of spectral localization, see [197] by Simon and Wolff. See also [193] for an
introductory paper on rank-one perturbations and applications to spectral averaging.

The key input is the spectral averaging formula from the theory of rank-one
perturbations, which we now recall. Suppose that A is a bounded self-adjoint operator
on `2(Z) and φ ∈ `2(Z)\{0}. For λ ∈ R, we consider the operator

Aλ = A + λ〈φ, ·〉φ,

which is a self-adjoint rank one perturbation of A. Denote the spectral measure associated
with Aλ and φ by µλ. Then, ∫

[dµλ(E)] dλ= d E (48)

in the sense that if g ∈ L1(R, d E), then g ∈ L1(R, dµλ) for Lebesgue almost every λ,∫
g(E) dµλ(E) ∈ L1(R, dλ) and∫ (∫

g(E) dµλ(E)
)

dλ=
∫

g(E) d E .

https://doi.org/10.1017/etds.2015.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.120


Schrödinger operators with dynamically defined potentials 1713

Now let us return to our discussion of the Anderson model. Assume that ρac 6= 0. By
the argument described above,

Leb(R\Eω)= 0 (49)

for µ-almost every ω ∈�, where

Eω = {E ∈ R : L(E) > 0, ∃ solutions u± with |u±(n)| ∼ e−L(E)|n| as n→±∞}.

Note that the sets Eω are invariant with respect to a modification of Vω on a finite set! We
will perform such a modification, within the family {Vω}, on the set {0, 1} because the pair
{δ0, δ1} is cyclic for each operator Hω.

Denote the set of ω for which (49) holds by�0. By invariance and ergodicity, it follows
that

µ(�0)= 1. (50)

For ω ∈�0, consider the operators

Hω,λ0,λ1 = Hω + λ0〈δ0, ·〉δ0 + λ1〈δ1, ·〉δ1,

where λ0, λ1 ∈ R. For every fixed λ0, it follows from (48) and (49) that the spectral
measure of the pair (Hω,λ0,λ1 , δ1) gives zero weight to the set R\Eω for Lebesgue almost
every λ1 ∈ R. Similarly, for every fixed λ1, the spectral measure of the pair (Hω,λ0,λ1 , δ0)

gives zero weight to the set R\Eω for Lebesgue almost every λ0 ∈ R. As a consequence,
we find that for Lebesgue almost every (λ0, λ1) ∈ R2, the universal spectral measure of
Hω,λ0,λ1 (the sum of the spectral measures of δ0 and δ1) gives zero weight to the set R\Eω.
Write Gω for this set of ‘good’ pairs (λ0, λ1), so that

Leb(R2
\Gω)= 0. (51)

Let
�1 = {ω + λ0δ0 + λ1δ1 : ω ∈�0, (λ0, λ1) ∈ Gω}.

Since ρac 6= 0, it follows that from (50) and (51) that

µ(�1) > 0.

Thus, by assumption on ρ, with positive ρ × ρ probability, it follows from (49) that the
whole-line spectral measure (corresponding to the sum of the δ0 and δ1 spectral measures)
assigns no weight to R\Eω and hence, with positive µ probability, the operator Hω is
spectrally localized. Since localization is a shift-invariant event, the operator Hω must, in
fact, be spectrally localized for µ-almost every ω.

This establishes the following result.

THEOREM 4.4. For the Anderson model with a single-site distribution ρ that has a non-
trivial absolutely continuous component, the family {Hω}ω∈� is spectrally localized.

4.5. Spectral and dynamical localization via multi-scale analysis. While the proof of
Theorem 4.4 is elegant and relatively short, with more work, one can establish spectral
localization for the Anderson model in full generality.

THEOREM 4.5. For the Anderson model with a single-site distribution ρ whose support is
bounded and contains at least two elements, the family {Hω}ω∈� is spectrally localized.
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This is a special case of a result of Carmona et al [47]. The assumption that supp ρ
contains at least two elements is clearly necessary (as otherwise µ-almost all potentials Vω
are constant and hence Hω almost surely has purely absolutely continuous spectrum). The
assumption that supp ρ is bounded is not necessary. In fact, spectral localization is proved
in [47] under the weaker assumption that ρ has some finite moment. Since we focus, in this
paper, on the case of bounded ergodic potentials, we impose the corresponding condition
on ρ in Theorem 4.6.

The proof of Theorem 4.6 is based on multi-scale analysis. This is a method for
proving localization that was originally introduced by Fröhlich and Spencer [103] and
then developed further in many papers (e.g. in [96, 109], among many others).

The purpose of a multi-scale analysis is to inductively prove decay estimates for the
resolvent of finite-volume restrictions of the operator that hold with large probability. To
make this inductive procedure work, one needs two ingredients: an initial length-scale
estimate and a Wegner estimate. The former is used to establish the base case, and the
latter is used in the induction step.

The initial length-scale estimate can be established, in the one-dimensional case that
we consider here, as a consequence of the positivity of the Lyapunov exponent: that
is, the result provided by Theorem 4.3, which holds in complete generality. As we saw
above, Theorem 4.3 is proved for the Bernoulli case (# supp ρ = 2) and then derived for
the general case using the monotonicity of the argument in the support of ρ. The Wegner
estimate, on the other hand, is quite easy to prove for nice single-site distributions ρ,
but it is quite difficult to establish in more singular cases (of which the Bernoulli case
is the most singular one). Thus, this is precisely the point [47] had to address, and the
authors accomplish this by deriving a Wegner-type estimate from Hölder continuity of
the integrated density of states, which, in turn, follows from Hölder continuity of the
Lyapunov exponent via the Thouless formula, with the latter property being a consequence
of the Fürstenberg approach to positive Lyapunov exponents (see Le Page [164]). That is,
a finite-volume statement (the Wegner-type estimate) is derived from an infinite-volume
statement (the Hölder continuity of the integrated density of states), which, in turn, is
used to prove an infinite-volume statement (spectral localization; as a consequence of a
successful multi-scale induction).

It is a realization of Germinet and de Bièvre [108] that if one can successfully carry
out a multi-scale analysis, then one not only gets spectral localization as a consequence,
but also dynamical localization. This connection was developed further in several papers
(see, for example, [84, 109]). For the model at hand, we may therefore state the following
theorem.

THEOREM 4.6. For the Anderson model with a single-site distribution ρ whose support is
bounded and contains at least two elements, the family {Hω}ω∈� is dynamically localized.

This result certainly includes the statement that (45) holds µ-almost surely, but one
can, for example, also make statements about µ-expectations and replace pth moments by
larger (sub-exponential) functions.
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5. Almost periodic potentials
In this section, we discuss the class of almost periodic potentials. A bounded V : Z→ R
is called almost periodic if the set of its translates has compact closure in `∞(Z): that is,
on `∞(Z), consider the shift transformation S : `∞(Z)→ `∞(Z) given by (S(W ))(n)=
W (n + 1). The shift orbit of V is O(V )= {Sm(V ) : m ∈ Z}, and V is almost periodic
if and only if the closure of O(V ) in `∞(Z) is compact. It turns out that Schrödinger
operators with almost periodic potentials may be studied within the framework of ergodic
Schrödinger operators. To this end, we need appropriate choices of �, T, µ and f . This
will be discussed in §5.1. Once this has been realized, the general results from the theory
of ergodic Schrödinger operators become applicable to the almost periodic case. There
are three important subclasses of almost periodic potentials, and they will be discussed
in §§5.2–5.4. These are periodic potentials, limit-periodic potentials and quasi-periodic
potentials. All three classes describe physically relevant models, and each of them has a
rich mathematical theory. In this section, we will survey some of the most important results
for them. It will be impossible to be comprehensive, and we will provide the reader with
pointers for further reading.

5.1. The hull. Suppose V is almost periodic. Let us denote the closure of O(V ) in
`∞(Z) by �(V ). The set �(V ) is called the hull of V . We want to equip �(V ) with an
abelian group structure. Since the dense subset O(V ) of �(V ) already carries a natural
group structure, we wish to extend it to the closure by continuity. Of course, if V is a
periodic point of S, both orbit and hull are easily seen to be isomorphic to Zp = Z/pZ,
where p is the (minimal) period. For simplicity, let us exclude this degenerate case from
the discussion of the extension of the group structure and assume that V is not a periodic
point of S. In this case, the group structure on O(V ) is that of Z.

Ordinarily, we would denote the abelian group structure by +, but to avoid confusion
with the operation of adding functions, we will denote it by ∗. Thus, O(V ) is a group
under the operation

Sk1 V ∗ Sk2 V = Sk1+k2 V,

and (O(V ), ∗)' (Z,+) by our non-periodicity assumption. For W1 = lim j→∞ Sk j V and
W2 = lim j→∞ S` j V , we wish to define W1 ∗W2, and the most natural choice is to set

W1 ∗W2 =

(
lim

j→∞
Sk j V

)
∗

(
lim

j→∞
S` j V

)
= lim

j→∞
Sk j+` j V . (52)

It is not hard to see that this indeed converges and is, in fact, well defined. As a
consequence, the operation (52) equips the compact space �(V ) with an abelian group
structure.

In particular, we can choose normalized Haar measure on �(V ) as our probability
measure, and it will be invariant with respect to the transformation in question, which
is the restriction of the shift transformation S to�(V ) (since, by (52), the shift on�(V ) is
just given by the action of S(V ): i.e. S(W )=W ∗ S(V ) for every W ∈�(V )). Finally, the
sampling function to be used is the evaluation at the origin, f (W )=W (0), W ∈�(V ). In
this way, every W ∈�(V ) has the desired representation (29), which in this case becomes
W (n)= f (Sn(W )).
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To summarize, every almost periodic potential may be realized as one element in a
canonically chosen ergodic family of potentials {Vω}ω∈�. (The periodic case excluded in
the discussion above is trivial.) In this family,� is a compact abelian group, T is a minimal
translation (i.e. by the action of a fixed group element, and so that all orbits are dense) and
µ is normalized Haar measure.

Conversely, one can start with the latter scenario and generate almost periodic potentials
in this way.

PROPOSITION 5.1. A potential V ∈ `∞(Z) is almost periodic if and only if it can be
represented via

V (n)= Vω(n)= f (T nω), (53)

where � is a compact abelian group, ω ∈�, f :�→ R is continuous and T :�→� is
a minimal translation, say, T = · + α.

This point of view is sometimes useful, especially in the discussion of the specific
subclasses below.

5.2. Periodic potentials. A potential is periodic if and only if it is a fixed point of the
shift transformation S: that is, there is some p ∈ Z+ such that S p(V )= V . In other words,
V (n + p)= V (n) for every n ∈ Z. We assume that p ∈ Z+ is minimal with this property;
in this case it is called the minimal period of V , O(V )=�(V ) is isomorphic to Zp, and
µ assigns the weight 1/p to each element of the hull.

Since every Vω is a translate of any other Vω′ in this case, the associated operators are
unitarily equivalent, and the constancy of the spectrum and the spectral parts is immediate.
It is therefore sufficient to describe the spectral properties of a single operator, and we
discuss those of the Schrödinger operator with the initial potential V .

The following theorem summarizes the most important spectral results for this operator.
A key role is played by the monodromy matrix A(p; E) and the discriminant, which is
defined by

1(E)= TrA(p; E). (54)

From the explicit form of A(p; E), we see that 1 is a monic real polynomial of degree p.

THEOREM 5.2. Suppose V : Z→ R is periodic with minimal period p.
(a) If 1(E) ∈ (−2, 2), then ‖A(n; E)‖ is bounded. If 1(E) ∈ {−2, 2}, then ‖A(n; E)‖

is linearly bounded. If 1(E) 6∈ [−2, 2], then ‖A(n; E)‖ grows exponentially.
(b) If D ∈ [−2, 2], then all solutions of1(·)= D are real. If D ∈ (−2, 2), then all roots

of 1(·)= D are simple.
(c) The spectrum of H is given by

σ(H)= {z :1(E) ∈ [−2, 2]}. (55)

It consists of p compact intervals, B1, . . . , Bp, called bands, which are obtained
by taking the closure of the p mutually disjoint open intervals whose union is
1−1((−2, 2)). Thus, there are m ≤ p − 1 bounded open intervals that separate
bands, called open gaps, and p − 1− m points where two bands overlap, called
closed gaps.
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(e) The canonical spectral measure of H is purely absolutely continuous. An essential
support of this measure is given by {E :1(E) ∈ (−2, 2)}. For energies E in this set,
all solutions of (13) are bounded.

5.3. Limit-periodic potentials. We say that V ∈ `∞(Z) is limit-periodic if it belongs to
the `∞-closure of the set of periodic points of S: that is, if there exist a sequence {V j } in
`∞(Z) and a sequence {p j } in Z+ such that S p j V j = V j for every j and lim j→∞ ‖V −
V j‖∞ = 0.

Every periodic V is limit-periodic, every limit-periodic V is almost periodic, and a non-
periodic almost periodic V is limit-periodic if and only if its hull is totally disconnected.
This leads us naturally to the following definition: a Cantor group is an abelian topological
group which is compact, totally disconnected and perfect (i.e. it has no isolated points).
Then the fundamental structure theorem for limit-periodic potentials is given by the
following proposition.

PROPOSITION 5.3. A potential V ∈ `∞(Z) is limit-periodic if and only if it can be
represented via

V (n)= Vω(n)= f (T nω), (56)

where � is a Cantor group, ω ∈�, f :�→ R is continuous and T :�→� is a minimal
translation, say, T = · + α.

This point of view is particularly useful here because it allows us to separate the base
dynamics from the sampling function, so that we can keep the former fixed and vary the
latter. The theorems below show that, as the sampling function is varied, various kinds of
spectral behavior can be observed. In particular, all basic spectral types are possible (with
the minor caveat that the pure point spectrum result does need some additional assumptions
on the Cantor group).

The first result, which is due to Avila [7], shows that the Cantor spectrum is generic in
the sense that it holds, for fixed base dynamics, for a dense Gδ set of sampling functions.
Moreover, the generic type of Cantor spectrum in the limit-periodic setting comes with
zero Lebesgue measure.

THEOREM 5.4. Suppose that � is a Cantor group and T :�→� is a minimal
translation. Then there exists a dense Gδ subset C ⊆ C(�, R) so that, for all f ∈ C, the
spectrum 6 associated with the potentials (56) is a Cantor set of zero Lebesgue measure.

This is, in some sense, contrary to the expectations that were prevalent in the early
days of the study of limit-periodic operators. In fact, due to the limit-periodicity of the
potentials, and hence the very strong sense in which these operators are approximated by
periodic ones, which in turn have band spectrum and purely absolutely continuous spectral
measures, much of the early effort was focused on proving a purely absolutely continuous
spectrum. The Cantor structure of the spectrum was an objective as well, but note that such
Cantor sets must have positive Lebesgue measure if the spectral measures are absolutely
continuous! The following theorem describes this scenario in our setting. It was shown in
this form by Damanik and Gan in [68], but the result is in the spirit of results of Avron and
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Simon [19], Chulaevsky [51] and others from the 1980s, and its proof follows the line of
reasoning from those papers quite closely.

THEOREM 5.5. Suppose that � is a Cantor group and T :�→� is a minimal
translation. Then there is a dense set A⊆ C(�, R) such that, for every f ∈A and ω ∈�,
the spectrum of Hω is a Cantor set of positive Lebesgue measure and Hω has a purely
absolutely continuous spectrum.

One can even ensure, in the same generality, that the Cantor spectrum is homogeneous
in the sense of Carleson [46] (see [102]).

While absolute continuity does happen for a dense set of sampling functions,
Theorem 5.4 implies that it cannot occur on a generic set. Again, observe that a zero-
measure set cannot support any absolutely continuous measures. Indeed, the generic
spectral type turns out to be singular continuous (cf. [7, 68]).

THEOREM 5.6. Suppose that � is a Cantor group and T :�→� is a minimal
translation. Then there exists a dense Gδ set S ⊆ C(�, R) such that, for every f ∈ S
and every ω ∈�, the spectrum of Hω is a Cantor set of zero Lebesgue measure and Hω
has a purely singular continuous spectrum.

There is another dense set of sampling functions, where interesting spectral phenomena
occur (cf. [7, 67]).

THEOREM 5.7. Suppose that � is a Cantor group and T :�→� is a minimal
translation. Then, there exists a dense subset H⊆ C(�, R) such that, for all ω ∈�,
the spectrum of Hω is a Cantor set having zero Hausdorff dimension and Hω has a
purely singular continuous spectrum. Moreover, the Lyapunov exponent L(E) is a positive
continuous function of E.

Indeed, all statements in Theorems 5.6 and 5.7, except for singular continuity, were
shown by Avila in [7], and a proof of singular continuity was added by Damanik and
Gan in [67, 68]. The main reason why sampling functions in H are of interest is that
they provide counterexamples to a conjecture of Simon, who had conjectured that positive
Lyapunov exponents imply positive-measure spectrum. As Theorem 5.7 shows, this is as
far from the truth as possible. In fact, positive Lyapunov exponents do not even imply that
the spectrum has positive Hausdorff dimension.

As explained by Gan in [106], Cantor groups that have minimal translations are
procyclic groups. We can classify such Cantor groups by studying their frequency integer
sets. Every Cantor group with a minimal translation has a unique maximal frequency
integer set S = {nk} ⊆ Z+ with the property that nk+1/nk is prime for every k (see,
for example, [106]). We say that condition A holds if there exists some integer m ≥ 2
such that, for every k, we have nk < nk+1 ≤ nm

k : that is, log nk+1/log nk is uniformly
bounded. Cantor groups admitting a minimal translation and satisfying condition A are
easily seen to exist. For them, it is possible to show that the third basic spectral type may
occur (cf. [69]).
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THEOREM 5.8. Suppose that � is a Cantor group and T :�→� is a minimal
translation. Suppose, further, that condition A holds. Then there exists f ∈ C(�, R)
such that, for every ω ∈�, the spectrum of Hω is pure point and all eigenvectors decay
exponentially. In fact, the exponential decay is uniform for all ω and all energies.

This result is surprising for several reasons. First, as pointed out above, the early works
were aiming for an absolutely continuous spectrum, and this was motivated by limit-
periodic potentials being well approximated by periodic potentials. A pure point spectrum
is as far away from an absolutely continuous spectrum as possible. Second, the strength
of the localization result is startling. Such a scenario is often called uniform localization,
and it was not clear if such a strong localization statement can ever hold. That it arises
in the limit-periodic world is, indeed, quite surprising. All other operator families that are
known to be localized (random potentials, strongly coupled quasi-periodic potentials or
skew-shift potentials) are either not known to be uniformly localized or known to be not
uniformly localized. Motivated by [69] and extending [131], Han [121] showed that phase
uniformity is a general phenomenon in the context of uniform localization.

Even though the spectral measures of limit-periodic operators are generically singular
continuous and hence a study of their transport exponents is potentially interesting, only
few works have studied transport exponents in this context (see, for example, [48, 83]).

In light of the results above, the following open problems (listed already in [69]) arise
naturally.

Problem 1. Is it true that for f from a suitable dense subset of C(�, R), Hω has a pure
point spectrum for (Haar-) almost every ω ∈�?

We already know that for generic f ∈ C(�, R), Hω has a purely singular continuous
spectrum for everyω ∈�, and also that, for f from a suitable dense subset of C(�, R), Hω
has a purely absolutely continuous spectrum for every ω ∈�. Thus, an affirmative answer
to Problem 1 would clarify the effect of the choice of f on the spectral type. Since the
methods leading to Theorem 5.8 are essentially restricted to large potentials, one should
not expect them to yield an answer to Problem 1 and one should, in fact, pursue methods
involving some randomness aspect.

Problem 2. Is the spectral type of Hω always the same for every ω ∈�?

For quasi-periodic potentials, this is known not to be the case (see below). However,
the mutual approximation by translates for two given elements in the hull is stronger
in the limit-periodic case than in the quasi-periodic case, so it is not clear if similar
counterexamples to uniform spectral types exist in the limit-periodic world.

Another related problem is the following.

Problem 3. Is the spectral type of Hω always pure?

Again, in the quasi-periodic world, this is known not to be the case: there are examples
that have both absolutely continuous spectrum and point spectrum (cf., for example, [30,
34, 101]).

Returning to the issue of point spectra, one interesting aspect of a result stated (in the
continuum case), but not proved, by Molchanov and Chulaevsky in [177] is the coexistence
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of a pure point spectrum with the absence of non-uniform hyperbolicity: that is, in their
examples, the Lyapunov exponent vanishes on the spectrum and yet the spectral measures
are pure point. This is the only known example of this kind and it would therefore be
of interest to have a complete published proof of a result exhibiting this phenomenon.
Especially since our study is carried out in a different framework, we ask, within this
framework, the following question.

Problem 4. For which f ∈ C(�, R) does the Lyapunov exponent vanish throughout the
spectrum and yet Hω has a pure point spectrum for (almost) every ω ∈�?

Given the existing ideas, it is conceivable that Problems 1 and 4 are closely related and
may be answered by the same construction. If this is the case, it will then still be of interest
to show, for a dense set of f , that there is an almost sure pure point spectrum with positive
Lyapunov exponents.

5.4. Quasi-periodic potentials. Quasi-periodic potentials are generated by a minimal
translation on a finite-dimensional torus and a continuous sampling function: that is, a
quasi-periodic potential is of the form

V (n)= f (ω + nα), (57)

where α, ω ∈ Td and f ∈ C(Td , R). The vector α = (α1, . . . , αd) ∈ Td is assumed to be
such that

k j ∈ Z, 1≤ j ≤ d,
d∑

j=1

k jα j = 0 ∈ T ⇒ k j = 0, 1≤ j ≤ d. (58)

In other words, the entries of α together with one are linearly independent over the rational
numbers. This condition is equivalent to the translation by α on Td being minimal.

The spectral theory of quasi-periodic Schrödinger operators has been extensively
studied. In this subsection, we will focus on some highlights, but will not attempt to
give a comprehensive survey of the relevant literature. The main reason is that there is
another contemporary survey by Jitomirskaya and Marx [138] that focuses exclusively on
the quasi-periodic case, and we refer the reader to that paper for more information.

5.4.1. The spectral type. The spectral properties of quasi-periodic Schrödinger
operators are affected by the regularity of the sampling function f . For example, in the
low-regularity regime, having a purely singular continuous spectrum is typical, while in
the strong-regularity regime, the absence of a singular continuous spectrum is typical.

Let us make these statements more precise. We begin with the low-regularity setting:
that is, nothing beyond continuity is assumed. Specializing Theorem 3.28 to the case at
hand, we obtain the following theorem.

THEOREM 5.9. Suppose α ∈ Td obeys (58). Then there is a residual set Fs ⊆ C(Td , R)
such that, for every f ∈ Fs and every ω ∈ Td , the Schrödinger operator with potential (57)
has a purely singular spectrum.

Recall that this is really a consequence of Kotani theory and holds in much greater
generality. A complementary result was obtained by Boshernitzan and Damanik in [32].
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THEOREM 5.10. Suppose α ∈ Td obeys (58). Then there is a residual set Fc ⊆ C(Td , R)
such that, for every f ∈ Fc and Lebesgue almost every ω ∈ Td , the Schrödinger operator
with potential (57) has a purely continuous spectrum.

This result, too, holds in greater generality, albeit not quite as broadly as the previous
theorem. See [32] for the scope of their method, which includes, in particular, the skew-
shift case for which the generic absence of eigenvalues was surprising at the time.

Combining Theorems 5.9 and 5.10, we obtain the generic singular continuity result
mentioned above.

COROLLARY 5.11. Suppose α ∈ Td obeys (58). Then there is a residual set Fsc ⊆

C(Td , R) such that, for every f ∈ Fsc and Lebesgue almost every ω ∈ Td , the Schrödinger
operator with potential (57) has a purely singular continuous spectrum.

Let us now discuss the spectral type for analytic sampling functions. We consider,
mainly, the one-frequency case: that is, α ∈ T. It turns out that the partition of the spectrum
as 6 = Z tNUH is particularly relevant: that is, a pure point spectrum is typical in
NUH, whereas a purely absolutely continuous spectrum is typical in Z . Here is a result of
Bourgain and Goldstein [37] on spectral localization in NUH. Recall that the Lyapunov
exponents L(E) depends not only on the energy E , but also on the sampling function f
and the frequency α.

THEOREM 5.12. Assume that f is a 1-periodic real-analytic function and that the
Lyapunov exponent is strictly positive for any α ∈ T\Q and any E ∈ R. Then, for Lebesgue
almost all (α, ω) ∈ T2, the Schrödinger operator with potential (57) has a pure point
spectrum with exponentially decaying eigenfunctions.

Bourgain and Jitomirskaya showed in [39] that, in the setting of the previous theorem,
dynamical localization holds as well.

THEOREM 5.13. Assume that f is a 1-periodic real-analytic function and that the
Lyapunov exponent is strictly positive for any α ∈ T\Q and any E ∈ R. Then, for Lebesgue
almost all (α, ω) ∈ T2, the Schrödinger operator with potential (57) is dynamically
localized in the sense of (45): that is,

sup
t

∑
n∈Z
|n|p|〈δn, e−i t H δ0〉|

2 <∞

for every p > 0.

What about the input to Theorem 5.12? This is provided by a theorem due to Sorets and
Spencer [199], which was already known at the time when [37] was published.

THEOREM 5.14. Assume that g is a non-constant 1-periodic real-analytic function. Then
there exists λ0 > 0 such that the following holds for f = λg with λ > λ0. The Lyapunov
exponent associated with the Schrödinger operator with potential (57) is strictly positive
for any α ∈ T\Q and any E ∈ R.
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Thus, combining Theorems 5.12–5.14, we see that for analytic sampling functions,
localization (spectral and dynamical) occurs at sufficiently large coupling for almost
all frequencies. It is not an artifact that a zero-measure set of frequencies has to be
excluded. Indeed, for frequencies that are sufficiently well approximated by rational
numbers, spectral localization (and hence also dynamical localization) fails due to a result
of Gordon [116], which was highlighted by Avron and Simon [20].

THEOREM 5.15. Assume that f ∈ C(T, R) and α ∈ T\Q is such that, for suitable rational
numbers {pk/qk}k≥1, ∣∣∣∣α − pk

qk

∣∣∣∣≤ k−qk (59)

for k ≥ 1. Then, for every ω ∈ T, the Schrödinger operator with potential (57) has a purely
continuous spectrum.

It is not hard to see that, under the assumption of Theorem 5.15, the potential V defined
by (57) is a Gordon potential for every ω ∈ T. Lemma 2.10 then yields the conclusion.

Irrational α obeying (59) form a specific explicit class of Liouville numbers. It is easy
to see that this set is a dense Gδ set of zero Lebesgue measure. Irrational numbers that
are not well approximated by rational numbers are called Diophantine. As with Liouville
numbers, there are several ways of imposing a Diophantine condition, some of which
will lead to sets of full Lebesgue measure. It is an interesting open problem to extend
the Bourgain–Goldstein localization result to an explicit full-measure set of Diophantine
frequencies. That is, is there a full-measure set of Diophantine α for which spectral
localization holds for Lebesgue almost all ω ∈ T, assuming that f is a 1-periodic real-
analytic function for which the Lyapunov exponent is strictly positive for every E ∈ R?

While localization is typical for analytic one-frequency quasi-periodic Schrödinger
operators in the large coupling regime, a purely absolutely continuous spectrum occurs
in the weak-coupling regime, as shown by Bourgain and Jitomirskaya [41]. This result,
actually, does have an explicit Diophantine condition that is imposed on α. Let us denote
the distance from 0 in T by ‖ · ‖T.

THEOREM 5.16. Assume that g is a 1-periodic real-analytic function. Then there
exists λ1 > 0 such that the following holds for f = λg with 0< λ < λ1. If α ∈ T\Q is
Diophantine in the sense that

there exists c > 0, r > 1 such that ‖nα/2‖T >
c
|n|r

for every n ∈ Z\{0},

then, for Lebesgue almost all ω ∈ T, the Schrödinger operator with potential (57) has a
purely absolutely continuous spectrum.

This clarifies the typical behavior (in the frequency and the phase) for analytic one-
frequency quasi-periodic Schrödinger operators in the regime of large and small coupling.
In general, there is a significant gap between the two regimes: that is, the numbers λ0 and
λ1 in the theorems above will be far apart. An exception is given by the almost Mathieu
case, g(ω)= 2 cos(2πω), which will be discussed in §6. In this special case, the statements
above actually hold with λ0 = λ1 = 1.
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This gap was filled, to a large extent, when Avila developed his global theory of analytic
quasi-periodic one-frequency Schrödinger operators in [3, 4, 6]†. Recall that we can view
the spectrum as a disjoint union of sets of energies, 6 =NUH t Z (see Theorem 3.12).
At least for Diophantine frequencies, we also know that localization phenomena occur in
NUH: this follows from localized (in the energy parameter) versions of Theorems 5.12
and 5.13. Thus, we would like to understand the spectral type in Z . By Theorem 3.19,
6ac = Zess

, but this leaves the question open as to whether Z can locally have portions
of zero Lebesgue measure or whether there can be any additional singular spectrum even
when Z has (everywhere) positive measure. As we will see when we discuss the almost
Mathieu operator, both phenomena can actually occur in the context of analytic quasi-
periodic one-frequency operators. These issues were addressed by Avila using a further
decomposition of Z into two subsets, namely, the subcritical energies and the critical
energies. These notions are defined via cocycle behavior and, more concretely, by what
happens when the phase ω ∈ T is complexified. Namely, an energy in Z is subcritical
if the Lyapunov exponent remains zero for sufficiently small perturbations of the phase
in the imaginary direction, and critical otherwise. Fixing the frequency α, Avila showed
in [3] that, for a typical analytic f ‡, there are no critical energies, and hence the spectrum
splits into a localized regime and a subcritical regime. By showing that subcriticality
implies almost-reducibility (which for some time was referred to as the ‘almost reducibility
conjecture’ (see [16]), at least until it was proved in [4, 6]), Avila was then able to
show that the subcritical regime in fact must be purely absolutely continuous. As a net
result, one obtains that, for a typical analytic one-frequency potential, there is no singular
continuous spectrum and the decomposition 6 =NUH t Z corresponds precisely to the
decomposition into a localized regime and an absolutely continuous regime.

Much of the work on quasi-periodic potentials has focused on cases of extremal
regularity, that is, analytic sampling functions and merely continuous sampling functions.
For some work on quasi-periodic potentials of intermediate regularity, we refer to reader
to [29, 99, 141, 146, 149, 206, 207]) and the references therein.

Similarly, while we have limited our discussion of the analytic category above to the
one-frequency case, for results on the multi-frequency case we refer the reader to [35, 97,
113, 120, 138] and the references therein.

5.4.2. Cantor spectrum. Another topic of wide interest is the Cantor spectrum. For
continuous sampling functions, this spectral phenomenon also turns out to be generic.
Indeed, specializing Theorem 3.13 by Avila et al [9] to the case at hand, we obtain the
following theorem.

THEOREM 5.17. Suppose α ∈ Td obeys (58). Then there is a residual set Fcantor ⊆

C(Td , R) such that, for every f ∈ Fcantor and every ω ∈ Td , the spectrum of the
Schrödinger operator with potential (57) is a Cantor set.

For analytic sampling functions and in the regime of positive Lyapunov exponents, a
Cantor spectrum is typical as well as shown by Goldstein and Schlag [114].

† In fact, this work was presented in Avila’s Fields Medalist lecture at the 2014 ICM in Seoul.
‡ Here, ‘typical’ is meant in the measure theoretical sense of prevalence.
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THEOREM 5.18. Denote

Dioph=
{
α ∈ T : ∃c > 0, r > 1 such that ‖nα‖T ≥

c
n(log n)r

∀n > 1
}
.

Assume that f is a 1-periodic real-analytic function and that the Lyapunov exponent is
strictly positive for any α ∈ (α1, α2) and any E ∈ (E1, E2). Then there exists a set B ⊂ T
of Hausdorff dimension zero such that, for any α ∈ Dioph \B, the intersection of (E1, E2)

with the spectrum of the Schrödinger operator with potential (57) is a Cantor set.

On the other hand, Avila and Jitomirskaya showed the following result in the analytic
non-perturbative small coupling regime [16].

THEOREM 5.19. For typical (i.e. outside a suitable set of infinite codimension) 1-periodic
real-analytic g, there exists λ2 > 0 such that the following holds for f = λg with 0< λ <
λ2. If α ∈ T\Q is Diophantine in the sense that

there exists c > 0, r > 1 such that ‖nα/2‖T >
c
|n|r

for every n ∈ Z\{0},

then, for Lebesgue almost all ω ∈ T, the Schrödinger operator with potential (57) has a
Cantor spectrum.

In fact, the stronger statement that all gaps allowed by the gap labeling theorem are
open, is shown.

For intermediate regularity, see [198, 206] for results on Cantor spectra.

6. The almost Mathieu operator
We will discuss the almost Mathieu operator

[Hλ,α
ω ψ](n)= ψ(n + 1)+ ψ(n − 1)+ 2λ cos(2π(ω + nα))ψ(n).

This special case of a quasi-periodic Schrödinger operator deserves a separate section for
a number of reasons. It is the single case of a quasi-periodic Schrödinger operator that has
been more or less completely analyzed. The wealth of the results and the sheer number of
papers devoted to this operator are quite impressive. Moreover, even in this single family,
one can already see, for example, that all possible spectral types may arise in the quasi-
periodic context and one can also see the mechanisms behind these phenomena. Related
to this, the study of the almost Mathieu case has informed the study of the general quasi-
periodic case. Many of the known results in the general (predominantly analytic) setting
are extensions of results earlier obtained for the almost Mathieu case.

We see that the almost Mathieu operator is a one-frequency quasi-periodic Schrödinger
operator, where the sampling function is given by the trigonometric polynomial

f (ω)= 2λ cos(2πω).

As above, we consider α and ω as elements of T= R/Z. It is easy to see that Hλ,α
ω =

H−λ,αω+1/2 and hence we may focus on the case λ > 0. If α is irrational, then the spectrum

of Hλ,α
ω is independent of ω and may be denoted by 6λ,α . In fact, when one talks

about the almost Mathieu operator, it is implicitly assumed that α is irrational. However,
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it is sometimes useful to consider rational approximations of α and hence periodic
approximations of the quasi-periodic operator. In the general case, we will set

6λ,α =
⋃
ω∈T

σ(Hλ,α
ω ), (60)

and this definition agrees with the one above in the irrational case.
Much of the development of the theory of the almost Mathieu operator has been driven

by three conjectures, which have been around since the late 1970s/early 1980s [1, 191].

AMO-PROBLEM 1. (Measure of the spectrum) For every λ > 0 and every irrational
α ∈ T,

Leb(6λ,α)= 4|1− λ|.

AMO-PROBLEM 2. (Metal–insulator transition) Suppose λ > 0, α ∈ T is irrational and
ω ∈ T. Then:
• Hλ,α

ω has purely absolutely continuous spectrum if λ < 1;
• Hλ,α

ω has purely singular continuous spectrum if λ= 1; and
• Hλ,α

ω is spectrally localized if λ > 1.

AMO-PROBLEM 3. (Ten martini problem) For every λ > 0 and every irrational α ∈ T,
6λ,αω is a Cantor set.

6.1. The main results. The three theorems below concern the Lebesgue measure of the
spectrum, the metal–insulator transition and the ten martini problem. They are stated in the
generality in which they are currently known and summarize the results of many authors,
obtained over the course of about three decades.

THEOREM 6.1. (Measure of the spectrum) For every λ > 0 and every irrational α ∈ T,

Leb(6λ,α)= 4|1− λ|. (61)

This shows that the original conjecture holds in complete generality. This result was
established in the papers [17, 21, 134, 135, 160, 161].

THEOREM 6.2. (Metal–insulator transition)
(a) If λ < 1, then, for every α and every ω, the spectrum is purely absolutely continuous.
(b) If λ= 1, then, for every irrational α and all but a countable number of ω, the

spectrum is purely singular continuous.
(c) If λ > 1, then, for almost every α and almost every ω, the spectrum is pure point and

the eigenfunctions decay exponentially.
(d) If λ > 1, then, for generic α and every ω, the spectrum is purely singular continuous.
(e) If λ > 1, then, for every irrational α and generic ω, the spectrum is purely singular

continuous.

This shows that the original conjecture holds in a full measure sense, but fails in a
generic sense for λ > 1. The situation at λ= 1 is not completely resolved yet, and it is
still expected that one always has purely singular continuous spectrum in this case. The
theorem above combines results from [2, 5, 13, 17, 20, 116, 117, 132, 144, 161].
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THEOREM 6.3. (Ten martini problem) For every λ > 0 and every irrational α ∈ T, 6λ,α

is a Cantor set.

This shows that, also in this case, the original conjecture holds in complete generality.
The relevant papers are [15, 17, 27, 50, 132, 161, 182].

In the following subsections we will present some of the main ideas that go into the
proof of these theorems.

6.2. Aubry duality. Consider the Hilbert space L2(T× Z) and the operator Hλ,α
:

L2(T× Z)→ L2(T× Z) given by

[Hλ,αϕ](ω, n)= ϕ(ω, n + 1)+ ϕ(ω, n − 1)+ 2λ cos(2π(ω + nα))ϕ(ω, n).

Introduce the duality transform A : L2(T× Z)→ L2(T× Z), which is given by

[Aϕ](ω, n)=
∑
m∈Z

∫
T

e−2π i(ω+nα)me−2π inηϕ(η, m) dη.

This definition assumes, initially, that ϕ is such that the sum in m converges, but note that,
in terms of the Fourier transform on L2(T× Z), we have [Aϕ](ω, n)= ϕ̂(n, ω + nα),
which may be used to extend the definition to all of L2(T× Z) and shows that A is unitary.

A first consequence of Aubry duality is a formula relating the spectra of Hλ,α
ω and

Hλ−1,α
ω , as shown by Avron and Simon in [20].

THEOREM 6.4. 6λ,α = λ6λ
−1,α .

Moreover, Gordon et al stated the following theorem in [117], which relates the type of
spectral measures at λ and the dual coupling λ−1.

THEOREM 6.5. Suppose λ > 0 and α ∈ T is irrational.
(a) Hλ,αA= λAHλ−1,α .
(b) If Hλ,α

ω has a pure point spectrum for almost every ω ∈ T, then Hλ−1,α
ω has a purely

absolutely continuous spectrum for almost every ω ∈ T.
(c) If Hλ,α

ω has some point spectrum for almost every ω ∈ T, then Hλ−1,α
ω has some

absolutely continuous spectrum for almost every ω ∈ T.

For many years this theorem had been the basis of employing Aubry duality to relate
point spectra and absolutely continuous spectra. However, it turned out that the proof given
in [117] does not actually establish Theorem 6.5. Namely, the proof relies on a statement,
for which it quotes the paper [92] by Deift and Simon, which is not actually proved in [92].
Instead, one may rely on duality arguments given in [5, 16, 139] in order to show that
Theorem 6.5 actually does hold as formulated.

6.3. The Herman estimate. Herman proved the following lower bound for the
Lyapunov exponent in [123].

THEOREM 6.6. If λ > 0 and α ∈ T is irrational, then the Lyapunov exponent associated
with the almost Mathieu operator satisfies L(E)≥ log λ for every E.
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The key idea of the proof is to complexify the phase ω and to employ subharmonicity
in this new variable. Since the argument is so elegant and short, let us give it here. Setting
w = e2π iω, we see that

2λ cos(2π(ω + mα))= λ(e2π iαmw + e−2π iαmw−1).

Thus, the one-step transfer matrices have the form

Tω(m; E)=
(

E − λ(e2π iαmw + e−2π iαmw−1) −1
1 0

)
.

If we define

Nn(w)= w
n Aω(n; E)= (wTω(n; E)) · · · (wTω(1; E)),

initially on |w| = 1, we see that Nn extends to an entire function and hence w 7→

log ‖Nn(w)‖ is subharmonic. Thus,∫ 1

0
log ‖Nn(e2π iω)‖ dω ≥ log ‖Nn(0)‖ = n log λ.

Moreover, ‖Nn(e2π iω)‖ = ‖Aω(n; E)‖. Thus,

L(E)= lim
n→∞

1
n

∫
T

log ‖Aω(n; E)‖ dω = lim
n→∞

1
n

∫
T

log ‖Nn(e2π iω)‖ dω ≥ log λ,

and Theorem 6.6 follows.
The argument above extends readily to trigonometric polynomials, and also to multi-

frequency models. In this sense, the Herman estimate was the precursor to the result
by Sorets–Spencer (Theorem 5.14) and its extension to the multi-frequency case by
Bourgain [35].

Since the Lyapunov exponent is non-negative, the Herman estimate may be rewritten
as L(E)≥max{log λ, 0}. This estimate, in turn, is sharp, as shown by Bourgain and
Jitomirskaya in [40].

THEOREM 6.7. If λ > 0 and α is irrational, then L(E)=max{log λ, 0} for every E ∈
6λ,α .

6.4. The measure of the spectrum. Helffer and Sjöstrand proved the following in [122].

THEOREM 6.8. There is a constant A <∞ such that, for every α ∈ T irrational with
continued fraction coefficients obeying ak ≥ A for every k ∈ Z+, Leb(61,α)= 0.

In fact, they obtain a detailed description of the quantitative self-similarity properties of
the spectrum. It would be very interesting to extend this work to non-critical coupling.

A different approach to studying the measure of the spectrum is based on periodic
approximations, obtained by replacing the irrational frequency of the quasi-periodic
potential with suitable rational numbers nearby. To make this approach effective, one
needs good quantitative information about the periodic operators and a suitable quantitative
continuity statement. The starting point is the paper [21] by Avron, van Mouche and
Simon, which is devoted to both issues, namely, a study of rational frequencies and a
quantitative continuity result.
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In addition to the union of spectra (60), consider, also, the intersection of spectra,

σ λ,α =
⋂
ω∈T

σ(Hλ,α
ω ). (62)

Then, the following is shown in [21] (see also [140] for interesting follow-up work).

THEOREM 6.9. Suppose α ∈ T is rational. Write α = p/q with (p, q)= 1.
(a)

Leb(σ λ,α)=

{
4|1− λ| if 0< λ < 1,

0 if λ≥ 1.

(b) For 0< λ < 1,

Leb(σ λ,α)≤ Leb(6λ,α)≤ Leb(σ λ,α)+ 4πλq/2.

Notice that if (pk, qk)= 1 and qk→∞, then Theorem 6.9 yields

lim
k→∞

Leb(6λ,pk/qk )= 4|1− λ| (63)

if 0< λ < 1. Thus, if α ∈ T is irrational and pk/qk are the continued fraction
approximants, then (63) suggests strongly that (61) holds for 0< λ < 1. But then (61)
will also hold for λ > 1, due to Theorem 6.4.

We see that proving (61) using (63) requires a continuity result for α 7→6λ,α . The
authors of [21] also proved 1

2 -Hölder continuity of this map with respect to the Hausdorff
metric.

THEOREM 6.10. Suppose λ > 0. Then there exists a constant C such that

distH (6
λ,α, 6λ,α

′

)≤ C |α − α′|1/2.

In fact, this result holds for general one-frequency quasi-periodic Schrödinger operators
with a C1 sampling function f , and the constant C may be chosen as 6‖ f ′‖1/2∞ .

While this seemingly put Avron, van Mouche and Simon very close to proving (61)
for every λ 6= 1, it was a few years later when Last showed how to derive the desired
conclusion under a suitable additional assumption. Namely, Last proved the following
in [160].

THEOREM 6.11. Suppose α ∈ T is irrational with an unbounded continued fraction
expansion. Equivalently, there are rational numbers pk/qk such that

lim
k→∞

q2
k

∣∣∣∣α − pk

qk

∣∣∣∣= 0.

Then, for every λ ∈ (0,∞)\{1}, Leb(6λ,α)= 4|1− λ|.

The assumption in Theorem 6.11 holds for Lebesgue almost every α.
The work of Avron, van Mouche and Simon seems to exclude the case of critical

coupling, λ= 1. However, by approximating the critical coupling from below with non-
critical values, Last [161] was, nevertheless, able to show the following estimates.
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THEOREM 6.12. Suppose α = p/q ∈ T is rational with (p, q)= 1. Then,

2(
√

5+ 1)
q

≤ Leb(61,α)≤
8e
q
.

As before, rational approximation then leads to the desired result for Lebesgue almost
every irrational α ∈ T, as also shown in [161].

THEOREM 6.13. Suppose α ∈ T is irrational with an unbounded continued fraction
expansion. Then, Leb(61,α)= 0.

The limitation in the frequencies covered by Theorems 6.11 and 6.13 comes directly
from the quantitative version of the continuity of spectra stated in Theorem 6.10. To cover
more or even all irrational frequencies, an improved continuity statement was necessary.
Such an improvement was obtained by Jitomirskaya and Last in [135] for λ > 14.5 and
by Jitomirskaya and Krasovsky in [134] for λ > 1 (really as a consequence of L(E) > 0,
which by the Herman estimate holds when λ > 1). Recall that if (61) holds for some λ, it
also holds for λ−1. As a consequence, the following theorem was obtained in [134].

THEOREM 6.14. Suppose α ∈ T is irrational. Then, for every λ ∈ (0,∞)\{1},
Leb(6λ,α)= 4|1− λ|.

This resolves AMO-Problem 1, except for critical coupling and the zero-measure set of
frequencies with bounded continued fraction expansion. Resolving this issue completely
became one of the problems on Simon’s list of Schrödinger operator problems for the 21st
century [195]. The complete solution to AMO-Problem 1, and hence Theorem 6.1, was
finally obtained by Avila and Krikorian in [17]. They considered critical coupling, λ= 1,
and frequencies α ∈ T that are recurrent Diophantine, that is, that are such that infinitely
many of their iterates of the Gauss map (which truncates the continued fraction expansion,
that is, [0; a1, a2, a3, . . .] is sent to [0; a2, a3, a4 . . .]) satisfy a suitable fixed Diophantine
condition. Avila and Krikorian [17] showed the following result.

THEOREM 6.15. Suppose α ∈ T is recurrent Diophantine. Then Leb(61,α)= 0.

The set of recurrent Diophantine α ∈ T has full Lebesgue measure and it includes all
numbers with bounded continued fraction. In other words, the union of the frequencies
covered by Last and the frequencies covered by Avila and Krikorian is equal to all irrational
α ∈ T. Thus, combining Theorems 6.13–6.15, Theorem 6.1 follows.

6.5. The metal–insulator transition. Recall that AMO-Problem 2 claims a purely
absolutely continuous spectrum for subcritical coupling λ < 1, a purely singular
continuous spectrum for critical coupling λ= 1, and spectral localization for supercritical
coupling λ > 1.

The first result relevant to this problem was actually a negative one. Namely,
specializing the results of Gordon [116] and Avron and Simon [20] to the almost Mathieu
case, Theorem 5.15 becomes the following theorem.
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THEOREM 6.16. Assume α ∈ T is such that, for suitable rational numbers {pk/qk}k≥1,∣∣∣∣α − pk

qk

∣∣∣∣≤ k−qk

for k ≥ 1. Then, for every λ > 0 and every ω ∈ T, Hλ,α
ω has a purely continuous spectrum.

In particular, there is no spectral localization in the supercritical regime if α is Liouville
in the sense above. Recall that the set of Liouville numbers has zero Lebesgue measure,
but it is large in the sense that it is a dense Gδ set.

But even for typical frequencies, a correction to the expected result is necessary, as
shown by Jitomirskaya and Simon in [144].

THEOREM 6.17. Assume λ > 0 and α ∈ T is irrational. Then, for ω from a dense Gδ

subset of T, Hλ,α
ω has a purely continuous spectrum.

The proof relies on the fact that the cosine function is even, and hence the potential of
the almost Mathieu operator has long stretches on which it is almost reflection symmetric.
This has consequences for the generalized eigenfunctions. If these stretches of almost
symmetry are suitably located (which does happen for a generic set of phases ω ∈ T),
one can, in this way, exclude the presence of square-summable solutions to the difference
equation. Note, however, that the proof is indirect. Only assuming that a solution is
square-summable, one can then show that it does not decay, and hence cannot be square-
summable. The Gordon lemma, on the other hand, which relies on local almost translation
symmetries, does exclude the presence of decaying solutions in an unqualified way and
hence it can sometimes be used to establish even stronger continuity properties of spectral
measures. We will see instances of this in later sections.

The next result related to AMO-Problem 2 was obtained as a consequence of the work
of Gordon et al [117] on their version of Aubry duality stated in Theorem 6.5.

THEOREM 6.18. Assume α ∈ T is irrational. Then, for Lebesgue almost everyω ∈ T, H1,α
ω

has a purely singular continuous spectrum.

Due to the gap in the proof of Theorem 6.5, discussed after the above theorem was
stated, it is important to note that a different proof of Theorem 6.18 has been found by
Avila [5], establishing an even stronger result. (This paper also helped in showing that
Theorem 6.5 is actually true as stated.)

THEOREM 6.19. Suppose α ∈ T is irrational. Then, H1,α
ω has a purely singular continuous

spectrum for all but a countable number of ω ∈ T.

Removing the exclusion of the countable set of ω in Theorem 6.19 is an interesting open
problem.

The next major milestone was Jitomirskaya’s [132]. Recognizing the necessary
restrictions imposed by Theorems 6.16 and 6.17 on α and ω, she established the expected
spectral localization result outside of these exceptions.

https://doi.org/10.1017/etds.2015.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.120


Schrödinger operators with dynamically defined potentials 1731

THEOREM 6.20. Suppose λ > 1, α ∈ T is Diophantine in the sense that there are constants
c > 0, r > 1 such that

|sin(2πnα)|>
c
|n|r

for every n ∈ Z\{0},

and ω ∈ T is non-resonant in the sense that the relation∣∣∣∣sin
(

2π
(
ω +

n
2
α

))∣∣∣∣< exp
(
−|n|1/(2r)

)
holds for at most a finite number of n ∈ Z. Then Hλ,α

ω has a pure point spectrum with
exponentially decaying eigenfunctions.

Each of the conditions on α and ω in Theorem 6.20 holds on a set of full Lebesgue
measure. In particular, part (c) of Theorem 6.2 follows.

The proof of Theorem 6.2 rests entirely on the positivity of the Lyapunov exponent.
That is, nothing specific is assumed about λ, and the condition on λ in Theorem 6.2
is merely a consequence of the Herman estimate, Theorem 6.6. The paper [132] (along
with its predecessors [128, 129]) therefore introduced the concept of ‘non-perturbative
localization’, in which the proof of localization uses the positivity of the Lyapunov
exponent as input rather than a largeness assumption on the coupling constant. Another
feature of a non-perturbative result is that the largeness condition on the coupling constant,
which arises implicitly here as just explained, is independent of the frequency. This
is in contrast to perturbative results where the largeness condition indeed does depend
on the frequency (cf., for example, [98, 104, 198]). The concept of non-perturbative
localization was further explored in the more general setting of analytic sampling functions
by Bourgain and Goldstein [37] (cf. Theorem 5.12).

The importance of [132] goes beyond merely validating part (c) of Theorem 6.2. Indeed,
applying Aubry duality to Theorem 6.20 yields several nice consequences. The obvious
one, stated in [132] as a consequence of part (b) of Theorem 6.5, is the following theorem.

THEOREM 6.21. Suppose λ < 1 and α ∈ T is Diophantine in the sense of the previous
theorem. Then Hλ,α

ω has a purely absolutely continuous spectrum for Lebesgue almost
every ω ∈ T.

Exponential localization at energy E immediately implies boundedness of all solutions
for the dual model at energy E/λ, from which a purely absolutely continuous spectrum
for almost every phase follows immediately by subordinacy theory. Thus, an absolutely
continuous spectrum for almost every phase is an immediate corollary of exponential
localization for the dual model. The paper [132] referred to [117] for this conclusion,
but in view of the problems mentioned in the discussion of [117], the simple reasoning just
described should be implemented instead.

Going beyond that, Avila and Jitomirskaya developed a quantitative formulation of
Aubry duality in [16] and used it to prove the following stronger result.

THEOREM 6.22. Suppose λ < 1 and α ∈ T is Diophantine in the sense above. Then Hλ,α
ω

a purely absolutely continuous spectrum for every ω ∈ T.
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Moreover, recall that for Liouville α, the dual model in the supercitical regime has
a purely singular continuous spectrum, and Aubry duality cannot predict what should
happen in the subcritical regime for such frequencies. If anything, one might be tempted
to expect a purely singular continuous spectrum as well, as the case of critical coupling
shows that the dual of singular continuous may be singular continuous (see Theorem 6.18).
Note, however, that the singular continuous spectra at supercritical coupling and at critical
coupling are different animals, as one comes with positive Lyapunov exponents and the
other one comes with zero Lyapunov exponents. In any event, clarifying the spectral type
in the subcritical regime for Liouville frequencies remained a challenge that put this issue
on Simon’s list of Schrödinger operator problems for the 21st century [195] as well.

The first step toward a complete understanding of the spectral type in the subcritical
regime was actually taken in the supercritical regime. Given α ∈ T irrational with
continued fraction approximants pk/qk , let

β(α) := lim sup
k→∞

log qk+1

qk
.

Note that β(α)= 0 if α is Diophantine and β(α)=∞ if α is Liouville. Frequencies α
with 0< β(α) <∞ are of a weak Liouville type. By carefully examining the argument
of [132], it follows that in Theorem 6.20 the Diophantine condition can be replaced by
the weaker condition β(α)= 0. Applying Aubry duality, one can replace the Diophantine
condition by β(α)= 0 in Theorem 6.21 as well.

Avila and Damanik then extended Theorem 6.21 to the regime where β(α) > 0. They
showed the following theorem in [13].

THEOREM 6.23. Suppose λ < 1 and α ∈ T is irrational with β(α) > 0. Then Hλ,α
ω has a

purely absolutely continuous spectrum for almost every ω ∈ T.

Their proof relies on Corollary 3.21. That is, they proved that the density of states
measure is purely absolutely continuous when λ 6= 1 and β(α) > 0†. This application
shows the importance of Corollary 3.21 which had been somewhat overlooked until then.

All remaining cases (namely, the exceptional frequencies in [16] and the exceptional
phases in [13]) were finally handled by Avila in [2], and hence part (a) of Theorem 6.2
followed, as stated below.

THEOREM 6.24. Suppose λ < 1 and α ∈ T. Then Hλ,α
ω has a purely absolutely continuous

spectrum for every ω ∈ T.

This completes our summary of the metal–insulator transition for the almost Mathieu
operator at the critical coupling λ= 1. In fact, there is a second spectral transition for
frequencies α with 0< β(α) <∞. Namely, for such frequencies, besides the known
transition from absolutely continuous to singular continuous at λ= 1, there is another
transition from singular continuous to spectrally localized at λ= eβ(α) (see [15, 130, 133]
for the conjecture and partial results, as well as [18] for the full result). Note that this
beautifully interpolates between the cases β(α)= 0 and β(α)=∞, where there is no

† Of course, it is purely singular when λ= 1 due to Theorems 6.13 and 6.15, and its absolute continuity when
λ 6= 1 and β(α)= 0 follows from its purely absolutely continuous spectrum and an application of Corollary 3.21
in the other direction.
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second transition. Thus, one can always state that the (typical) spectral type is absolutely
continuous between 0 and 1, singular continuous between 1 and eβ(α), and pure point
between eβ(α) and∞.

6.6. Cantor spectrum. The first result on the Cantor spectrum for the almost Mathieu
operator was established by Bellissard and Simon [27].

THEOREM 6.25. The set {(λ, α) :6λ,α is a Cantor set} is residual.

The proof is quite soft and uses the Baire category theorem. The conditions on λ and α
are not explicit. While the proof is such that the α in question will be well approximated
by rational numbers, no explicit class of Liouville numbers can be singled out for which
Cantor spectrum follows from this approach.

The need to vary λ was eliminated in a work of Choi et al [50]. They proved a Cantor
spectrum result for fixed λ and an explicit generic set of frequencies.

THEOREM 6.26. Suppose that λ > 0 and α ∈ T is a Liouville number in the sense of (59).
Then, 6λ,α is a Cantor set.

The condition in [50] is actually more general. The proof can also treat α for which β(α)
is finite, with the required bound on it depending on λ (see [50, Remark 5.3] for the precise
condition). The main advance in [50] concerns the gap structure of 6λ,α for rational α.
The authors identify all gaps of this set (relative to the value the integrated density of
states takes on them) and prove a lower bound for their lengths. Together with a continuity
result like Theorem 6.10, this proves the existence of gaps in the irrational spectrum,
provided the approximation is good enough. Actually, the authors of [50] prove their own
version of Theorem 6.10, and they obtain only 1

3 -Hölder continuity. Using better continuity
statements, one could improve the final conclusion somewhat, but one would always only
cover a suitable class of Liouville numbers whose measure will not exceed zero.

As with the previous two AMO problems, the status of this problem around the turn
of the century was such that some nice partial results were known, but to resolve the
problem completely, one would have to invent a fundamentally different approach, as all
the known approaches were understood to be insufficient to cover the entire parameter
space. Consequently, finding a complete solution to AMO-Problem 3 also became one of
the problems on Simon’s list of Schrödinger operator problems for the 21st century [195].

A major breakthrough was obtained in the paper [182] by Puig. He was able to connect
spectral localization for some coupling constant λ to the occurrence of Cantor spectrum
for the dual coupling constant λ−1 (which of course implies Cantor spectrum for λ by
applying Aubry duality again).

LEMMA 6.27. Suppose λ > 1, α ∈ T is Diophantine and E is an eigenvalue of Hλ,α
0 with

an exponentially decaying eigenfunction. Then the dual energy λ−1 E is an endpoint of a
gap of the spectrum of Hλ−1,α

0 .

Inspecting the assumptions of Theorem 6.20, we see that the phase zero is always
non-resonant, and hence Theorem 6.20 implies that Hλ,α

0 has a pure point spectrum
(with exponentially decaying eigenfunctions). Thus, the eigenvalues of Hλ,α

0 must be
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dense in the spectrum of Hλ,α
0 , which is equal to the set6λ,α . Lemma 6.27 then shows that

the endpoints of gaps of 6λ
−1,α are dense in 6λ

−1,α! (Here we used that 6λ,α = λ6λ
−1,α;

see Theorem 6.4.) Thus, 6λ
−1,α is a Cantor set, and by 6λ,α = λ6λ

−1,α again, 6λ,α

is a Cantor set as well. In other words, given the results that were known at the time,
Lemma 6.27 immediately implies the following result, also stated and derived by Puig
in [182], which resolves the ten martini problem for almost all parameter values.

THEOREM 6.28. Suppose that λ ∈ (0,∞)\{1} and α ∈ T is Diophantine. Then 6λ,α is a
Cantor set.

Since the proof of Lemma 6.27 is relatively easy and the result and its consequences
are so important, let us give some details. We start with a simple Aubry duality statement.
Consider the equations

u(n + 1)+ u(n − 1)+ 2λ cos(2πnα)u(n)= Eu(n), (64)

u(n + 1)+ u(n − 1)+ 2λ−1 cos(2π(ω + nα))u(n)= (λ−1 E)u(n). (65)

Then the following pair of statements is not difficult to prove.

LEMMA 6.29.
(a) Suppose u is an exponentially decaying solution of (64). Consider its Fourier series

û(ω)=
∑
m∈Z

u(m)e2π imω.

Then û is real-analytic on T, it extends analytically to a strip and the sequence
ũ(n)= û(ω + nα) is a solution of (65).

(b) Conversely, suppose u is a solution of (65) with ω = 0 of the form u(n)= g(nα) for
some real-analytic function g on T. Consider the Fourier series

g(ω)=
∑
n∈Z

ĝ(n)e2π inω.

Then the sequence {ĝ(n)} is an exponentially decaying solution of (64).

Next we use the information provided by the previous lemma to reduce the situation at
hand to constant coefficients. Here is a general statement to this effect.

LEMMA 6.30. Let α ∈ T be Diophantine and suppose A : T→ SL(2, R) is a real-analytic
map, with analytic extension to the strip |Im ω|< δ for some δ > 0. Assume that there is
a non-vanishing real-analytic map v : T→ R2 with analytic extension to the same strip
|Im ω|< δ such that

v(ω + α)= A(ω)v(ω) for every ω ∈ T.

Then there is a real number c and a real-analytic map B : T→ SL(2, R) with analytic
extension to the strip |Im ω|< δ such that with

C =
(

1 c
0 1

)
, (66)

B(ω + α)−1 A(ω)B(ω)= C for every ω ∈ T. (67)
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Let us explain how this is shown. Since v does not vanish, d(ω)= v1(ω)
2
+ v2(ω)

2 is
strictly positive and hence we can define

B1(ω)=

v1(ω) −
v2(ω)

d(ω)

v2(ω)
v1(ω)

d(ω)

 ∈ SL(2, R)

for ω ∈ T.

A(ω)B1(ω)=

(
v1(ω + α) ∗

v2(ω + α) ∗

)
∈ SL(2, R) (68)

and hence
A(ω)B1(ω)= B1(ω + α)C̃(ω)

with

C̃(ω)=
(

1 c̃(ω)
0 1

)
,

where c̃ : T→ R is analytic. Indeed, by (68), the first column of C̃(ω) is determined and
then its (2, 2) entry must be one since C̃(ω)= B1(ω + α)

−1 A(ω)B1(ω) ∈ SL(2, R). Now
let

c =
∫
T

c̃(ω) dω

and define the matrix C as in (66).
We claim that we can find b : T→ R analytic (with analytic extension to a strip) such

that

b(ω + α)− b(ω)= c̃(ω)− c for every ω ∈ T. (69)

Indeed, expand both sides of the hypothetical identity (69) in Fourier series to give∑
k∈Z

bke2π i(ω+α)k
−

∑
k∈Z

bke2π iωk
=

∑
k∈Z

c̃ke2π iωk
− c.

Since we have c̃0 = c, the k = 0 terms disappear on both sides and hence all we require is

bk(e2π iαk
− 1)= c̃k for every k ∈ Z\{0}.

In other words, if we set b0 = 0 and

bk =
c̃k

e2π iαk − 1
for every k ∈ Z\{0},

then
b(ω)=

∑
k∈Z

bke2π iωk

satisfies (69). Since c̃(·) has an analytic extension to a strip, the coefficients c̃k decay
exponentially. On the other hand, the Diophantine condition which α satisfies ensures that
the coefficients bk decay exponentially as well, and hence b(·) is real-analytic with an
extension to the same open strip.

Setting

B2(ω)=

(
1 b(ω)
0 1

)
∈ SL(2, R),

https://doi.org/10.1017/etds.2015.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.120


1736 D. Damanik

and using (69), we find

B2(ω + α)
−1C̃(ω)B2(ω)=

(
1 c
0 1

)
= C

for every ω ∈ T. Thus, setting B(ω)= B1(ω)B2(ω), we obtain (67).
We can now prove Lemma 6.27. Consider an eigenvalue E of Hλ,α

0 and a corresponding
exponentially decaying eigenfunction. Then Lemma 6.29 yields the real-analytic function
û, which has an analytic extension to a strip, and a quasi-periodic solution of the dual
difference equation at the dual energy. Using this as input to Lemma 6.30, we then obtain
that

A(ω)=
(
λ−1 E − 2λ−1 cos(2πω) −1

1 0

)
may be analytically conjugated via B(·) to the constant

C =
(

1 c
0 1

)
.

Let us show that c 6= 0. Assume to the contrary that c = 0. Then A(ω)= B(ω + α)
B(ω)−1 for every ω ∈ T and therefore all solutions of (65) are analytically quasi-periodic!
Indeed, (

u(n)
u(n − 1)

)
= A(ω + (n − 1)α)

(
u(n − 1)
u(n − 2)

)
= · · ·

= A(ω + (n − 1)α)× · · · × A(ω)
(

u(0)
u(−1)

)
= B(ω + nα)B(ω)−1

(
u(0)

u(−1)

)
:

that is,

u(n)=
〈(

1
0

)
, B(ω + nα)B(ω)−1

(
u(0)

u(−1)

)〉
,

and hence u(n)= g(nα) with a real-analytic function g on T. Now consider two
linearly independent solutions of (65) and associate with them, via Lemma 6.29, the
corresponding exponentially decaying solutions of the dual equation (64). They must be
linearly independent too, which yields the desired contradiction since, by constancy of the
Wronskian, there cannot be two linearly independent exponentially decaying solutions.
This contradiction shows c 6= 0.

Let us now perturb the energy and consider

Ã(ω)=
(
(λ−1 E + λ−1δ)− 2λ−1 cos(2πω) −1

1 0

)
= A(ω)+

(
λ−1δ 0

0 0

)
.

One can show that there is δ0 > 0 such that

0< |δ|< δ0 and δc < 0 ⇒ λ−1 E + λ−1δ 6∈ σ(Hλ−1,α
0 ), (70)

and hence λ−1 E is a gap boundary, as claimed. Lemma 6.27, and hence Theorem 6.28,
now follow.
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By the nature of Puig’s approach leading to Theorem 6.28 via Lemma 6.27, the critical
coupling, λ= 1, has to be excluded. Note, however, that for critical coupling, the spectrum
has zero Lebesgue measure as discussed above, and this implies that it cannot contain any
intervals. Therefore, the zero-measure results of Last [161] and Avila and Krikorian [17]
described in the previous subsection imply a Cantor spectrum in this case.

THEOREM 6.31. Suppose α ∈ T is irrational. Then 61,α is a Cantor set.

This leaves non-critical couplings and frequencies that are neither Lioville nor
Diophantine. Avila and Jitomirskaya managed in [15] to close this gap by working from
both sides of the intermediate region and establish Theorem 6.3 in the form stated.

THEOREM 6.32. For every λ > 0 and every irrational α ∈ T, 6λ,α is a Cantor set.

7. The Fibonacci Hamiltonian
The Fibonacci Hamiltonian is the most extensively studied operator within the context
of Schrödinger operators with subshift potentials, which will be discussed in the next
section. As in the case of the almost Mathieu operator, we devote a separate section to the
Fibonacci Hamiltonian to acknowledge the multitude of additional results that are known
for it beyond the results that hold for the general class of models.

The Fibonacci Hamiltonian was proposed in the early 1980s by Kohmoto et al [150] and
Ostlund et al [180]. After the discovery of quasicrystals by Shechtman [190], it became the
central model for the study of electron transport in one-dimensional quasicrystals. Beyond
its relevance to physics, this operator is also fascinating from a purely mathematical
perspective.

The Fibonacci subshift can be generated in various equivalent ways. The two most
popular ones are by means of a coding of some irrational rotation of the circle and by the
fixed point of the Fibonacci substitution.

Throughout this section, let φ denote the golden ratio: that is,

φ =

√
5+ 1
2

. (71)

The inverse of the golden ratio is then given by 1/φ = φ − 1= (
√

5− 1)/2. Denote by
R1/φ the irrational rotation of the circle T= R/Z by 1/φ, R1/φ(x)= x + 1/φ mod 1.
A coding of the rotation R1/φ is obtained by sampling the iteration of this map with a
finitely-valued observable. The specific choice leading to the object of interest is obtained
by the partition T= [0, 1− 1/φ) t [1− 1/φ, 1), and mapping [0, 1− 1/φ) to zero and
[1− 1/φ, 1) to λ > 0. That is, for an initial point x ∈ T, consider the coding sequence

λχ[1−1/φ,1)(n/φ + x). (72)

This family (indexed by x ∈ T) is sometimes considered to be the family of Fibonacci
potentials. The parameter λ is naturally called the coupling constant, while x ∈ T is called
the phase. These potentials do have the general form studied in this paper, with the space
and transformation as specified above and Lebesgue measure on T as the unique invariant
probability measure.
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The description of the Fibonacci potentials via the Fibonacci substitution goes as
follows. Consider the alphabet A= {a, b}, and the map S :A→A∗ given by S(a)= ab,
S(b)= a. Here, A∗ denotes the set of finite words over A. One can extend S to A∗ and
also to AZ+ by concatenation. Note that the map S :AZ+→AZ+ has a unique fixed
point, namely, u = S(u)= abaababaabaab . . . . This sequence u is called the Fibonacci
(substitution) sequence. The Fibonacci subshift is then given by

�Fib = {ω ∈AZ
: every finite subword of ω occurs in u}.

It is easy to see that �Fib is indeed a subshift: that is, it is T -invariant and closed. It is also
not too difficult to see that �Fib is strictly ergodic. The sampling function that is usually
considered is the locally constant function

f (ω)=

{
λ if ω0 = a,

0 if ω0 = b.

The resulting potentials Vω(n)= f (T nω) are almost precisely those given in (72) (with λ
fixed and x running through T). More precisely, {Vω}ω∈�Fib consists of all the sequences
in (72) and an additional orbit, namely the T -orbit of the sequence λχ(1−1/φ,1](n/φ
mod 1). Moreover, Lebesgue measure on T pushes forward via x 7→ λχ[1−α,1)(nα + x
mod 1) to the unique T -invariant Borel probability measure on �Fib, and R1/φ and T are
(semi-)conjugate (the conjugacy holds on �Fib minus the exceptional orbit, but the
exclusion of this orbit is responsible for the different topologies—note that T is connected,
while �Fib is totally disconnected).

Thus the family of Fibonacci potentials can be described in two different ways, with
two different sets of choices for space, transformation, sampling function and invariant
measure. Each of the two descriptions has its advantages, and one usually works with the
more appropriate choice, depending on the context and the question being studied.

Since the subshift �Fib is minimal, Proposition 3.8 is applicable and shows that there
is a common spectrum, which will be denoted by 6λ. The density of states measure will
be denoted by νλ. By Theorems 3.17 and 8.1†, it is the equilibrium measure of the set 6λ.
We will also discuss the integrated density of states Nλ and the transport exponents α̃±u .
For all of these quantities, the behavior in the small and large coupling regimes have been
studied. In the following four subsections we describe the known results.

7.1. Spectrum and spectral measures. Sütő [203] showed the following general result
about the spectrum of the Fibonacci Hamiltonian.

THEOREM 7.1. For every λ > 0, the spectrum 6λ is a Cantor set of zero Lebesgue
measure.

The proof of this theorem was made possible by Theorem 3.26. Indeed, Sütő proved
his result shortly after [153] was released. Recall that, as a consequence of Theorem 3.26,
Leb(Z)= 0. Sütő then proceeded by proving that Z and the spectrum actually coincide for
every value of the coupling constant: that is, for every energy in the spectrum, the norm

† In the special case at hand, the absence of non-uniform hyperbolicity was first shown by Sütő in [203].
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of the transfer matrix grows subexponentially. (The converse holds in general: that is,
subexponential growth implies that the energy in question must belong to the spectrum
(see Theorem 3.12).) This result was later strengthened by Iochum and Testard, who
showed in [126] that for energies in the spectrum, the norm of the transfer matrix is
actually polynomially bounded. This strengthening turned out to be quite important as it
is essential for establishing continuity properties of spectral measures as well as estimates
for the transport exponents.

Naturally, once it is known that the spectrum has zero Lebesgue measure, one is
interested in its fractal dimension. The standard quantities of interest are the Hausdorff
dimension and the (upper and lower) box counting dimension of the set. The proof of the
zero-measure property of the spectrum given by Sütő, which relies on Kotani’s general
result [153], does not shed any light on these dimensions and does not allow one to obtain
quantitative estimates for them. Nevertheless, quantitative results have been obtained in
recent years. All of these results are proved through a study of the trace map, which
provides an alternative way of understanding the Cantor structure of the spectrum and does,
in fact, allow one to obtain quantitative statements. We will say more on this approach in
§7.6 below.

The first important result on the fractal dimension of the spectrum is the following.

THEOREM 7.2. For every λ > 0, the box counting dimension of 6λ exists and obeys
dimB 6λ = dimH 6λ.

This is useful as it is usually easier to estimate the Hausdorff dimension from above
and the box counting dimension from below. Knowing that they are equal allows one to
estimate their common value, henceforth denoted by dim6λ, conveniently from above as
well as from below.

Theorem 7.2 was shown for λ≥ 16 by Damanik et al in [65]. For λ > 0 sufficiently
small, it was shown by Damanik and Gorodetski in [71]. A proof that works for all λ > 0
was given by Damanik et al in [76].

For sufficiently large values of λ, upper and lower bounds for the dimension were
obtained in [65]. In particular, Damanik et al were able to prove the following theorem
which identifies the large coupling asymptotics of the dimension.

THEOREM 7.3.

lim
λ→∞

dim6λ · log λ= log(1+
√

2)≈ 1.83156 log φ.

The following result from [72] addresses the small coupling asymptotics of the
dimension of the spectrum.

THEOREM 7.4. There are constants c1, c2 > 0 such that, for λ > 0 sufficiently small,

1− c1λ≤ dim6λ ≤ 1− c2λ.

The spectral measures associated with the Fibonacci Hamiltonian are only partly
understood. On the one hand, the qualitative behavior is completely known.

THEOREM 7.5. For every λ > 0 and every ω ∈�Fib, all spectral measures are purely
singular continuous.
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The absence of eigenvalues was shown in this generality by Damanik and Lenz in [79]
with the help of the Gordon two-block criterion, Lemma 2.9. The required estimates
for transfer matrix traces may be established via a study of the trace map, and this was
accomplished by Sütő in [202]. Earlier partial results regarding the absence of eigenvalues
for the Fibonacci Hamiltonian can be found in [93, 124, 147, 202]. In addition, by
Theorem 7.1 the spectral measures are supported by a set of zero Lebesgue measure and
hence must be purely singular.

On the other hand, the quantitative behavior is not well understood. That is, we don’t
have a very good handle on the optimal α > 0 such that a given spectral measure is
α-continuous, or at least has a non-trivial α-continuous component. Recall, from §2.3,
that answers to these questions are desirable. Nevertheless, we do know that such α exist.

THEOREM 7.6. For every λ > 0, there is α > 0 such that for every ω ∈�Fib, all spectral
measures are α-continuous.

This was shown by Damanik et al in [78], again using Lemma 2.9. This time, the lemma
needs to be applied to a number of consecutive sites in order to reproduce multiples of local
`2 norms. This mass-reproduction technique was originally developed by Damanik [55] in
the case of zero phase (see also [137]). The main question concerns the optimization of
the value of α. The optimization of the α that results from current technology can be
found in [72], but it is quite clear that this result does not describe the optimal value. As a
consequence, the estimates that we can deduce from these spectral continuity results for the
transport exponents are likely to be far from optimal. Identifying the actual dimensionality
properties of spectral measures associated with the Fibonacci Hamiltonian remains an
important open problem.

7.2. The density of states measure. As pointed out above, the density of states measure
νλ is the equilibrium measure of the set 6λ. The following theorem summarizes some
properties of this measure, including its exact dimensionality and the large and small
coupling asymptotics of its dimension.

THEOREM 7.7. For every λ > 0, there is dλ ∈ (0, 1) so that the density of states measure
νλ is of exact dimension dλ: that is, for νλ-almost every E ∈ R,

lim
ε↓0

log νλ(E − ε, E + ε)
log ε

= dλ.

Moreover, dλ is an analytic function of λ, and

lim
λ→0

dλ = 1

and

lim
λ→∞

dλ · log λ=
5+
√

5
4

log φ ≈ 1.80902 log φ.

The exact dimensionality at small coupling and the small-coupling asymptotics were
shown by Damanik and Gorodetski in [73]. The extension of the exact-dimensionality
result to all couplings and the large coupling asymptotics are contained in the paper by
Damanik et al [76].
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7.3. The optimal Hölder exponent of the integrated density of states. The integrated
density of states of the Fibonacci Hamiltonian depends on the coupling constant λ and
will be denoted by Nλ in this subsection. This function is always Hölder continuous.

THEOREM 7.8. For every λ > 0, there are Cλ <∞ and γλ > 0 such that

|Nλ(E1)− Nλ(E2)| ≤ Cλ|E1 − E2|
γλ

for every E1, E2 with |E1 − E2| small enough.

This result was stated in [74]. It follows quickly, however, from the uniform Hölder
continuity of spectral measures, as established in [78].

The supremum of all possible exponents γλ in this statement may be called the optimal
Hölder exponent of Nλ. The asymptotic behavior of the optimal Hölder exponent in the
regimes of small and large coupling was studied in [74], where the following results were
obtained.

THEOREM 7.9. The optimal Hölder exponent of Nλ is asymptotically (3 log φ)/(2 log λ)
in the large coupling regime. This is now stated more precisely.
(a) Suppose λ > 4. Then for every

γ <
3 log(φ)

2 log(2λ+ 22)
,

there is some δ > 0 such that

|Nλ(E1)− Nλ(E2)| ≤ |E1 − E2|
γ

for every E1, E2 with |E1 − E2|< δ.
(b) Suppose λ≥ 8. Then for every

γ̃ >
3 log(φ)

2 log(1/2((λ− 4)+
√
(λ− 4)2 − 12))

and every 0< δ < 1, there are E1, E2 with 0< |E1 − E2|< δ such that

|Nλ(E1)− Nλ(E2)| ≥ |E1 − E2|
γ̃ .

THEOREM 7.10. The optimal Hölder exponent of Nλ converges to 1
2 as λ→ 0, and is

strictly less than 1
2 for small λ > 0. More precisely:

(a) for any γ ∈ (0, 1
2 ), there exists λ0 > 0 such that for any λ ∈ (0, λ0), there exists δ > 0

such that
|Nλ(E1)− Nλ(E2)| ≤ |E1 − E2|

γ

for every E1, E2 with |E1 − E2|< δ; and
(b) for any sufficiently small λ > 0, there exists γ̃ = γ̃ (λ) < 1

2 such that for every δ > 0,
there are E1, E2 with 0< |E1 − E2|< δ and

|Nλ(E1)− Nλ(E2)| ≥ |E1 − E2|
γ̃ .

https://doi.org/10.1017/etds.2015.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.120


1742 D. Damanik

7.4. Transport exponents. The transport exponents associated with the Fibonacci
Hamiltonian have been studied extensively (see [43, 55, 61, 75, 76, 78, 85–89, 137, 148]
for a partial list of papers containing results about them). For simplicity, let us focus in our
discussion here on the time-averaged upper and lower transport exponents associated with
the initial state ψ0 given by δ0, for which the results are easy to state. We refer the reader to
the original papers for the estimates that are known for β̃±(p). Most of the known results
concern the time-averaged exponents (see, however, [89]).

Notice that, contrary to the quantities considered in the previous subsections, the
transport exponents formally depend on ω ∈�Fib. However, the following result was
shown by Damanik et al in [76].

THEOREM 7.11. For every λ > 0, α̃+u and α̃−u are equal and independent of ω ∈ T.

Naturally, one is interested in upper and lower bounds for the transport exponents. Given
what we have already discussed, we can note that there is always some form of transport,
that is, for all parameter values, all transport exponents are positive.

THEOREM 7.12. For every λ > 0,
α̃±l > 0.

Indeed, this follows from the uniform lower bounds for the upper Hausdorff dimension
of spectral measures (see Theorem 7.6 and the Guarneri–Combes–Last estimate (8)).

The Fibonacci model had long been the primary candidate for a physically relevant
model that displays anomalous transport. This was finally rigorously established by
Damanik and Tcheremchantsev in [88] where it was shown that all transport exponents
are strictly less than one (and eventually also less than 1/2) for sufficiently large coupling.
In fact, the upper bound established in [88] turned out to be asymptotically sharp and the
method introduced there allowed the authors to prove a corresponding lower bound in a
similar way in [89]. Combining the two results, the large-coupling asymptotics of α̃±u could
be identified†.

THEOREM 7.13.
lim
λ→∞

α̃±u · log λ= 2 log φ.

The asymptotics in the small coupling regime were studied in [75], where the following
result was obtained.

THEOREM 7.14. There is a constant c > 0 such that, for λ > 0 sufficiently small,

1− cλ2
≤ α̃±u ≤ 1.

† To be precise, the paper [88] studies the case of a single ω ∈�Fib (the so-called zero-phase potential
λχ[1−1/φ,1)(n/φ mod 1)), while the paper [89] considers the case of general ω ∈�Fib. With the help of [61],
the analysis of [88] can be extended to general ω ∈�Fib. This idea is also behind the proof of Theorem 7.11,
which was obtained later, showing complete independence of ω.
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7.5. Strict inequalities. The discussion above shows that much of the recent work
on the Fibonacci Hamiltonian has focused on the following four quantities: the upper
transport exponents α̃±u (λ), the dimension of the spectrum dimH 6λ, the dimension of
the density of states measure dimH νλ and the optimal Hölder exponent γλ. By general
principles,

γλ ≤ dimH νλ ≤ dimH 6λ.

This is obvious since 6λ supports the measure νλ, and the almost everywhere scaling
exponent of νλ is at least as big as one that works at every point. On the other hand, there
is no inequality that relates α̃±u (λ) to one of the other three quantities, which holds for
general operators†.

The large or small coupling asymptotics for these four quantities (see Theorems 7.3
(respectively, Theorem 7.4), 7.7, 7.9, and 7.13), show that they, in fact, obey strict
inequalities for λ sufficiently large or sufficiently close to zero (the strict inequality
between dimH νλ and dimH 6λ for λ > 0 sufficiently small was shown in [73] as well). In
fact, Damanik et al showed in [76] that the strict inequalities hold for all λ > 0.

THEOREM 7.15. For every λ > 0,

γλ < dimH νλ < dimH 6λ < α̃
±
u (λ). (73)

This result is a consequence of the thermodynamic formalism and formulas, established
in [76], relating the four quantities to suitable dynamical quantities associated with the
trace map.

The particular inequality dimH νλ < dimH 6λ in (73) was conjectured by Simon, based
on an analogy with work of Makarov and Volberg [173, 174, 204] (see [73] for a more
detailed discussion)‡. This inequality was shown in [73] for λ > 0 sufficiently small, and
hence the conjecture had been partially established there. It was established for all values
of the coupling constant in [76].

The inequality

dimH 6λ < α̃
±
u (λ) (74)

in (73) is related to a question of Last. He asked in [162] whether, in general, dim+B 6λ
bounds α̃±u (λ) from above and conjectured that the answer is no. The inequality (74)
confirms this (recall from Theorem 7.2 that dim+B 6λ = dim−B 6λ = dimH 6λ).

7.6. Some comments on the proofs. It is an important fact that the restriction of the zero-
phase potential λχ[1−1/φ,1)(n/φ mod 1) to Z+ is precisely the (image under f of the)
Fibonacci sequence u. In particular, this restriction is S-invariant. This has the following
consequence. Denote the Fibonacci numbers by {Fk}: that is, F0 = F1 = 1 and Fk+1 =

Fk + Fk−1 for k ≥ 1. Then the fact that the restriction of the potential for zero phase to the
right half-line is invariant under the Fibonacci substitution implies that the matrices

M−1(E)=
(

1 −λ

0 1

)
, M0(E)=

(
E −1
1 0

)
† For example, for the Fibonacci Hamiltonian, α̃±u (λ) is strictly larger than the other three quantities, while for
random potentials, α̃±u (λ) is strictly smaller than each of them.
‡ The conjecture does not appear anywhere in print, but it was popularized by Barry Simon in many talks given
by him in the past four years.
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and
Mk(E)= Tλ,0(Fk, E)× · · · × Tλ,0(1, E) for k ≥ 1

obey the recursive relations

Mk+1(E)= Mk−1(E)Mk(E)

for k ≥ 0. Passing to the variables

xk(E)= 1
2 TrMk(E),

this in turn implies

xk+1(E)= 2xk(E)xk−1(E)− xk−2(E) (75)

for k ≥ 1, with x−1(E)= 1, x0(E)= E/2 and x1 = (E − λ)/2. The recursion relation (75)
exhibits a conserved quantity: namely,

xk+1(E)2 + xk(E)2 + xk−1(E)2 − 2xk+1(E)xk(E)xk−1(E)− 1=
λ2

4
(76)

for every k ≥ 0.
Given these observations, it is then convenient to introduce the trace map

T : R3
→ R3, T (x, y, E)= (2xy − z, x, y). (77)

The following function,

G(x, y, E)= x2
+ y2

+ z2
− 2xyz − 1,

is invariant under the action of T †, and hence T preserves the family of cubic surfaces‡

Sλ =
{
(x, y, E) ∈ R3

: x2
+ y2

+ z2
− 2xyz = 1+

λ2

4

}
. (78)

It is therefore natural to consider the restriction Tλ of the trace map T to the invariant
surface Sλ: that is, Tλ : Sλ→ Sλ, Tλ = T |Sλ . We denote by 3λ the set of points in Sλ
whose full orbits under Tλ are bounded (it is known that 3λ is equal to the non-wandering
set of Tλ).

Denote by `λ the line

`λ =

{(
E − λ

2
,

E
2
, 1
)
: E ∈ R

}
.

It is easy to check that `λ ⊂ Sλ.
Sütő proved the following central result in [202].

THEOREM 7.16. For every λ > 0, an energy E ∈ R belongs to the spectrum 6λ if and
only if the positive semiorbit of the point ((E − λ)/2, E/2, 1) under the iterates of the
trace map T is bounded.

This connection shows that spectral properties of the Fibonacci Hamiltonian can be
studied via an analysis of the dynamics of the trace map.

† The function G(x, y, E) is usually called the Fricke character or Fricke–Vogt invariant.
‡ The surface S0 is called the Cayley cubic.
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Another very important ingredient is the following. For every λ > 0, 3λ is a locally
maximal compact transitive hyperbolic set of Tλ : Sλ→ Sλ (see [45, 49, 71]). This fact
allows one to use powerful tools from hyperbolic dynamics in exploring the connection
between the operator and the trace map. To fully exploit this, one needs that the stable
manifolds of points in 3λ intersect the line of initial conditions, `λ transversally. This
crucial fact was shown for λ sufficiently large in [49], for λ sufficiently small in [71] and
in complete generality in [76].

THEOREM 7.17. For every λ > 0, `λ intersects W s(3λ) transversally.

Moreover, the measure of maximal entropy µλ for Tλ :3λ→3λ is related to the
density of states measures νλ: namely, [73, 75] provide the following theorem.

THEOREM 7.18. For every λ > 0, the following holds. Consider a normalized restriction
of the measure of maximal entropy for the trace map to an element of a Markov partition.
The projection of this measure to `λ along the stable manifolds of the hyperbolic set 3λ
is equal to the normalized restriction of the push-forward of the measure νλ under E 7→
((E − λ)/2, E/2, 1) to the image of the projection.

Equipped with these results, the spectral analysis of the Fibonacci Hamiltonian can be
completely reduced to a study of the dynamics of the Fibonacci trace map.

8. Subshifts over finite alphabets
In this section we discuss Schrödinger operators with dynamically defined potentials
taking a finite number of values. The central example is the Fibonacci Hamiltonian,
which was discussed in §7. Much of the recent advances in the study of the Fibonacci
Hamiltonian were made possible through the use of sophisticated tools and results from
partially hyperbolic dynamics, applied to the specific case of the trace map. Here, on the
other hand, we will describe those results that can be shown without resorting to the special
properties of the Fibonacci Hamiltonian. Primarily, we will discuss how one establishes
one of the key features of these models, zero-measure Cantor spectrum, through a proof of
the absence of non-uniform hyperbolicity for the associated Schrödinger cocycles. Then
we will discuss some specific classes of examples, each of which contains the Fibonacci
case, and each of which generalized one particular feature of the Fibonacci Hamiltonian,
namely, the self-similarity or the minimal combinatorial complexity. Thus, we will discuss
substitution potentials and Sturmian potentials.

For a more comprehensive survey of the spectral properties of operators associated with
subshifts over a finite alphabet, we refer the reader to [62]. We also want to mention the
survey [64], which is written from the perspective of quasicrystal models.

Let us present the models of interest in this section. Given some finite set A, called
the alphabet, and equipped with the discrete topology, consider the product space AZ,
equipped with the product topology. The shift transformation T :AZ

→AZ acts as
[Tω]n = ωn+1. Any T -invariant closed (and hence compact) set �⊆AZ is called a
subshift. A subshift � is called minimal if the topological dynamical system (�, T ) is
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minimal, that is, if every orbit O(ω)= {T nω : n ∈ Z} is dense in �. A subshift � is
called uniquely ergodic if there is a unique T -invariant Borel probability measure on �. A
subshift that is both minimal and uniquely ergodic is called strictly ergodic.

Given a subshift � and a continuous sampling function f :�→ R, we consider, as
usual, the potentials {Vω}ω∈� as defined in (29). There are certain sampling functions of
special interest. A function f :�→ R is called locally constant if it depends only on
a finite number of entries. More precisely, there is N ≥ 0 and a function g :A2N+1

→

R such that, for every ω ∈�, we have f (ω)= g(ω−N , . . . , ω0, . . . , ωN ). In fact, most
papers in the literature study the case of locally constant sampling functions with N = 0.
In other words, the alphabet consists of a finite number of real numbers, and the subshift
elements themselves serve as the potentials of the Schrödinger operators in question.

Note that, in the case of a locally constant sampling function, the potentials take on
only a finite number of values. In particular, Kotani’s theorem becomes relevant, so that we
know from the outset that the Lyapunov exponent is almost everywhere positive, provided
the potentials are aperiodic. In particular, all spectral measures are purely singular.

If the subshift is strictly ergodic, one usually wants to go beyond this initial observation
and prove at least the following two statements: the spectrum coincides with the set Z and
hence has zero Lebesgue measure, and the operators Hω have no eigenvalues so that the
spectral measures are in fact purely singular continuous.

Let us stress that not a single counterexample is known; that is, within the context of
strictly ergodic subshifts with locally constant sampling functions, no example is known
where we do not have a zero-measure Cantor spectrum and purely singular continuous
spectral measures. However, the paper [14] constructs minimal subshifts and locally
constant sampling functions so that the spectrum has positive Lebesgue measure.

8.1. Absence of non-uniform hyperbolicity. The absence of non-uniform hyperbolicity
holds in great generality. That is, for a large class of strictly ergodic subshifts and all
locally constant sampling functions, the set NUH defined in (34) is empty. This has the
immediate consequence that 6 = Z , and hence, in the aperiodic case, Kotani’s theorem
implies a zero-measure Cantor spectrum. A sufficient condition for NUH= ∅ to hold is
the so-called Boshernitzan condition. It holds for large classes of strictly ergodic subshifts.
Let us recall the definition and some of the subshifts that may be treated in this way.

Let � be a strictly ergodic subshift with unique T -invariant measure µ. It satisfies the
Boshernitzan condition (B) if

lim sup
n→∞

(
min

w∈W�(n)
n · µ([w])

)
> 0. (79)

Here, W�(n) denotes the set of words of length n that occur in elements of �, and [w]
denotes the cylinder set associated with a finite word w: that is,

[w] = {ω ∈� : ω1 . . . ω|w| = w}.

The following result was shown in [81] (see [165] for an important precursor).

THEOREM 8.1. If the subshift � is strictly ergodic and satisfies (B), and the sampling
function f :�→ R is locally constant, then NUH= ∅.
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The idea of the proof is the following. When studying convergence of (1/n) log
‖An

E (ω)‖, unique ergodicity allows one to bound the quantities uniformly from above:
that is, the lim sup, equal to the Lyapunov exponent, is uniform in general, and hence the
only way that uniformity can fail is that the lim inf is not uniform. In this situation, one has
a subsequence of words of increasing length for which the associated quantity is bounded
away from the uniform lim sup. But if (B) holds, these outliers occur very often and this
in turn implies that the average (given by the Lyapunov exponent) must be strictly smaller
than the uniform lim sup, which is a contradiction.

Combining Theorem 8.1 with Theorems 3.12 and 3.17, we obtain the following
statement.

COROLLARY 8.2. If the subshift � is strictly ergodic and satisfies (B) and the sampling
function f :�→ R is locally constant, then 6 = Z and the density of states measure is
the equilibrium measure of the spectrum.

Combining this in turn with Theorem 3.26, we obtain the following corollary.

COROLLARY 8.3. Suppose the subshift� is strictly ergodic and satisfies (B), the sampling
function f :�→ R is locally constant and the resulting potentials Vω are aperiodic. Then
6 is a Cantor set of zero Lebesgue measure.

This shows that the property of having zero-measure spectrum, first established in the
Fibonacci case, actually holds for a large class of subshifts. Many concrete examples are
described in [82]. Indeed, at the time [81, 82] were written, all known subshift models
with zero-measure spectrum did obey condition (B), and hence Corollary 8.3 served as a
unifying result that also provided many new examples. More recently, however, Liu and Qu
have found subshift models, generated by Toeplitz sequences, with zero-measure spectrum
for which (B) fails [168, 169].

8.2. Substitution subshifts. Recall that the Fibonacci model may be generated by the
substitution S(a)= ab, S(b)= a. Replacing this particular substitution by a more general
one, and pursuing the same construction, one can generate general substitution subshifts
and associated Schrödinger operators: that is, fix some alphabet A= {a, b}, and consider
a map S :A→A∗. One can again extend S to A∗ and also to AZ+ by concatenation.
Assume that the map S :AZ+→AZ+ has a fixed point, u = S(u). This sequence u is
called a substitution sequence associated with S. The subshift generated by u is then
given by

�u = {ω ∈AZ
: every finite subword of ω occurs in u}.

Now one can define Schrödinger operators in the usual way, namely, by considering the
shift transformation T :�u→�u and by choosing a sampling function f :�u→ R. The
sampling function should be at least continuous, but is usually assumed to be locally
constant. In fact, the most common choice is that, where f depends only on ω0, one
replaces symbols from A by real numbers. Let us call such sampling functions letter-to-
letter.
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The substitution S is called primitive if there is k ∈ Z+ such that for every a ∈A, Sk(a)
contains all symbols from A. For example, for the Fibonacci substitution, we can choose
k = 2 since a 7→ ab 7→ aba and b 7→ a 7→ ab. Primitivity of the substitution S has many
nice consequences and much of the literature on Schrödinger operators with substitution
potentials focuses on this special case (see, however, [166, 179] for some exceptions to
this rule). One such consequence is that, for a primitive substitution S, the associated
subshift does not depend on the choice of the fixed point, and may therefore be denoted
by �S . For example, the Thue–Morse substitution S(a)= ab, S(b)= ba has two fixed
points, one obtained by iterating S on a, and the other by iterating S on b. Another general
consequence of primitivity of S is that (�S, T ) is strictly ergodic and satisfies (B).

Recall that one very useful way of studying the Fibonacci Hamiltonian proceeds via the
trace map. The existence of the trace map is a direct consequence of the self-similarity of
the underlying substitution sequence with respect to the substitution rule. Thus, for any
family of Schrödinger operators generated by a substitution as described above, we have
an associated trace map. This makes it, in principle, possible to relate spectral properties
of these operators to dynamical properties of these maps. Trace maps will always be
polynomial maps of some Rd , but the size of d and the degree of the polynomials may
be arbitrarily large. They depend on the size of the alphabet and the complexity of the
words {S(a) : a ∈A}. Thus it may be difficult to actually implement this strategy.

Nevertheless, one can show the following in full generality via the trace map approach.

THEOREM 8.4. Suppose that S is primitive, f is letter-to-letter and the resulting potentials
Vω are aperiodic. Then 6 has zero Lebesgue measure.

Under additional assumptions on S, this result was shown by Bovier and Ghez in [42].
Their paper was a generalization of earlier work on the Fibonacci case [203], the
invertible/Sturmian case [26], the Thue–Morse case [23] and the period doubling case [25].
The result, as stated, is due to Liu et al [171].

Whenever Theorem 8.4 applies, it follows that all spectral measures are purely singular.
It is not clear whether the absence of pure point components follows in the same generality.
There are, however, many results that exclude point spectra for Schrödinger operators
generated by primitive substitutions (see [56–58, 60, 70, 78–80, 93, 94, 124, 202] for a
partial list). It is an interesting open question as to whether purely singular continuous
spectra hold throughout the class of primitive substitution Hamiltonians or whether there
is a counterexample.

Going beyond these qualitative results in the Fibonacci case required a deeper analysis
of the trace map dynamics, in particular, using tools from hyperbolic dynamics. Extending
this to a more general class of substitution models is quite challenging, but this has been
successfully implemented for invertible primitive substitutions over a two-letter alphabet
by Girand [112] and Mei [176].

8.3. Sturmian subshifts. Recall that the other way of generating the Fibonacci model
relies on the coding of a circle rotation (see (72)). This suggests a natural generalization:
namely, replace the inverse of the golden ratio by a general irrational number α ∈ T
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and consider

λχ[1−α,1)(nα + x) (80)

for x ∈ T. As in the Fibonacci case, one can now either consider the family of potentials
indexed by x ∈ T or generate a subshift �α ⊂ {0, λ}Z by taking the orbit closure of
the sequence (80) (which is independent of x). In either case, one obtains a family of
Schrödinger operators that depends on the coupling constant λ > 0 and the frequency
α ∈ (0, 1)\Q. The (x/ω-independent) spectrum will be denoted by 6λ,α , and the density
of states measure and the integrated density of states will be denoted by νλ,α and Nλ,α ,
respectively.

Naturally, many results will depend on the continued fraction of α,

α =
1

a1 +
1

a2 +
1

a3 + · · ·

, (81)

with uniquely determined ak ∈ Z+. The associated rational approximants pk/qk are
defined by

p0 = 0, p1 = 1, pk+1 = ak+1 pk + pk−1,

q0 = 1, q1 = a1, qk+1 = ak+1qk + qk−1.

8.3.1. Spectrum and spectral measures. First, we have the following generalization of
Theorem 7.1, as shown by Bellissard et al [26].

THEOREM 8.5. For every λ > 0 and every α ∈ (0, 1)\Q, the spectrum 6λ,α is a Cantor
set of zero Lebesgue measure.

As in the Fibonacci case, this result was made possible by Kotani’s short paper [153],
and [26] was indeed completed shortly after [153] had been released. The proof of
Theorem 8.5 follows the same strategy as that of Theorem 7.1. Namely, a trace map
analysis shows that the transfer matrices have subexponentially growing norms for
energies in the spectrum and then the result follows from Theorem 3.26. More precisely,
there is not a single trace map in this case, but rather a sequence of maps, which is
determined by the sequence of partial quotients {ak}k∈Z+ in (81). The implementation
of this strategy is more difficult in this general case. Nevertheless, the authors of [26]
succeeded in complete generality. Moreover, the improved power-law estimate on transfer
matrix norms for energies in the spectrum obtained by Iochum and Testard in the Fibonacci
case [126] was generalized to the Sturmian case by Iochum et al in [125] who showed that
for frequencies with bounded density, that is, those for which the (upper) density

d∗(α) := lim sup
K→∞

1
K

K∑
k=1

ak (82)

is finite, one again has a power-law estimate on transfer matrix norms for energies in the
spectrum.
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The other result that extends in full generality from the Fibonacci case to the Sturmian
case is the following theorem.

THEOREM 8.6. For every λ > 0, every α ∈ (0, 1)\Q and every ω ∈�α , all spectral
measures are purely singular continuous.

In this form the result was shown by Damanik et al in [78]; earlier partial results can
be found, for example, in [26, 79, 93, 124, 147]. Again, the central tool is the Gordon
two-block criterion, Lemma 2.9, along with the trace estimates established in [26].

Given that the Lebesgue measure of the spectrum is zero, it is again natural to study the
fractal dimension of the spectrum. In general, the Hausdorff dimension of 6λ,α will not
coincide with its box counting dimension. An in-depth study of these fractal dimensions
of the spectrum at large coupling has been carried out by Liu, Peyrière, Qu and Wen (in
various combinations of co-authorship) in [100, 167, 170, 172]. This study has culminated
in the following result.

THEOREM 8.7. Let α ∈ (0, 1)\Q be given. Then, for every λ > 24,

dimH 6λ,α = s∗(λ) and dim+B 6λ,α = s∗(λ),

where s∗(λ) and s∗(λ) are the lower and upper pre-dimensions, respectively. In addition,
s∗(λ), s∗(λ) > 0, as well as

s∗(λ) < 1 ⇔ K∗(α) := lim inf
k→∞

(a1 · · · ak)
1/k <∞

and
s∗(λ) < 1 ⇔ K ∗(α) := lim sup

k→∞
(a1 · · · ak)

1/k <∞.

Moreover, if K∗(α) <∞ (respectively, K ∗(α) <∞), then

L∗(α) := lim
λ→∞

dimH 6λ,α · log λ
(
respectively, L∗(α) := lim

λ→∞
dim+B 6λ,α · log λ

)
exists.

The lower and upper pre-dimensions s∗(λ) and s∗(λ) are defined via the band structure
of the canonical periodic approximants. This approach was pioneered by Raymond
in [184], and his work is the basis for the papers [100, 167, 170, 172] mentioned above.

The quantities L∗(α), L∗(α) can be described rather explicitly, and one recovers, in
particular, the value log(1+

√
2) in the Fibonacci case.

Theorem 8.7 shows that dimH 6λ,α and dim+B 6λ,α need not coincide; simply choose
an α with lim infk→∞(a1 · · · ak)

1/k <∞ and lim supk→∞(a1 · · · ak)
1/k
=∞.

At small coupling, the Fibonacci result has been extended to a much smaller set of
frequencies: namely, Mei [176] showed the following theorem.

THEOREM 8.8. Suppose the continued fraction expansion of α is eventually periodic:
that is, there are k0, p ∈ Z+ such that ak+p = ak for every k ≥ k0. Then the box
counting dimension of 6λ,α exists and obeys dimB 6λ,α = dimH 6λ,α . Moreover, there
are constants c1, c2 > 0 such that, for λ > 0 sufficiently small,

1− c1λ≤ dim6λ,α ≤ 1− c2λ.
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The statement about dimB 6λ,α = dimH 6λ,α is a corollary of Cantat’s work [45],
while the proof of the small coupling asymptotics extends the proof given in the Fibonacci
case by Damanik and Gorodetski [72].

Recall that for Sturmian models, the appropriate trace map point of view is given by
a sequence of maps that corresponds to the sequence of continued fraction coefficients.
Thus, if the continued fraction expansion of α is eventually periodic, one can combine the
maps over one period, and then the dynamics of this particular map governs the evolution
of the traces. Suppose one can show that this map is hyperbolic (on its non-wandering set).
Then the methods and results from hyperbolic dynamics apply, as they did in the Fibonacci
case. This is the reason why those results whose proofs rely on the hyperbolic theory in a
crucial way may be extended to frequencies α with eventually periodic continued fraction
expansion.

8.3.2. The density of states measure. The results for the density of states measure in
the Fibonacci (cf. Theorem 7.7) case were extended by Mei [176] in the weak coupling
regime:

THEOREM 8.9. Suppose the continued fraction expansion of α is eventually periodic. Then
there exists λ0 ∈ (0,∞] such that, for every λ ∈ (0, λ0), there is dλ,α ∈ (0, 1) so that the
density of states measure νλ,α is of exact dimension dλ,α: that is, for νλ,α-almost every
E ∈ R,

lim
ε↓0

log νλ,α(E − ε, E + ε)
log ε

= dλ,α.

Moreover, dλ,α is an analytic function of λ, and dλ < dim6λ,α for λ > 0 sufficiently small.
Also

lim
λ→0

dλ = 1.

This is the extension of the main result obtained by Damanik and Gorodetski in [73] for
the Fibonacci case. The additional results from [76] that are stated in Theorem 7.7 should
extend to α with eventually periodic continued fraction expansion in a similar way. For
a partial result in this direction, the large coupling asymptotics of the dimension of the
density of states measure was identified for frequencies of constant type by Qu in [183].

8.3.3. The optimal Hölder exponent of the integrated density of states. Theorem 7.9
establishes results about the optimal Hölder exponent of the integrated density of states in
the Fibonacci case. This result was extended by Munger in [178] to some Sturmian models.

THEOREM 8.10. Suppose that λ > 24 and the continued fraction expansion of α is
constant: that is, ak = a for every k ∈ Z+. Then for every

γ <



2 log α
−a log(λ+ 5)− 3 log(a + 2)

if a > 3,

log α
− log(λ+ 5)− 3 log(a + 2)

if a = 2, 3,

3 log α
−2 log(27(λ+ 5))

if a = 1,
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there is a δ > 0 such that the density of states measure Nλ,α obeys

|Nλ,α(x)− Nλ,α(y)| ≤ |x − y|γ

for all x, y with |x − y|< δ.

THEOREM 8.11. Suppose that λ > 24 and the continued fraction expansion of α is
constant: that is, ak = a for every k ∈ Z+. Then for every

γ̃ >



2 log α
−a log(λ− 8)− log(a)+ a log 3

if a > 2,

log α
− log(λ− 8)+ log(a)− log 3

if a = 2,

3 log α
−2 log(λ− 8)− 2 log 3

if a = 1,

and any 0< δ < 1, there are x and y with 0< |x − y|< δ such that |Nλ,α(x)−
Nλ,α(y)| ≥ |x − y|γ̃ .

For constant continued fraction coefficients, this identifies the asymptotic behavior of
optimal Hölder exponent as λ→∞ (cf. [183]). More generally, the qualitative behavior is
determined by the upper density (82) and the lower density

d∗(α) := lim inf
K→∞

1
K

K∑
k=1

ak <∞

of α. Still assuming λ > 24, Munger [178] has also shown that Nλ,α is Hölder continuous
if d∗(α) is finite, and it is not Hölder continuous if d∗(α) is infinite.

8.3.4. Transport exponents. Damanik and Tcheremchantsev [87] established the
following lower bounds for the transport exponents in the Sturmian case.

THEOREM 8.12. Suppose λ > 0, α ∈ (0, 1)\Q with maxk ak ≤ C, the phase is zero, and
the initial state is δ0. If

ζ = cd∗(α) log(2+
√

8+ λ2)

(c is some universal constant) and

κ =
log(
√

17/4)
(C + 1)5

,

then

β̃−(p)≥


p + 2κ

(p + 1)(ζ + κ + 1/2)
if p ≤ 2ζ + 1,

1
ζ + 1

if p > 2ζ + 1.

In particular,

α̃−l ≥
2κ

ζ + κ + 1/2
.
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Generalizing the work [88] of Damanik and Tcheremchantsev in the Fibonacci case,
Marin [175] showed the following upper bound in the Sturmian case.

THEOREM 8.13. Assume that λ > 20, α ∈ (0, 1)\Q is such that

D := lim sup
k→∞

log qk

k

is finite, the phase is zero and the initial state is δ0. Then,

α̃+u ≤
2D

log ((λ− 8)/3)
.

Moreover, if ak ≥ 2 for every k ∈ Z+, then

α̃+u ≤
D

log ((λ− 8)/3)
.

The analog of the lower bounds in the Fibonacci case from [89], which turned out to be
asymptotically optimal in the large coupling regime, has not yet been worked out.

9. Miscellanea
9.1. Potentials generated by the skew-shift. Schrödinger operators with potentials
generated by the skew-shift are perhaps the most challenging among the ones discussed
in this survey. They are the least ‘random’ among those models for which ‘random
phenomena’ are expected to occur. More precisely, the potentials in question are quite
close to one-frequency quasi-periodic potentials, and this is in fact reflected on a technical
level in several ways. On the other hand, they are expected to display the full range of
phenomena known to occur for random potentials, that is, positive Lyapunov exponents
and spectral and dynamical localization without any largeness assumptions. In particular,
if one introduces a coupling constant λ, then all these statements will hold for all λ > 0
(and they are of course most surprising for small λ, where these statements do not hold for
one-frequency quasi-periodic potentials).

Let us begin with some remarks. First of all, for these statements to even be potentially
true, the sampling function f : T2

→ R will have to depend on the second coordinate.
Clearly, any sampling function that only depends on the first coordinate gives rise to a
one-frequency quasi-periodic potential and hence the expected statements are known to
be false. For this reason, some authors isolate the case in which f only depends on the
second component as the special case of primary interest. Concretely, this means that
one studies sampling functions of the form f (ω1, ω2)= g(ω2) with some h : T→ R, and
hence potentials which take, for n ≥ 0, the form

V(ω1,ω2)(n)= h
(
ω2 + nω1 +

n(n − 1)
2

α

)
.

Notice that if we replace α by 2α and then consider (ω1, ω2)= (α, 0), this potential takes
the form

V (n)= h(n2α), n ≥ 0. (83)
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In this form, the potential strongly resembles a one-frequency potential (the argument nα
has been replaced by n2α), and this suggests, moreover, that we consider the one-parameter
family of potentials

V (n)= h(nγ α), n ≥ 0, (84)

in which the cases γ = 1 and γ = 2 correspond to the quasi-periodic case and the skew-
shift case, respectively. Note that, since we had to impose the restriction n ≥ 0 above, it is
natural to consider half-line operators when studying potentials given by (84).

The second remark concerns the regularity of the sampling function. Recall from
Theorem 3.13 that, for generic f ∈ C(T2, R), the spectrum of the skew-shift Schrödinger
operator is a Cantor set. This is a marked non-random-type statement, as random models
can never have Cantor spectrum (see Theorem 4.1). Moreover, the generic spectral type
also differs from what is expected for sufficiently nice sampling functions. Indeed, as
pointed out earlier, the method developed by Boshernitzan and Damanik in [32] may
be applied to the skew-shift. They showed the following result for the skew-shift model
in [32].

THEOREM 9.1. Suppose α ∈ T is irrational with unbounded partial quotients. Then there
is a residual set Fc ⊆ C(T2, R) such that, for every f ∈ Fc and Lebesgue almost every
ω ∈ T2, the skew-shift Schrödinger operator has purely continuous spectrum.

Recall once again that Lebesgue almost all α ∈ T satisfy the assumption of this theorem.
Combining Theorem 9.1 with the general Theorem 3.28, we see that, in the conclusion, we
may actually claim a purely singular continuous spectrum. Thus, again the generic spectral
type is singular continuous.

Nevertheless, the conjectures for sufficiently regular sampling functions are intriguing.
For definiteness, let us state the following expected result for a specific potential of
the form (83), which is currently believed to be extremely difficult to prove (cf., for
example, [36, Ch. 15].

SKEW-SHIFT PROBLEM. Consider the skew-shift Schrödinger operator with the sampling
function f (ω1, ω2)= g(ω2)= 2λ cos(2πω2). Show the following statements for every
λ > 0.
• The spectrum is an interval.
• The Lyapunov exponent is positive at all energies.
• The operator is spectrally and dynamically localized.

More generally, it is expected that these properties continue to hold if 2λ cos(2πω2) is
replaced by a sufficiently nice (trigonometric polynomial? real-analytic?) non-constant
function. Given that the problem above is essentially wide open for 2λ cos(2πω2), it is
perhaps too soon to speculate about threshold regularity questions.

Against this backdrop, let us now turn to the known results that are relevant in this
context. The first positive result, relative to the conjectures described above, was obtained
by Bourgain et al in [38]. This paper was a follow-up to work by these authors in the
quasi-periodic setting [37, 113] and extended their approach to localization to the skew-
shift case.
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THEOREM 9.2. Fix a non-constant real-analytic function g on T2 and ε > 0. Then there
exist Aε ⊂ T, whose complement has measure less than ε, and λ0 = λ0(ε, g) > 0 so that
for every α ∈ Aε and every λ≥ λ0, the skew-shift model with sampling function f = λg
and base rotation by α has the following properties.
• The Lyapunov exponent is positive at all energies.
• The integrated density of states is continuous with modulus of continuity

m(t)= exp(−c| log t |1/24−).

• The operators {Hω} are spectrally localized.

This result proves several of the expected properties. Unfortunately, it does not establish
the absence of gaps in the spectrum and it does not say anything about the weak-coupling
behavior, where the skew-shift model is expected to behave differently from quasi-periodic
ones and where the conjectures are especially interesting. The latter point is not surprising
as the method of proving Theorem 9.2 is an adaptation of the proof developed in the quasi-
periodic setting, and hence it cannot be expected to prove more than what is known (and
true) in that context.

In other words, in order to establish the two properties that are expected for the skew-
shift model, but are known to fail for one-frequency quasi-periodic models, namely,
absence of gaps in the spectrum and weak-coupling localization, one will need new ideas.
At present, establishing the conjectures in full generality appears to be completely out of
reach, and the skew-shift problem stated above is likely to be very hard.

Nevertheless, quite significant partial progress has been made by Bourgain [33] and
Krüger [155–158]. Some results establish partial statements for the skew-shift model,
while others establish full statements for models that are close to (but different from) the
skew-shift model.

Bourgain has shown the following result of the first kind [33].

THEOREM 9.3. Consider the skew-shift Schrödinger operator with the sampling function
f (ω1, ω2)= g(ω2)= 2λ cos(2πω2). Then there exists an explicit ω ∈ T2 such that, for
every λ > 0, there is a positive measure set of α for which the operator has some point
spectrum of positive Lebesgue measure.

Note here that the point spectrum is the closure of the set of eigenvalues. It is claimed
that this closure has positive Lebesgue measure for ω and α suitably chosen.

The next result, obtained by Krüger in [155], is of the second kind.

THEOREM 9.4. If h ∈ C(T, R), α ∈ T\{0} and γ ∈ (0,∞)\Z+, then the Schrödinger
operator in `2(Z+) with potential (84) has spectrum given by the interval [min f − 2,
max f + 2].

Note that, in analogy to the random case, the spectrum is given by the sum of the
spectra of the Laplacian and the potential (cf. Theorem 4.1). That is, the shape of the
spectrum is truly pseudorandom in this case. Unfortunately, Theorem 9.4 excludes integer
γ and the proof, in fact, does not and will not cover those γ . In any event, Theorem 9.4
is interesting given its generality and its relatively simple proof (relying on a not quite as
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simple work of Boshernitzan [31]). It does show that the expected result for the shape of
the spectrum of the skew-shift model holds ‘nearby’ after an arbitrarily small perturbation
of γ †.

For the genuine skew-shift model, Krüger has shown a weaker result, which is still
very interesting in that it shows behavior different from the quasi-periodic case: namely,
in [157] he established the presence of intervals in the spectrum for sufficiently large
coupling. The formulation of the result becomes nicer if one moves the coupling constant
over to the Laplacian: that is, one simply multiplies the operator1+ λV by λ−1, and thus
considers λ−11+ V . This merely scales the spectrum but leaves all other characteristics
unchanged.

THEOREM 9.5. Suppose α ∈ T is Diophantine, h : T→ R is real-analytic and δ > 0. Then
there exists λ0 > 0 such that, for every λ > λ0, the spectrum of the skew-shift operator with
base frequency α and sampling function f (ω1, ω2)= λh(ω2), times λ−1, contains the set

Eh,δ = {E ∈ R : ∃ω ∈ T such that h(ω)= E and |h′(ω)| ≥ δ}.

In other words, the spectrum of λ−11+ V contains large intervals for λ sufficiently
large and it approximates the range of h as λ is sent to infinity.

Finally, there is also a partial result on the positivity of the Lyapunov exponent at small
coupling. Krüger shows the following in [156].

THEOREM 9.6. Suppose α ∈ T is Diophantine in the sense that κ = infq∈Z+ q2
‖qα‖> 0,

and the sampling function is given by f = λg with λ > 0 and g(ω1, ω2)= cos(2πω2)−

cos(2π(ω1 + ω2)). Then there exists ε = ε(κ, λ) > 0 such that the Lyapunov exponent
satisfies L(E)≥ 1

4 log(1+ λ2) for |E | ≤ ε. Moreover, 6 ∩ [−ε, ε] 6= ∅.

The result in [156] actually holds for more general skew-shift transformation. Taken
together, Theorems 9.3, 9.5 and 9.6 demonstrate that in all three respects (namely, positive
Lyapunov exponents, existence of eigenvalues and existence of intervals in the spectrum),
the skew-shift model does behave differently from one-frequency quasi-periodic operators.
All three properties have been partially established, but proving them in full generality
will require new ideas. Let us also mention Krüger’s work on the eigenvalue spacings of
the finite-volume restrictions of skew-shift operators [158], which shows that, from this
perspective as well, it behaves more like a random model than a quasi-periodic model.

9.2. Avila’s disproof of the Schrödinger and Kotani–Last conjectures. Avila obtained
the following result in [8].

THEOREM 9.7. There exist a uniquely ergodic map T :�→�, a sampling function
f :�→ R and a set S ⊂ R of positive Lebesgue measure such that, for µ-almost every
ω, S is contained in the essential support of the absolutely continuous spectrum of Hω
and, for every E ∈ S and µ-almost every ω ∈�, any non-trivial eigenfunction of (13) is
unbounded.

† If the reader is concerned about us passing to half-line operators here, this is not a real issue. The skew-shift
model, which is a whole-line operator, may be restricted to any half-line, and the spectrum of the whole-line
model will coincide with the essential spectrum of the half-line model. Since the spectrum is purely essential in
the context of Theorem 9.4, the two spectra will in fact coincide.
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This provides a counterexample to the so-called Schrödinger conjecture, which had
asked whether, for Lebesgue almost all energies in the essential support of the absolutely
continuous part of a Schrödinger operator, all solutions of the generalized eigenvalue
equation are bounded (cf. the discussion following Corollary 2.14).

In the same paper, [8], Avila also proved the following result.

THEOREM 9.8. There exist a weakly mixing uniquely ergodic map T :�→� and a non-
constant sampling function f :�→ R such that Hω has non-empty absolutely continuous
spectrum for every ω ∈�.

Recall from our discussion in §3.4 that the Kotani–Last conjecture asked whether
6ac 6= ∅ implies the almost periodicity of the potentials. Theorem 9.8 provides a
counterexample to this conjecture. Note that the proof does not yield a purely absolutely
continuous spectrum (whereas Avila does obtain, this stronger statement in the continuum
setting), so that, at this point it is not clear whether the implication ‘purely a.c. spectrum⇒
almost periodicity of the potentials’ also fails in the discrete case. However, the existence
of the counterexample in the continuum case (as shown in [8, 91, 208]) sheds a lot of doubt
on this conjectural implication.
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[28] S. de Bièvre and F. Germinet. Dynamical localization for the random dimer Schrödinger operator. J. Stat.

Phys. 98 (2000), 1135–1148.
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[74] D. Damanik and A. Gorodetski. Hölder continuity of the integrated density of states for the Fibonacci
Hamiltonian. Comm. Math. Phys. 323 (2013), 497–515.

[75] D. Damanik and A. Gorodetski. Almost ballistic transport for the weakly coupled Fibonacci Hamiltonian.
Israel J. Math. 206 (2015), 109–126.

[76] D. Damanik, A. Gorodetski and W. Yessen. The Fibonacci Hamiltonian. Preprint, 2014,
arXiv:1403.7823.

[77] D. Damanik and R. Killip. Ergodic potentials with a discontinuous sampling function are
non-deterministic. Math. Res. Lett. 12 (2005), 187–192.

[78] D. Damanik, R. Killip and D. Lenz. Uniform spectral properties of one-dimensional quasicrystals.
III. α-continuity. Comm. Math. Phys. 212 (2000), 191–204.

[79] D. Damanik and D. Lenz. Uniform spectral properties of one-dimensional quasicrystals, I. Absence of
eigenvalues. Comm. Math. Phys. 207 (1999), 687–696.

[80] D. Damanik and D. Lenz. Uniform spectral properties of one-dimensional quasicrystals,
IV. Quasi-Sturmian potentials. J. Anal. Math. 90 (2003), 115–139.

[81] D. Damanik and D. Lenz. A condition of Boshernitzan and uniform convergence in the multiplicative
ergodic theorem. Duke Math. J. 133 (2006), 95–123.

[82] D. Damanik and D. Lenz. Zero-measure Cantor spectrum for Schrödinger operators with low-complexity
potentials. J. Math. Pures Appl. 85 (2006), 671–686.

[83] D. Damanik, M. Lukic and W. Yessen. Quantum dynamics of periodic and limit-periodic Jacobi and block
Jacobi matrices with applications to some quantum many body problems. Comm. Math. Phys. 337 (2015),
1535–1561.

[84] D. Damanik and P. Stollmann. Multi-scale analysis implies strong dynamical localization. Geom. Funct.
Anal. 11 (2001), 11–29.
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Kronecker flows. Comm. Pure Appl. Anal. 10 (2011), 873–884.

[147] M. Kaminaga. Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic
potential. Forum Math. 8 (1996), 63–69.

[148] R. Killip, A. Kiselev and Y. Last. Dynamical upper bounds on wavepacket spreading. Amer. J. Math. 125
(2003), 1165–1198.

[149] S. Klein. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with
potential defined by a Gevrey-class function. J. Funct. Anal. 218 (2005), 255–292.

[150] M. Kohmoto, L. Kadanoff and C. Tang. Localization problem in one dimension: Mapping and escape.
Phys. Rev. Lett. 50 (1983), 1870–1872.

[151] S. Kotani. Ljapunov indices determine absolutely continuous spectra of stationary random
one-dimensional Schrödinger operators. Stochastic Analysis (Katata/Kyoto, 1982). North Holland,
Amsterdam, 1984, pp. 225–247.

[152] S. Kotani. Support theorems for random Schrödinger operators. Comm. Math. Phys. 97 (1985), 443–452.
[153] S. Kotani. Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1 (1989),

129–133.
[154] S. Kotani. Generalized Floquet theory for stationary Schrödinger operators in one dimension. Chaos

Solitons Fractals 8 (1997), 1817–1854.
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