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Approximating Flats by Periodic Flats in
CAT(0) Square Complexes

Daniel T. Wise

Abstract. We investigate the problem of whether every immersed flat plane in a nonpositively curved

square complex is the limit of periodic flat planes. Using a branched cover, we reduce the problem to

the case of VH-complexes. We solve the problem for malnormal and cyclonormal VH-complexes.

We also solve the problem for complete square complexes using a different approach. We give an

application towards deciding whether the elements of fundamental groups of the spaces we study have

commuting powers. We note a connection between the flat approximation problem and subgroup

separability.

1 Introduction

A word-hyperbolic group cannot contain “poisonous” subgroups of the form 〈a, b |
ab = ban〉 for n 6= 0, and in particular cannot contain a Z

2 subgroup. There do exist
groups without poisonous subgroups which are not word-hyperbolic because they
fail to satisfy finiteness conditions; indeed, an infinitely generated free group is such

an example, and higher dimensional failures were exhibited in [16, 3]. Neverthe-
less, it is surprisingly still unknown whether a group with a finite Eilenberg-MacLane
space and no poisonous subgroups is word-hyperbolic.

While it is widely believed that there are counterexamples in general, there are

classes of groups for which a dichotomy between word-hyperbolicity and a Z
2 sub-

group is strongly suspected. For instance, the weak hyperbolization conjecture which is
a coarse version of Thurston’s geometrization conjecture, proposes that every finitely

generated 3-manifold group is either word-hyperbolic or contains a Z
2 subgroup.

For a compact nonpositively curved manifold M, a result of Eberlein shows that
π1M is word-hyperbolic unless M̃ contains an isometrically embedded Euclidean
plane [7]. Moreover the results of [8, 14] show that any Z

n subgroup of π1M acts

freely and cocompactly on an isometrically embedded copy of E
n in M̃. Furthermore,

both these statements have direct generalizations to compact metric spaces with non-
positive curvature [4]. Thus the possible dichotomy between word-hyperbolicity and
Z

2 subgroups is very suggestive.

Current research has focused on the possibility that a flat plane in M̃ implies that
Z

2 ⊂ π1M, and there have been various positive results. For instance, if M̃ contains a
flat plane then Z

2 ⊂ π1M when M is a closed 3-manifold with nonpositive sectional
curvature [6, 17], when M is a nonpositively curved cubulated 3-manifold [15] or

even when the 3-manifold M merely has a Riemannian metric such that M̃ contains
a flat plane [13].
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While several results have been obtained in the manifold case, much less is known
for nonpositively curved metric spaces that are not manifolds. As observed by Gro-

mov in [9], the existence of finite sets of tiles which can only tile the plane aperiodi-
cally, casts substantial doubt on the possibility that this dichotomy holds in general.
The first such aperiodic sets were square tiles with matching conditions constructed
by Burger [1], and the study of various finite sets of such tiles eventually culminated

in Penrose’s kite and dart example. We refer the reader to [11] for an account of the
extensive results about aperiodic tilings.

A square complex X is a 2-complex formed by attaching squares to a graph by
identifying their sides with edges in the graph. The square complex X is nonpositively

curved if the link of each 0-cell has no cycles of length < 4. The universal cover of a

nonpositively curved square complex X can be metrized so that each edge is isometric
to a unit interval and each square is isometric to a square, and moreover, the metric
satisfies the CAT(0) condition [4]. Thus the combinatorial link condition implies
that X is itself locally CAT(0) or “nonpositively curved”.

We have focused on the class of nonpositively curved square complexes because

they are the simplest examples for which the flat/Z
2 problem is intractable, and thus

afford a good test case for the general situation. Moreover, as mentioned above, with-
out the nonpositive curvature assumption, a set of squares can already lead to aperi-
odic tilings of the plane. On the other hand, there are numerous natural examples of

nonpositively curved square complexes.

In [10], Gromov raised the question of which semihyperbolic spaces have the
property that their flats are limits of periodic flats. A flat in X̃ is periodic if it is
stabilized by some Z

2 subgroup of π1X. And a flat E →֒ X̃ is the limit of periodic flats

if there is a sequence Ei →֒ X̃ of periodic flats which converge pointwise to X.

Our results, which are most of part I of [24], provide conditions on a compact

nonpositively curved square complex X which guarantee that π1X contains a Z
2 sub-

group if and only if X̃ contains an isometrically embedded flat plane. Our hypotheses
are admittedly restrictive, yet for square complexes satisfying our hypotheses we are
able to reach the significantly stronger conclusion that every flat plane is the limit

of periodic flat planes. The possible range of positive results is limited by the exis-
tence of an example of a compact nonpositively curved square complex X such that
X̃ contains a flat plane which is not the limit of periodic flats [27]. It has thus become
an intriguing problem to find the appropriate hypotheses guaranteeing that flats are

limits of periodic flats.

The principal objects of our study are VH-complexes which are introduced in Sec-
tion 2.1. A VH-complex is a square complex whose 1-cells are partitioned into verti-

cal and horizontal classes so that each square 2-cell is attached along two vertical and
two horizontal 1-cells in a manner respecting the partition. Nonpositively curved

VH-complexes arise quite naturally. For instance, following an idea of Weinbaum’s
[20], we observed in [23] that the Dehn complex of any prime alternating link is a
nonpositively curved VH-complex.

In Section 3 we show that every nonpositively curved square complex X has a
branched double cover X̂ which is a VH-complex, and moreover every flat in X is the

limit of periodic flats if and only if every flat in X̃ is the limit of periodic flats. We thus
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reduce the problem to the study of compact nonpositively curved VH-complexes.
The vertical-horizontal geometry of a VH-complex X yields a decomposition of

X as a graph of spaces which is described in Definition 2.14 and Construction 2.15.
This enables us easily to describe examples in a manner analogous to the description
of a group as a graph of groups. In fact, Theorem 2.16 asserts that the fundamental
group of a nonpositively curved VH-complex splits as a graph of free groups with

free edge groups. By placing various hypotheses on the attaching maps of the edge
spaces of the graph of spaces, we obtain various classes of tractable VH-complexes.
For instance, the motivating cases are clean VH-complexes where all the attaching
maps are embeddings.

Section 4 contains the main technical conditions which are used to prove that ev-
ery immersed flat plane is the limit of immersed periodic flat planes. Section 4.1
defines when an immersed flat plane is the limit of immersed tori which is equivalent
to the lifted flat in the universal cover being the limit of periodic flats. In addition,

we define the strong limit of cylinders which is similar but stronger, and which arises
more naturally in this work. Section 4.2 presents some of the key terminology and
lemmas involving trajectories that will be used later on. Roughly speaking, the tra-

jectory of an immersed flat plane is a partial description of the way in which the

flat plane travels through the complex. Section 4.3 presents some lemmas centered
around Lemma 4.15 which states that an immersed line in a finite graph is the limit
of immersed periodic lines. This is a 1-dimensional analogue of our problem which
is easy to prove. Our criterion for showing that flats are strong limits of cylinders

is Lemma 4.16 which uses trajectories to provide a bridge from our 2-dimensional
problem to the easier 1-dimensional analogue.

Section 5 presents a sequence of conditions on the attaching maps of the decom-
position of X which imply that the criterion of Lemma 4.16 is met. Section 5.1

presents the fiber product Υ1 ⊗ Υ2 of maps of graphs which is useful for present-
ing the proofs of Section 5.3. Section 5.2 introduces malnormal VH-complexes. The
main theorem of 5.2 is Theorem 5.12, which states that a malnormal VH-complex
has the property that every immersed flat plane is the strong limit of immersed cylin-

ders. Section 5.2 should be thought of as a warm up for Section 5.3, which contains
the strongest results of Section 5. Cyclonormal VH-complexes are a generalization of
Malnormal VH-complexes. Theorem 5.17 states that every immersed flat plane in
a nonpositively curved cyclonormal complex is the strong limit of immersed cylin-

ders. Section 5.4 contains a conjectured generalization of the theorems of Section 5.3,
which will hopefully bring the techniques used here to bear on certain graphs of
word-hyperbolic groups and thus augment the combination theorem of Bestvina and
Feighn [2].

Section 6 presents a surprising connection between the geometric property of ap-
proximable flats in X and the algebraic property of separability with respect to certain
subgroups of π1X. An immersion of a nonapproximable plane in X is an obstruction
to the separability of edge groups of π1X. This idea was exploited in [24] to con-

struct compact nonpositively curved square complexes X such that π1X is not resid-
ually finite, which resolved a longstanding open problem about C(4)-T(4) small-
cancellation groups. We raise the question of whether conditions involving flats are
the only obstructions to virtual cleanliness, and we describe some progress we have
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made on this problem.

A Complete Square Complex, or CSC, is a square complex X such that Link(x) is a
complete bipartite graph for each x ∈ X0. In Section 7 we prove that a compact CSC
has the property that every immersed flat plane is the limit of periodic flats. This

result is of a different nature from the results of Section 5, because the method of
Section 4, enables us to show that flat planes are strong limits of cylinders, whereas it
seems unlikely that such a strong result holds for compact CSC. While the results of
Section 4 and 5 stem largely from the scarcity of flats with a given trajectory, the CSC

result derives from a density of flats.

Elements g and h of a group G nearly commute if gnhn = hngn for some
n ≥ 1. In Section 8 we describe an algorithm to decide if elements nearly commute
for fundamental groups of complexes satisfying the conditions of Sections 4 and 5.
We ask whether such an algorithm exists for the fundamental group of a CSC.

2 VH-complexes

2.1 VH Definitions

Notation 2.1 Throughout this paper, we let R = (−∞,∞) and R
+ = [0,∞) with

the usual structures as graphs, with 0-cells at each n ∈ Z and open 1-cells at each

(n, n + 1). We let In ⊂ R denote the subgraph [0, n], and we let I = I1 = [0, 1].

Definition 2.2 (Square Complex VH-Complex) A square complex X is a combina-
torial 2-complex whose 2-cells are attached by combinatorial paths of length 4. Thus,
we think of each 2-cell as a square attached to X1.

A square complex X is a VH-complex if the 1-cells of X are partitioned into two
classes V and H, called vertical and horizontal edges respectively, and as in square (i)

of Figure 2, the attaching map of each 2-cell of X alternates between edges in V and H.

We let VX = V ∪ X0 denote the vertical 1-skeleton and HX = H ∪ X0 denote the
horizontal 1-skeleton. For a 0-cell x ∈ X0, we let Vx denote the component of VX

containing x. We define Hx similarly.

Remark 2.3 (Bipartite Links) Let x ∈ X0 where X is a 2-complex. We let Link(x)
denote the link of x in X which is a graph whose vertices and edges correspond to the

ends of 1-cells and corners of 2-cells incident with x. Note that Link(x) is topologized
so that it looks like the ǫ-sphere about x in X.

Recall that a graph Γ is bipartite if Γ0 is partitioned into two disjoint classes such
that each edge of Γ connects vertices from distinct classes.

Let X be a VH-complex and let x ∈ X0. The partition of the 1-cells of X into two
classes V and H, induces a partition of the vertices of Link(x). Furthermore, since
attaching maps of the squares of X alternate between 1-cells in V and 1-cells in H, we

see that the edges of Link(x) connect vertices from different classes. Therefore, the
VH-structure on X induces a bipartite structure on Link(x) for each x ∈ X0.

This motivates the following definition:
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Figure 1: Local but not global: The complex obtained by identifying two sides of a square as

indicated above has a local VH-structure but no global VH-structure.

Definition 2.4 (Locally VH) The square complex X is locally VH if for each x ∈
X0 there is a chosen bipartite structure on the graph Link(x). As in Remark 2.3, a
VH-complex has an induced local VH-structure.

Note that X may admit several VH-structures because a graph admiting a bipar-
tite structure actually admits 2c such structures, where c is the number of connected
components of the graph.

Example 2.5 (Not Global VH) The simplest example of a square complex with a
local VH-structure which is not consistent with any (global) VH-structure is a loop
with one 0-cell and one 1-cell, where the bipartite structure on the link of the 0-cell

has one vertex in each class. While the underlying complex in this example does have
two VH-structures, both are inconsistent with the local VH-structure that we chose.

A square complex which has a local VH-structure but no (global) VH-structure,
is obtained from a square by identifying two of its sides as in Figure 1.

While Example 2.5 shows that there are many examples of local VH-complexes
with no consistent (global) VH-structure, we do have the following theorem which

is analogous to the existence of orientable double covers of manifolds.

Theorem 2.6 (VH Double Cover) Let X be a square complex which is locally VH,

then there is a double cover X̂ → X such that the induced local VH-structure on X̂ is

consistent with a global VH-structure.

Proof In this proof, we use the words 0-cell and 1-cell when referring to 0-cells and

1-cells of X, while reserving the words vertices and edges for the vertices and edges in
the links of 0-cells of X.

For each 0-cell y ∈ X0, let By denote the pair of classes of vertices comprising the
bipartite structure of Link(y). So By is a two-element set, and each of its elements is

a (possibly empty) class of vertices of Link(y).
Let x ∈ X0 be the basepoint of X, we will form a homomorphism

φ : π1(X, x)→ Aut(Bx).

We will show that the covering space X̂ of X corresponding to φ has a VH-structure.
More precisely, it has an induced local VH-structure which is consistent with a global

VH-structure.
A 1-cell e with initial vertex y and terminal vertex z induces a one-to-one corre-

spondence φe : By → Bz. This is done in the obvious way: the end of e at y corre-
sponds to a vertex in Link(y), and the end of e at z corresponds to a vertex in Link(z).
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We just choose φe : By → Bz to be the correspondence which associates the classes
corresponding to the the ends of e.

Similarly, a combinatorial path σ → X1 which begins at x0 and ends at xn induces
a bijection φσ : Bx0

→ Bxn
. This is defined by breaking σ up into the concatenation

of edges, σ = e1 · e2 · · · en, and letting Bx0
→ Bxn

be the corresponding composition:
φen
◦ · · · ◦φe2

◦φe1
, or in other words, the obvious map Bx0

→ Bx1
→ Bx2

· · ·Bxn−1
→

Bxn
. In particular, if σ is a closed path based at y, then it induces an automorphism

of By .
Now observe that if σ is a (closed) path of length 4 starting at y which travels

around the boundary of some square of X, then φσ induces the identity map on By .

From this it is easy to conclude that if two paths σ1 and σ2 with the same endpoints
y and z are homotopic, then φσ1

= φσ2
. It follows that there is a homomorphism

ψ : π1(X, x)→ Aut(Bx).
Let X̂ denote the covering space of X corresponding to the kernel of ψ. We claim

that the local VH-structure on X̂ induced by the covering map is consistent with a
global VH-structure. To form this global VH-structure, we choose a basepoint x̂ of
X̂ which is a preimage of x. Then we declare the pair of classes in Bx̂ of vertices of
Link(x̂), to be Vertical and Horizontal (choose either way). Now for each ŷ ∈ X̂0, a

path in X̂1 from x̂ to ŷ determines a one-to-one correspondence Bx̂
∼= B ŷ , and thus

determines a vertical and horizontal name for each class of B ŷ . Since π1X̂ is the kernel
of ψ, the one-to-one correspondence does not depend on the path, and so this way

of labeling the classes of B ŷ for each ŷ is well defined.

Now each 1-cell of X̂ can be declared either horizontal or vertical according to the
vertices that its ends correspond to in the links of the 0-cells that the 1-cell is attached

to. The bipartite structure of each link implies that the condition on the attaching
maps of squares of X̂ is satisfied. Thus X̂ has a global VH-structure consistent with
the local VH-structure induced from X.

A similar argument works for higher dimensional versions of the class of VH-com-
plexes, but the corresponding homomorphism is to Sn and so may require a larger
degree cover.

Definition 2.7 (Nonpositive Curvature) A square complex X is nonpositively curved

if all immersed cycles in the link of each 0-cell of X have length at least 4. A square
complex satisfying this combinatorial link condition admits a locally CAT(0) metric
(see [9] or [4]).

Remark 2.8 (Locally-VH and Curvature) If X is a locally-VH square complex,
then X satisfies the combinatorial nonpositive curvature condition if and only if there
are no cycles of length 2 in the links of 0-cells of X. This is because all the cycles in
a bipartite graph have even length, and so we may rule out the short cycles of length

1 or 3.

Definition 2.9 (Directed VH-Complex) We view the attaching map of each square
of a square complex X, as a map from the boundary of the unit square I× I to X1. We
orient both horizontal edges of the unit square from left to right as illustrated in the
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Figure 2: Squares: The squares in the figure above are meant to suggest (from left to right)

a VH-square, a horizontally directed VH-square, a subdivided VH-square (to obtain two

horizontally directed subsquares), and the first barycentric subdivision of a VH-square.

second square of Figure 2. Let X be a VH-complex and suppose that HX is a directed
graph. The VH-structure on X is horizontally directed if the attaching map of each

square of X is orientation preserving on its horizontal edges. We define vertically

directed similarly. We shall use the term directed to mean horizontally directed.

Remark 2.10 (Subdividing) There is little loss of generality in considering only di-
rected VH-complexes. This is because, given a VH-complex, we may subdivide HX

and subdivide each square of X by adding a vertical edge connecting the centers of

its horizontal edges. If we orient all horizontal edges towards the new 0-cells then we
obtain a directed VH-complex. See the third square of Figure 2. Similarly, we can
subdivide each square both vertically and horizontally so that X is both vertically and
horizontally oriented. See the fourth square of Figure 2.

2.2 Decomposition Theorem

Definition 2.11 (Vertical Foliation and Vx) We now define a “singular vertical fo-

liation” on the VH-complex X. The unit square I × I is foliated by vertical line
segments. Similarly, the image of a square in X is foliated by vertical segments parallel
to the pair of vertical edges on its boundary. For an arbitrary point x ∈ X we define

the leaf Vx to be the smallest subset of X having the property that x ∈ Vx and that Vx

contains any vertical segment which intersects it. This definition of Vx is consistent
with the definition given earlier for x ∈ X0.

Thinking of X as being foliated by these vertical subspaces, it is natural to take

the quotient of X in which each leaf is identified to a point. This quotient is a graph
denoted by ΓX which we shall discuss in Definition 2.14.

Remark 2.12 (Singular Leaves and Directed VH) When x is a point in the interior
but not in the center of a horizontal edge, then for y very close to x, the leaf Vx

is isomorphic to the leaf V y , by an isomorphism induced by sliding it along in X.
However, when x is the center of a horizontal edge, the leaf Vx may be different from

the surrounding leaves, in which case they correspond to double covers of it. This
situation can occur only if X is not directed. It is convenient to add all such singular
leaves Vx to the vertical 1-skeleton of X. This corresponds to subdividing certain
squares of X. The resulting complex has a directed VH-structure. Note that if HX can
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be oriented so that VX is directed, then for any points x and y in the same horizontal
edge, the leaves Vx and V y are isomorphic by a translation isomorphism.

Example 2.13 (Möbius Strip) A Möbius strip obtained by identifying the top and
bottom horizontal edge of a square with a twisted identification map, has an obvious

VH-structure. The circle at the center of the Möbius Strip is singular.

Definition 2.14 (The Decomposition Graph X → ΓX) Given a directed VH-com-

plex X, we define a graph ΓX and a map ̺ : X → ΓX . The vertices of ΓX correspond
to the connected components of VX , which are called vertex spaces. Note that each
vertex space arises as Vx for some 0-cell x ∈ X0. The edges of ΓX correspond to the
connected components of X −VX , which are called edge spaces.

If x and y are in the same edge space, then Vx and V y are isomorphic graphs and

there is a natural isomorphism between them. Indeed, if x is a point in some edge
space C , then C ∼= Vx × (0, 1). It is natural to think of C as a subspace of Vx × [0, 1]
which is a square complex that we denote by C̄ . We will also refer to C̄ as an edge
space.

For each edge space C , the inclusion C →֒ X uniquely extends to a combinatorial

map C̄ → X. Since C̄ ∼= Vx × I, we obtain induced maps Vx × {0} → VX and
Vx×{1} → VX , which we call the attaching maps of the edge space C . Note that these
are combinatorial maps, and if X is nonpositively curved then they are immersions,
i.e., local injections, and are therefore π1-injective [19]. The components of VX to

which the ends of C̄ are mapped correspond to the vertices of ΓX to which the edge
of ΓX corresponding to C is attached.

Finally, the map X → ΓX is the quotient map induced by identifying each vertical
leaf of Definition 2.11 to a point.

Construction 2.15 (Constructing X from Data) In order to further understand the
map ̺ : X → ΓX we show how X can be built up from the information encoded in ΓX

and the associated data. This is a special case of the notion of a graph of spaces [18].

Consider a graph ΓX , and suppose that for each vertex v ∈ Γ0
X we have an asso-

ciated vertex space Xv which is a graph, and for each edge e ∈ Edges(ΓX) we have an
associated edge space Xe× I where Xe is a graph. Suppose that for each edge e which is
attached to the vertices e0 and e1, there are corresponding maps φe0 : Xe×{0} → Xe0

and φe1 : Xe × {1} → Xe1
.

Using this data we may construct a VH-complex X as follows: Let VX be the dis-

joint union of the set of vertex spaces, that is

VX =

{ ⋃

v∈Γ0

X

Xv

}
.

We form X by attaching Xe × I along its ends to VX for each edge e of ΓX , so that

X =

{
VX

⋃

e∈Edges(ΓX )

Xe × I
}
.
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Theorem 2.16 (Graph of Free Groups) Suppose that X is a nonpositively curved

VH-complex. Then the map ̺ : X → ΓX determines a splitting of π1X as a graph

of free groups. Specifically, for each vertex v ∈ ΓX , π1v = π1Xv and for each edge e

of ΓX , π1e = π1Xe. For each edge e attached to the vertices e0 and e1, the inclusion

π1Xe → π1Xei
is induced by the maps φei described above.

Proof The nonpositive curvature hypothesis implies that the attaching maps φei are

immersions. They therefore induce π1-injections [19].

We close this section with the following:

Definition 2.17 (Map of VH-Complexes) Let X and Y be VH-complexes, and let
φ : X → Y be a cellular map. Then φ is a VH-map provided that φ(VX) ⊂ VY and
φ(HX) ⊂ HY . We will be dealing with combinatorial maps, and so φ is a VH-map

provided it maps vertical edges to vertical edges and horizontal edges to horizontal
edges. Note that for a VH-map φ, there is an induced map φ⋆ : ΓX → ΓY .

3 VH Branched Cover of Square Complex

In this section we show how to use a branched covering space in order to restrict our
analysis of flat planes in square complexes to VH-complexes.

A flat VH-complex, is a VH-complex that is locally Euclidean in the sense that
the link of each 0-cell is either a cycle of length 4 or isomorphic to I2.

Note that since we are working in the combinatorial category, a map is an immer-

sion if and only if the induced maps on the links of 0-cells are injective.

The following is the main result of this section. Its proof is deferred until after
Lemma 3.4.

Theorem 3.1 (VH-Branched Covering) Let X be a square complex. Then there exists

a 1 or 2 fold branched cover ρ : X → X such that:

(1) X is a VH-complex.

(2) Every immersion φ : F → X from a flat VH-complex F to X lifts to X.

(3) If X is nonpositively curved, then every immersion φ : F → X of a flat VH-complex

F projects to an immersion in X.

(4) If X is nonpositively curved, then up to covering space transformations there is a

one-to-one correspondence between immersed flat VH-complexes in X and im-

mersed flat VH-complexes in X.

Remark 3.2 The one-to-one correspondence of Theorem 3.1 enables us to restrict
our study of immersed flat planes in nonpositively curved square complexes to the

immersions in nonpositively curved VH-complexes. The main benefit is that non-
positively curved VH-complexes can be easily described in terms of their decompo-
sitions (see Definition 2.14). In particular, we can describe classes of nonpositively
curved VH-complexes in terms of properties of their decompositions.

https://doi.org/10.4153/CJM-2005-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-018-x


Approximating Flats by Periodic Flats 425

We apologize to the reader for invoking Definitions 4.2 and 4.4 at this point. The-
orem 3.1 shows that if X has any of the following properties, then so does X.

(1) If there is an immersed flat plane then there is an immersed flat torus.

(2) Every immersed flat plane is the limit of immersed tori.
(3) Every immersed flat plane is the strong limit of immersed cylinders.

For instance, if X has property (1), then we can conclude that X has property (1)
as well. Indeed, by Theorem 3.1.2, any immersed flat plane in X lifts to an immersion
in X, but since X̂ has property (1), there is an immersed flat torus φ : T → X. Finally,

by Theorem 3.1.3, the composition T
φ
−→ X

ρ
−→ X is an immersion of T to X.

Likewise, if X̂ has the property that every immersed flat plane E is the limit of a
sequence {Tn} of immersed tori, then φ(E) is the limit of the sequence {φ(Tn)}, and

so X has this property as well. One argues similarly for the strong limit of cylinders.

Construction 3.3 (Branched Coverings) Given a combinatorial 2-complex X, we
form the branched covering spaces of X where the branching takes place over the
0-cells of X by considering genuine covering spaces of X − X0 and then extending

these covering spaces to branched covering spaces of X by adding copies of the re-
moved 0-cells.

X − X0 deformation retracts onto the subspace X⋆ defined as follows: first, it

is convenient to regard the 2-cells of X as unit, regular, Euclidean polygons. (One
similarly handles a 2-cell which is a 1-gon or 2-gon.) Given such a 2-cell c, we let c ′

denote the convex closure of the centers of the edges of c.
We will also denote by c ′ the image of c ′ → c → X. Thus, if c1 and c2 denote

2-cells with a common 1-cell e on their boundaries, then c ′1 and c ′2 have a common
0-cell at their intersection with e. For each 1-cell e of X, let e ′ denote its center. We
now obtain a subspace X⋆ ⊂ X which is defined to be:

X⋆ =

{ ⋃

e∈ 1-cells(X)

e ′
}
∪

{ ⋃

c∈ 2-cells(X)

c ′
}
.

While X⋆ is not a subcomplex of X, it is a subcomplex of an obvious subdivision of
X. Finally, observe that π1(X⋆) is free.

Lemma 3.4 X − X0 deformation retracts onto X⋆.

Proof This is easy to see by first subdividing X so that X⋆ is a subcomplex. We first
subdivide each 1-cell e, by adding the 0-cell e ′ at its barycenter. We then subdivide
each 2-cell c in the same way as the Euclidean polygon c is subdivided by the inclusion

c ′ ⊂ c. Having done this, it is easy to see that

X⋆ = X −
⋃

v∈X0

Star(v).

Finally, Closure(Star(v))− v deformation retracts onto Link(v) for each v ∈ X0.
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Figure 3: The figure on the left is a square complex X formed by gluing three squares together.

The figure in the center is a subdivided copy of X, containing X⋆ as a subspace. The figure on

the right depicts the branched cover X of X. Note that it contains a double cover of X⋆, and

that the coloring of the vertices of X⋆ induces a VH-structure on X

Proof of Theorem 3.1 (1) We now use the subspace X⋆ ⊂ X defined above, to
choose the desired branched cover. In the following argument we will assume that

X⋆ is connected. The case where X⋆ is not connected may be handled by choosing
covering spaces as below for each component of X⋆ and proceeding analogously. No-
tice that the number of different VH-structures for the space X obtained below is 2c

where c is the number of connected components in X⋆.

The homomorphism π1(X1
⋆) → Z2 induced by amalgamating the vertices and

then sending all edges to generators of Z2, extends to a homomorphism of π1(X⋆)
because all the 2-cells of X⋆ have an even number of sides (they are all squares). This
homomorphism corresponds to a (possibly trivial) covering space X̂⋆ → X⋆ and

therefore a branched covering space X → X. This covering space has the property
that all cycles in X̂⋆

1 have even length. (It is characterized by being the smallest such
covering.) It follows that choosing one vertex to be black in each component of X̂⋆,
the homomorphism induces a coloring of the vertices of X̂⋆ as alternatingly black

and white. The 1-cells of X inherit this coloring, and furthermore the edges of each
square 2-cell of X are colored alternatingly black and white. This corresponds to the
square polygon inside each 2-cell of X whose vertices are colored alternatingly. Thus

we have obtained a VH-structure on the branched cover X of X.

(2) Consider an immersed flat plane φ : E → X. There is an induced map
φ⋆ : E⋆ → X⋆. All closed loops in E⋆ have even length. It follows that E⋆ lifts to
X̂⋆ and therefore E lifts to X.

(3) Consider an immersed flat torus in X. The simple cycles in the links of its

vertices all have length 4. Now, for any v ∈ X, the induced map Link(v)→ Link(ρ(v))
is a covering map. Consequently, an immersed cycle in Link(v) is sent to an immersed
cycle in Link(ρ(v)). It follows that the projection of the torus is an immersion, since
there are no cycles of length< 4 in Link(ρ(v)).

Remark 3.5 (Atoroidal Branched Covers) It is tempting to try and form a compact
nonpositively curved complex with an immersed flat plane but no immersed torus
in the following manner: we begin with a complex X which admits immersed tori.
Then we form a branched covering space such that some of the flat planes of this
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complex lift, but none of the periodic flat planes lift. This difficulty arises because
the short cycles which we hope will not lift, are generally in the normal closure of the

set of cycles that have length 2π which must be lifted to the branched cover in order
that the flat plane lifts. In any case, the branched cover would have to correspond to
a non-normal finite index subgroup.

4 Approximating by Tori

4.1 Limits

We preface this section with the following observation which justifies our interest in
immersed flats in X rather than embedded flats in X̃.

Lemma 4.1 Let F be a flat VH-complex and X be a nonpositively curved square com-

plex. Let φ : F → X be a map and let φ̃ : F̃ → X̃ be a lift of this map to the universal

covers. Then φ is an immersion if and only if φ̃ is an embedding.

Proof If φ̃ is an embedding then φ is obviously an immersion, so we shall concen-
trate on the converse. An immersion φ : Y → X of nonpositively curved complexes
is a local-isometry if for each y ∈ Y 0 the induced map φ : Link(y) → Link(φ(y))

preserves adjacency, where two vertices are adjacent if they are joined by an edge. It
follows easily from the definitions that if Y is a flat VH-complex then any immersion
Y → X is a local-isometry. A map which is a local-isometry in this combinato-
rial sense is actually a local-isometry in the usual metric sense if we give Y and X

the metrics of nonpositive curvature consistent with the Euclidean squares. A local
isometry between nonpositively curved metric spaces lifts to an isometric embedding
of their universal covers (see for instance, [4]).

Definition 4.2 (Limit of Tori) Let X be a nonpositively curved space. Letφ : E→ X

be a local isometry of a flat plane to X. We say that φ : E → X is the limit of periodic

flats or the limit of tori if there is a sequence φn : E→ X of local isometries of periodic
planes such that limn→∞ φn = φ, in the sense that limn→∞ φn(x) = φ(x) for each

x ∈ E. Note that E→ X is a periodic flat if it factors through a covering map of an
immersed torus E→ T → X.

Remark 4.3 When X is a 2-dimensional nonpositively curved complex, then an im-
mersed flat plane E→ X is the limit of tori if and only if for every compact set B ⊂ E,

the restriction φ : B → X extends to a local-isometry T → X from a flat torus to X.
In particular, if X is a nonpositively curved square complex then φ : E → X is the
limit of periodic flats if and only if for each n the restriction of φ to [−n, n]× [n, n]
extends to a local isometry from a flat torus to X.

Definition 4.4 (Strong limit of cylinders) Let X be a nonpositively curved 2-com-

plex. A local isometry φ : E → X from a flat plane to X is the strong limit of cylinders

if E is the increasing union of flat strips, e.g., {[−n, n] × R}, each of which can be
extended to an immersion of a cylinder S1 × R → X.
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Remark 4.5 As we shall see in Lemma 4.16, if X is compact, a plane which is the
strong limit of cylinders is also the limit of tori. I believe that the strong limit of

cylinders is actually a stronger property. For instance, as proven in Theorem 7.8,
every immersed flat plane in a compact CSC is the limit of tori. However, it appears
likely that there is an anti-torus in a CSC as in Example 7.3 which is not the strong
limit of cylinders.

To put some of the results that will be obtained in the remainder of Section 4

into perspective, we first give a simple but very strict condition on a space which
guarantees that all flats are periodic.

Proposition 4.6 (Isolated⇒ Periodic) Suppose that the group G acts cocompactly

and properly discontinuously on the CAT(0) space X̃. Suppose that for a fixed constant

K, finitely many flat planes pass through any ball of radius K in X̃. Then every flat in X̃

is periodic.

Sketch of Proof It is easy to deduce from the hypothesis that for each R, there are

finitely many flats passing through any ball of radius R, and that the number of such
flats depends only on R. Now, let E ⊂ X̃ be a flat. Choose a point x ∈ E, and consider
the orbit of x in X̃. For some R, every point of E is within R of some translate of x.
Now the pigeon hole principle shows that E is periodic.

The condition of Proposition 4.6 arises quite naturally. For example, it is satisfied
by any compact nonpositively curved 2-complex whose 2-cells are regular Euclidean

hexagons. Indeed, any plane is determined uniquely by a pair of hexagons meeting
along an edge. We refer to [22] for a generalization of this.

While Proposition 4.6 uses the scarcity of planes, the more general approach in
this section will use the scarcity of planes in a certain direction. This is in contrast to
the result of Section 7 were it is the abundance of planes which provides the result.

4.2 Trajectories

Our plan is to investigate the properties of immersed flat planes in a nonpositively
curved VH-complex by analyzing the entire set of immersed flat strips which share a

common “trajectory”.

Definition 4.7 (Flat Strips) By a bi-infinite flat strip we mean either In×R or R
+×R

or R × R. Similarly by an infinite flat strip we mean either In × R
+ or R

+ × R
+ or

R × R
+. We will refer to any of these possibilities as a flat strip, and it will be clear

from the context which (if not all) of these possibilities is meant.

Note that any flat strip is a VH-complex since it is the product of two graphs. We
shall regard the 1-cells parallel to the second factor as horizontal.

Definition 4.8 (Trajectory) Given a VH-immersion φ : F → X of a flat strip to a
VH-complex X, we call the induced map φ⋆ : ΓF → ΓX the trajectory of F in X.
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It will be convenient to refer to a combinatorial map τ : R → ΓX as a trajectory.
Furthermore, we will say that φ : F → X has trajectory τ , provided that the maps

φ⋆ : ΓF → ΓX and τ : R → ΓX are identical if we identify ΓF and R. We will use
similar language for trajectories τ : R

+ → ΓX

Note that trajectories are not always immersions. In particular, there are examples
where X → Y is an immersion but the induced map ΓX → ΓY is not.

We let 0 be the basepoint of R, and we let Λτ denote the base graph of τ , namely
Λτ = Λτ (0) ⊂ X. We adopt similar conventions with R

+ in place of R.

Definition 4.9 (τ -Extension of a Path) Consider a trajectory τ : R → ΓX and a ver-
tical combinatorial path σ : In → Λτ ⊂ VX ⊂ X. We say σ is τ -extendible to an
infinite strip φ : F → X provided F = In×R is an infinite strip with trajectory τ , and

φ : F → X is an extension of σ : In → X provided we identify In with In × {0} ⊂ F.
We make a similar definition with R

+ in place of R.

Definition 4.10 (Θτ ) Given a trajectory τ in ΓX , we define a graph Θτ as follows:

(1) The vertices of Θτ correspond to τ -extensions of vertices of Λτ .
(2) The edges of Θτ correspond to τ -extensions of edges of Λτ .
(3) Each edge α : I × R → X of Θτ is attached to the vertices of Θτ which are the

restrictions of α to {0} × R and {1} × R.

There is an obvious correspondence between paths in Θτ and τ -extensions of paths
in Λτ . It will be convenient to use σ̂ to denote a path in Θτ corresponding to the
τ -extension of a path σ in Λτ .

Lemma 4.11 Let X be a nonpositively curved VH-complex and let τ be a trajectory

in ΓX . The map Θτ → Λτ induced by sending v̂ → v and ê → e for each τ -extension

of each vertex v and edge e of Λτ is an immersion.

Proof Since the argument for R is similar, we shall assume that τ is an R
+ trajectory.

Suppose that Θτ → Λτ is not an immersion. Then there is a pair of 1-cells, ê1 and ê2,
meeting along a 0-cell v̂ in Θτ such that ê1 and ê2 fold to the same 1-cell e of Λτ . We
shall regard ê1 and ê2 as immersed flat strips.

Let s1 and s2 be the first squares in I × R
+ such that ê1 and ê2 disagree (so si

correspond to I × [n, n + 1] for some n). Let x be the 0-cell in X corresponding to

{0} × {n}. Then Link(x) would have a length 2 cycle corresponding to the pair of
edges I × {n} and {0} × [n, n + 1]. This contradicts that X is nonpositively curved.

Remark 4.12 (Θτ Is Large) In general, Θτ may have uncountably many compo-

nents. However if the connected components of Θτ are finite then we can make
assertions about τ -flats. For instance, in Lemma 4.13 we show that if the compo-
nents are finite, then any τ -flat is the strong limit of τ -cylinders.
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Lemma 4.13 (Finitely Many τ -Extensions⇒ Compact Components) Let X be a

nonpositively curved directed VH-complex. Let τ be a trajectory whose base graph Λτ

is finite. Suppose there are numbers J and L such that each immersed path of length J

in Λτ has at most L distinct τ -extensions. Then there is a number D such that every

component of Θτ has diameter ≤ D. Furthermore all but finitely many components of

Θτ are trees.

Proof By Lemma 4.11, the map Θτ → Λτ is an immersion, and so Θτ is locally
finite because Λτ is locally finite. Therefore, if each component of Θτ has bounded
diameter then each component is compact.

Let H be the number of paths of length J in Λτ . We show that there are no injective
paths in Θτ of length≥ D = J(HL+1). Suppose there is a path σ̂ of length J(HL+1)

in Θτ . We divide σ̂ into (HL+1) subpaths each of length J. Since there are at most HL

different paths of length J in Θτ , the pigeon-hole principle shows that two of these
must be the same and σ̂ is not injective.

To see that all but finitely many of the components are trees, note that there are at
most HL components of Θτ containing an immersed path of length J.

Lemma 4.14 (Finitely Many Injective τ -Extensions⇒ Compact Components) Let

X be a nonpositively curved directed VH-complex, and let τ be a trajectory with Λτ

finite. Suppose there are numbers J and L such that each length J path σ has at most L

distinct τ -extensions corresponding to injective paths in Θτ . Then there is a number D

such that each component of Θτ has diameter≤ D.

Proof Let H be the number of paths of length J in Λτ . We show that there are no
injective paths in Θτ of length ≥ D = J(HL + 1). Consider a path σ̂ of length D

in Θτ . We may divide σ̂ into (HL + 1) subpaths each of length J. But each of these
subpaths of σ̂ is an extension of a path of length J in Λτ . Since there are only H

paths of length J in Λτ , we see that by the pigeon-hole principle, there must be L + 1
subpaths of σ̂ which are extensions of the same path of length J in Λτ . But then since

there are at most L distinct injective extensions of a path σ, either one of these paths
is not injective, or by the pigeon hole principle, at least two of these are the same, and
so either way, σ is not injective.

While Θτ may have uncountably many non-tree components under the hypothe-
sis of Lemma 4.14, this is impossible under the slightly more stringent hypothesis of
Lemma 4.13.

4.3 Limits of Circles

Let Θ be a graph. An immersed line φi : R → Θ is periodic if it factors as R → S1 →
Θ where R → S1 is a covering map. An immersed line φ : R → Θ is the limit of

periodic lines if for each finite interval [−n, n] ⊂ R, the restriction φ : [−n, n] → Θ

extends to a periodic line.
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Lemma 4.15 (Limit of Circles) Let Θ be a graph with finitely many vertices. Any

immersed line φ : R → Θ is the limit of periodic lines.

We note that this holds when Θ contains no edge e such that both components of
Θ− e have infinite diameter.

Proof We will show that for each interval J[−n, n] ⊂ R there is a subdivision of
S1 and an immersion ψ : S1 → Θ and an embedding [−n, n] ⊂ S1 so that ψ is an

extension of φ restricted to [−n, n].

We first choose a maximal tree Υ ⊂ Θ and form the quotient graph Θ/Υ. Now
observe that there is a one-to-one correspondence between the immersed lines in Θ

and immersed lines in Θ/Υ. Similarly, there is a one-to-one correspondence between
immersed circles in Θ and in Θ/Υ.

Since Θ/Υ is a bouquet of circles, any path in Θ/Υ can be extended to a circle (by

possibly adding one edge). Therefore, every immersed line is the limit of immersed
circles. The corresponding line in Θ is thus a limit of the corresponding circles as
well.

A τ -flat in X is an immersed flat VH-complex F → X whose trajectory is τ . We
define a τ -cylinder similarly.

Lemma 4.16 Let X be a nonpositively curved directed VH-complex and let τ be a

trajectory. If each component of Θτ is compact then every τ -flat is the strong limit of

τ -cylinders.

Proof A τ -flat is a bi-infinite path ω̂ in Θτ . But the component of Θτ containing
ω̂ is compact. Therefore by Lemma 4.15, any finite subpath σ̂ of ω̂ is contained in a
closed immersed path of Θτ . But this corresponds to a τ -cylinder which extends the

flat strip corresponding to σ̂.

The following shows that if an immersed plane is the strong limit of cylinders then
it is the limit of tori.

Lemma 4.17 (Cylinder Is the Limit of Tori) Let C = S1 × R for some subdivision

of S1 and let φ : C → X be an immersion where X is a compact nonpositively curved

VH-complex. Then for any finite interval J ⊂ R, the restriction of φ to S1 × J extends

to an immersion of a torus.

Proof We form a graph Ω as follows: fix a combinatorial structure on S1 as above.
The vertices of Ω correspond to the distinct VH-immersions S1 → X where we de-
clare S1 to be vertical. The edges of Ω correspond to the distinct VH-immersions
S1 × I → X, where S1 is vertical and I is horizontal. Each edge φ : S1 × I → X is

connected to the vertices corresponding to the restrictions of φ to the two boundary
components of S1 × I.

Observe that since X is finite, Ω is finite as well. Furthermore, an immersed circle
in Ω corresponds to an immersed torus in X.
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The map φ : C → X corresponds to an immersion R → Ω. Likewise the restric-
tion of φ to S1 × J corresponds to an immersion J → Ω of a subinterval J ⊂ R.

Applying Lemma 4.17 to the map J → Ω, we obtain an immersed circle in Ω

which extends J → Ω and which corresponds to an immersed torus in X which
extends the map S1 × J → X.

Lemma 4.18 Let τ1 : (−∞, 0] → ΓX and τ2 : [0,∞) → ΓX be trajectories, and sup-

pose their union is a bi-infinite trajectory τ : (−∞,∞) → ΓX . If a path in Λτ has

finitely many τ1-extensions and finitely many τ2-extensions, then it has finitely many

τ -extensions.

Proof If the number of τi-extensions is ni then the number of τ -extensions is at
most n1n2.

The following summarizes what we have done in Section 4

Theorem 4.19 Let X be a nonpositively curved VH-complex. Suppose Θτ has com-

pact components for each trajectory τ . Then each immersed flat plane in X is the strong

limit of cylinders. Moreover, if X is compact, then it is the limit of tori.

5 Malnormal and Cyclonormal Criteria

In this section we give verifiable conditions on a nonpositively curved directed
VH-complex X ensuring that the trajectory criterion of Theorem 4.19 applies and
so flats are strong limits of cylinders. It will be useful to first recall the notion of a

fiber product of maps of graphs [19].

5.1 Fiber Products of Graphs

Definition 5.1 (The Fiber Product Υ1 ⊗Υ2) For a pair of immersions, φ1 : Υ1 →
Υ and φ2 : Υ2 → Υ, we define a graph Υ1⊗Υ2 and projection maps π1 : Υ1⊗Υ2 →
Υ1 and π2 : Υ1 ⊗Υ2 → Υ2. Consider the induced map

φ1 × φ2 : Υ1 ×Υ2 → Υ×Υ.

Consider the diagonal subspace D ⊂ Υ×Υ where D = {(x, x) | x ∈ Υ}. We define

Υ1 ⊗Υ2 = (φ1 × φ2)−1(D).

Observe that Υ1 ⊗Υ2 consists of a set of 0-cells and diagonals of 2-cells of Υ1 ×Υ2

and is therefore a graph. For each i we define πi : Υ1 ⊗Υ2 → Υi as the restriction of
πi : Υ1 ×Υ2 → Υi . See Figure 4 for an illustration of Υ1 ⊗Υ2 in an easy case.

The triple (Υ1 ⊗ Υ2, π1, π2) is also characterized by the property that paths in
Υ1⊗Υ2 are in one-to-one correspondence with pairs of lifts σ1 → Υ1 and σ2 → Υ2

of a path σ → Υ. Indeed, given two lifts σ1 : In → Υ1 and σ2 : In → Υ2 of the path
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Figure 4: Υ1 ⊗ Υ2. Let Υ denote a bouquet of two circles, whose edges are labeled by a white

arrow and a black arrow. Let Υ1 and Υ2 denote the two labeled graphs on the left of the

diagram. Note that their labelings induce maps Υ1 → Υ and Υ2 → Υ. The graph Υ1 ⊗ Υ2

is depicted on the right-hand side of the equal sign. Note that Υ1 ⊗ Υ2 has two components.

The vertices of Υ1 are labeled by a, b, c, and the vertices of Υ2 are labeled by x, y. Each vertex

of Υ1 ⊗ Υ2 is labeled by the pair of vertices of Υ1 and Υ2 to which it corresponds.

σ : In → Υ, there is a map σ1 × σ2 : In → Υ1 × Υ2 whose image is contained in the
Υ1 ⊗Υ2 subspace.

If we let Ῡi → Υ be the extension (by adding trees) of Υi to a covering space of Υ

then there is an embedding Υ1 ⊗ Υ2 →֒ Ῡ1 ⊗ Ῡ2. The components of Ῡ1 ⊗ Ῡ2 are

the covers of Υ corresponding to intersections of conjugates of π1Υ1 and π1Υ2, and
the subspace Υ1 ⊗Υ2 is a deformation retract of Ῡ1 ⊗ Ῡ2.

When φ1 = φ2 we have the space Υ1 ⊗ Υ1. The diagonal of Υ1 ⊗ Υ1 is the
component of Υ1 ⊗Υ1 which equals the diagonal of Υ1 ×Υ1.

We record the following connection between the fiber-product and malnormal

and cyclonormal subgroups which are defined in Sections 5.2 and 5.3.

Remark 5.2 (Malnormal, Cyclonormal and⊗) Given an immersion Υ1 → Υ,
properties of the subgroup π1Υ1 →֒ π1Υ are reflected in the graph Υ1 ⊗Υ1.

(1) π1Υ1 is malnormal⇔ each non-diagonal component of Υ1 ⊗Υ1 is a tree.
(2) π1Υ1 is cyclonormal⇔ each non-diagonal component of Υ1 ⊗Υ1 has χ ≥ 0.

5.2 Malnormal VH-Complexes

Definition 5.3 (Malnormal) A subgroup H of G is malnormal if the intersection
xHx−1

⋂
H is trivial for all x ∈ G − H. More generally, H is r-malnormal if for any

set of elements g1, . . . , gr+1 of elements representing distinct right cosets of H, the
intersection

⋂r+1
i=1 g−1

i Hgi of the r + 1 conjugates of H is the trivial group.

The only 0-malnormal subgroup of G is {1G}. Being 1-malnormal is the same as
malnormal, and 2-malnormal is the only other case for which we will have use.

Remark 5.4 (Geometric Meaning) Malnormality can be interpreted geometrically
in terms of unique lifts of closed essential paths. Let Y be a based space and let Ŷ be a
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based connected covering space. Then π1Ŷ is r-malnormal if and only if every closed
essential path in Y has at most r closed lifts to Ŷ . This explains part (1) of Remark 5.2.

Definition 5.5 (r-Malnormal Map of Graphs) A map of graphs ρ : Λ → Υ is
r-malnormal if every nontrivial immersed cycle in Υ has at most r closed lifts to Λ.
Note that we do not assume that Λ is connected. As usual we will use the term mal-

normal instead of 1-malnormal.

When ρ : Λ→ Υ is an immersion then ρ arises as the restriction of some covering
map to a subspace. The two notions of r-malnormal are essentially equivalent under
this correspondence.

We use the notation |A0| for the number of 0-cells in a complex A.

Lemma 5.6 (Unique Lifts of Long Paths) Let ρ : Λ→ Υ be a malnormal immersion

of graphs. Suppose Λ is finite so that |(Λ ⊗ Λ)0| < ∞. Let σ → Υ be an immersed

path. If |σ| ≥ |(Λ⊗Λ)0| then σ has at most one lift to Λ. Similarly, if ρ is r-malnormal

then there are at most r lifts of any sufficiently long path.

Proof Consider a pair of lifts of σ to Λ. This determines a lift of σ to a component
of Λ ⊗ Λ. But since |σ| ≥ |(Λ ⊗ Λ)0|, some subpath of σ lifts to a closed immersed
path in Λ. Since nondiagonal components of Λ ⊗ Λ are trees, the closed immersed

path lies in the diagonal, and so the two lifts of σ are identical.

Definition 5.7 (Malnormal VH-Complex) A graph of groups is malnormal if each
edge group is a malnormal subgroup of each of its associated vertex groups. A di-
rected nonpositively curved VH-complex is malnormal if the associated graph of
groups is malnormal, or equivalently, the attaching maps of each edge space are mal-

normal maps of graphs.

Definition 5.8 (Almost-Malnormal VH-Complex) A directed nonpositively curved
VH-complex X is almost-malnormal if it has the following property:

(1) The attaching map of each edge space is 2-malnormal.
(2) For any pair of distinct attaching maps of edge spaces Λe → Λv and Λ f → Λv,

their union (Λe ∪ Λ f )→ Λv is 2-malnormal.

Remark 5.9 (2-Malnormal and Singular Leaves) The most common examples of
2-malnormal subgroups are subgroups of index 2. These turn up often because any
singular leaf in a VH-complex corresponds (in the associated directed VH-complex

obtained by subdividing) to a vertex space with a single edge space attached to it by a
double cover.

Theorem 5.10 (k-Uniqueness for Malnormal VH-Complexes) Let X be a malnor-

mal compact nonpositively curved directed VH-complex. Then there is a constant k so

that for each trajectory τ : R → ΓX , any immersed path of length ≥ k has at most one

τ -extension.
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Proof By Lemma 4.18 it is sufficient to prove this for a trajectory τ : R
+ → ΓX .

Choose k to be larger than the number of vertices in any graph Λe ⊗ Λe obtained
from Λe → Λv, where e is an edge of Γ. Let σ : IK → Λτ be an immersed path of
length K ≥ k.

There is at most one way to extend σ because an immersed strip of width ≥ k

which enters some vertex graph Λv via some edge space, has at most one way to exit
via a second edge space. This is because exiting Λv to an edge space corresponds to
lifting a path in Λv to Λe (where e is the edge corresponding to the edge space), but

since the strip has width≥ k, the path we are lifting has length≥ k and so our choice
of k and Lemma 5.6 shows that there is at most one such lift and hence at most one
extension.

Theorem 5.11 (k-Finiteness for Almost-Malnormal VH-Complexes) Let X be a

compact nonpositively curved almost-malnormal directed VH-complex. There is a con-

stant k so that for each trajectory τ : R → ΓX , any immersed path in Λτ of length ≥ k

has finitely many τ -extensions.

Sketch of Proof The proof is similar to the proof of Theorem 5.10. We first prove
the analogous statement for a trajectory τ : R

+ → ΓX , and then apply Lemma 4.18.
Namely, we show that there are at most two τ -extensions. The idea is the same as
above, except that at the initial extension there might be two choices, but for each

successive elementary extension there is at most one extension by an immersion.

Theorem 5.12 (Limits in Almost-Malnormal) Let X be a compact almost-malnor-

mal nonpositively curved VH-complex. Then every immersed flat in X is the strong

limit of immersed cylinders and hence the limit of tori.

Proof This follows by combining Theorem 5.11 with Lemma 4.16 and Lemma 4.17.

5.3 Cyclonormal Complexes

As motivation for the main theorem of this section we first prove the following special
case:

Theorem 5.13 (Cylindrical VH-complexes) Let X be a VH-complex, and assume

that each edge space of X is a cylinder, that is, Λe
∼= S1 for each edge e of ΓX . Then every

immersed flat in X is the strong limit of immersed cylinders in X.

Proof Think of |Λ0
e | as the perimeter of the edge space corresponding to e, and let

N = LCM{Λ0
e} be the least common multiple of the perimeters of edge spaces of X.

Then each immersed flat plane F → X is actually periodic in the vertical direction,

and the period divides N . To see this, note that it is true for each infinite vertical
flat strip of F of horizontal width 1. Since F is vertically periodic, it is obviously the
strong limit of immersed cylinders.
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Definition 5.14 (Cyclonormal Subgroup) A subgroup H of G is cyclonormal if the
intersection H ∩ gHg−1 is cyclic or trivial for any g ∈ G − H. As in Definition 5.3,

we define r-cyclonormal similarly. An immersion of connected graphs φ : Γ → Υ is
cyclonormal if the image of π1Γ is a cyclonormal subgroup of π1Υ.

Definition 5.15 (Cyclonormal VH-Complex) A graph of groups is cyclonormal if

each edge group is a cyclonormal subgroup of its associated vertex groups. Similarly,
a directed VH-complex is cyclonormal if the attaching maps of each edge space are
cyclonormal.

A directed VH-complex is almost-cyclonormal if for each v ∈ Γ0
X the following

two conditions are satisfied:

(1) For any edge space attaching map Λe → Λv, and for any three elements g1, g2, g3

which represent distinct left cosets of π1Λe in π1Λv, the triple intersection

g1(π1Λe)g−1
1 ∩ g2(π1Λe)g−1

2 ∩ g3(π1Λe)g−1
3

is cyclic or trivial.
(2) For any distinct pair of attaching maps Λe → Λv and Λ f → Λv, and for any

pair of elements g1, g2 representing distinct left cosets of π1Λe in π1Λv, the triple

intersection g1(π1Λe)g−1
1 ∩ g2(π1Λe)g−1

2 ∩ π1Λ f is cyclic or trivial.

Note that the class of cyclonormal VH-complexes includes both the malnormal
VH-complexes as well as the cylindrical VH-complexes mentioned in Theorem 5.13.

Example 5.16 (VH and 3-Manifolds) Any nonpositively curved VH-complex
which embeds in a 3-manifold is almost-cyclonormal. In particular this holds for
the Dehn complexes of prime alternating links (see [23]). The point is that the carte-
sian product of two bouquets of three edges cannot embed in a 3-manifold, because

the complete bipartite graph K(3, 3) does not embed in the 2-sphere. The almost-
cyclonormal property follows because if some intersection had rank ≥ 2 then there
would be a K(3, 3) in the link of a 0-cell of the 2-complex.

Main Theorem 5.17 (Cyclonormal⇒ Strong Limits of Cylinders) Any immersed

flat plane in a compact nonpositively curved almost-cyclonormal directed VH-complex

is the strong limit of immersed cylinders.

Proof Consider a flat F → X with trajectory τ . By Theorem 5.18 we see that com-
ponents of Θτ are compact, and then by Lemma 4.16 we see that F is the strong limit

of τ -cylinders.

Theorem 5.18 (Almost-Cyclonormal⇒Θτ Has Compact Components) Let X be

a compact nonpositively curved almost-cyclonormal directed VH-complex. Then there

is a constant D such that for each trajectory τ , every connected component of the graph

Θτ has diameter≤ D.
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Proof By Lemma 5.20 there is a number J such that for any trajectory τ , any path
σ of length J in Λτ has finitely many τ -extensions σ̂ which are injective paths in Θτ .

Now applying Lemma 4.14, we obtain a bound D to the diameter of components of
Θτ , and this bound is independent of τ .

Definition 5.19 (Parallel Paths) The paths λ : In → X and λ ′ : In → X are parallel

if for some m there exists an immersion φ : In × Im → X such that the restriction of
φ to In × {0} is λ and the restriction of φ to In × {m} is λ ′.

Main Lemma 5.20 (Finitely Many Extensions of Length J Path) Let X be an [al-

most] cyclonormal nonpositively curved VH-complex. There exists a constant J such

that for any trajectory τ , any path λ of length J in Λτ has finitely many τ -extensions

corresponding to injective paths in Θτ . In other words, there are finitely many injective

paths λ̂ in Θτ corresponding to λ.

Proof We shall focus on the cylonormal case. The main additional feature in the
almost-cyclonormal case is that instead of S̄, T̄, Ū arising from nondiagonal compo-
nents of Λe ⊗ Λe, they arise from nondiagonal components of (Λ⊗Λe) ⊗ Λ f . This

somewhat complicates the statement of Lemma 5.26, but the proofs are similar.
The proof is broken up into the lemmas below. By Lemma 4.18, it is sufficient to

prove the statement of Lemma 5.20 for a trajectory τ : R
+ → ΓX . Let J be chosen

as in Lemma 5.26 and consider a path λ in Λτ which is of length J. We show that if

there is more than one [two] τ -extension of λ, then no τ -extension of λ corresponds
to an injective path in Θ.

If there is more than one [two] τ -extension, then Lemma 5.21 shows that there is a
path λ ′ parallel to λ such that an extension of λ bifurcates at λ ′ and therefore λ ′ lifts

to a non-diagonal component of Λe⊗Λe for some e. It follows from Lemma 5.26 that
λ ′ has a subpath σ ′ = γ p, which satisfies the conditions of Lemma 5.27. Therefore
Lemma 5.27 shows that any extension of σ ′ is cylindrical. Furthermore, any path
parallel to σ ′ also has the property that any extension of it is cylindrical.

It follows that λ has a subpath σ parallel to σ ′ with the property that any extension
of σ is cylindrical. But that means that if σ̂ is a path in Θτ corresponding to a τ -exten-
sion of σ, then σ̂ is a closed path. It follows that λ̂ is not injective.

Lemma 5.21 (A Bifurcation Subpath) Let X be a nonpositively curved [almost] cy-

clonormal VH-complex and let τ : R
+ → ΓX be a trajectory. If λ is an immersed path

in Λτ which has more than one [two] τ -extension, then there exists a path λ ′ → Xv

which is parallel to λ, such that λ ′ lifts to a non-diagonal component of Λe ⊗ Λe where

Λe → Λv is the attaching map of an edge space of X.

Proof We prove this for a cyclonormal VH-complex; the almost-cyclonormal case
is similar. If there are two τ -extensions of λ then as in Figure 5, we can consider the

vertical path λ ′ where they bifurcate. Then λ ′ lifts to a non-diagonal component of
Λe ⊗ Λe where λ ′ is a path in Λv and Λe → Λv is where the bifurcation takes place.
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Figure 5: Bifurcation: The figure above is meant to suggest a pair of τ -extensions of the vertical

path γ on the left. The two τ -extensions bifurcate at the path γ ′. indicated by the bold vertical

path.

Lemma 5.22 (Unique T in T p) Let T be a cyclically reduced word which is not a

proper power. Consider the cyclic word T p. Then T occurs as a subword of T p in a

unique way up to the cyclic action of Zp. In particular, T is a subword of T2 in only the

two obvious ways.

Proof We think of the cyclic word as a labeled graph homeomorphic to S1, such that
the label of the closed cycle is T p. Suppose that T is a subword of T p in a nonstandard

way, so that T p = XTY where X 6= Tk. Then because of the action of Zp on S1

which is generated by a rotation r
T

of length |T|, we see that if we read the label of S1

beginning at the endpoint of the path X above, then we also obtain T p. It follows that
the rotation r

X
of length |X| also gives rise to a symmetry of this labeling of S1, and

so, these two elements generate a cyclic subgroup 〈r
T
, r

X
〉, which contains 〈r

T
〉 as a

proper subgroup. But then the path T is a proper power of the fundamental domain
of this action which is a contradiction.

Lemma 5.23 (Locally T3 Implies T p) Let T be a cyclically reduced word which is not

a proper power. Let W be a cyclic word such that each vertex in W is in a strict neigh-

borhood of T3 in the sense that each vertex of the bi-infinite labeled edge-path W∞ is

contained in the middle third of a T3 subpath. Then W is a cyclic permutation of T p for

some p.

Proof By Lemma 5.22, T occurs in T2 in only the standard ways, and so the T3

“patches” must line up.

Lemma 5.24 (Long Path in Cyclonormal is STrU ) Let Υ1 → Υ be a cyclonormal

immersion of graphs where Υ1 is finite. There is a finite set of triples (S,Td,U ) of (pos-

sibly trivial) paths in Υ, such that the projection to Υ of any path in a non-diagonal

component of Υ1 ⊗ Υ1 can be expressed as the concatenation S(Td)
r
U for some triple

and some r. We also assume that T is not a proper power in the sense that it cannot be

expressed as (T ′)m for some path T ′.

Proof To see that finitely many triples suffice, note that for a finite labeled graph Γ

with χ(Γ) = 0, we can let Td correspond to a simple closed path in Γ, and let S and
U correspond to injective paths ending and beginning on the simple cycle of Γ.

https://doi.org/10.4153/CJM-2005-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-018-x


Approximating Flats by Periodic Flats 439

Notation 5.25 (S̄, T̄, Ū ) We let S̄, T̄, and Ū denote the maximums of |S|, |T|, and
|U |, over all triples (S,Td,U ) associated to a cyclonormal VH-complex X.

Lemma 5.26 (A Long Highly Periodic Subpath) Let X be a compact nonpositively

curved cyclonormal directed VH-complex. There is a number J such that for every

length J immersed path λ ′ in XV , if λ ′ lifts to a non-diagonal component of Λe ⊗ Λe

where Λe → XV is the attaching map of some edge space, then λ ′ has a nontrivial

subpath σ ′ = γ p with γ not a proper power such that p and γ satisfy the following

conditions:

(1) p ≥ 4.

(2) p − 1 > 3(S̄ + T̄ + Ū ) and so |γ p−1| > 3(S̄ + T̄ + Ū ).

(3) 4|Td| divides |σ ′| for each Td in a triple (S,Td,U ).

Proof By Lemma 5.24, if λ ′ lifts to a non-diagonal component then λ ′ can be ex-
pressed as S(Td)rU for some triple (S,Td,U ).

First we show that if |λ ′| is large then r is large. To see this, note that

|λ ′| = |S(Td)rU | ≤ S̄ + r · T̄d + Ū

and so

r ≥
|λ ′| − S̄− Ū

T̄d
.

Now, choose J so that if |λ ′| = J then r ≥ q where q has the following three
properties:

(1) q ≥ 4.

(2) q− 1 > 3(S̄ + T̄ + Ū ).
(3) 4|Td| divides q for each triple (S,Td,U ).

It follows that if λ ′ is a path which lifts to a non-diagonal component of Λe ⊗ Λe

then for some particular triple (S1,T
d1

1 ,U1) we have:

λ ′
= S1(Td1

1 )rU1

and thus λ ′ has a subpath σ ′ of the form (Td1

1 )q = γ p where γ = T1 is not a proper
power and p = qd1. It is easy to see that the three properties that q satisfies imply the

corresponding properties for p.

Lemma 5.27 (Extensions of Long Periodic Paths Are Cylindrical) Let X be a com-

pact nonpositively curved cyclonormal directed VH-complex. Suppose σ = γ p is an

immersed path in XV where γ is closed but not a proper power and suppose the following

hold:

(1) p ≥ 4.

(2) |σ| ≥ 4(S̄ + T̄ + Ū ) and so |γ p−1| > 3
(
|S| + |T| + |U |

)
.

(3) 4|Td| divides |σ| for any triple (S,Td,U ).
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Then for any extension of σ → X to an immersion σ×R
+ → X, the path {0}×R

+ → X

equals {n} × R
+ → X where 0 and n are the endpoints of σ. Moreover, the map

σ × R
+ → X factors through an immersion S1 × R

+ → X where S1 → X is the

immersed subdivided circle corresponding to the closed path σ.

Note that |γ p−1| > 3
(
|S| + |T| + |U |

)
in property (2) since |γ p−1| ≥ 3

4
|σ| by

property (1).

Proof It is sufficient to show that this is true one edge space at a time. Namely,

suppose that σ is a path in Λα and there is an edge space Λα ← Λe → Λβ . We
shall show that any lift of σ to Λe is closed and we show that the projection σ1 of
this lift to Λβ has the same properties that σ satisfied: specifically, we will show that

σ1 = (γ1)p1 where p1 satisfies property (1), and that properties (2) and (3) hold
because |σ1| = |σ|.

If σ = γ p has a lift to Λe then so does γ p−1. In case γ p−1 has a unique lift to
Λe, then it is easy to see that the lift of γ corresponding to the initial segment of σ
is closed. For if the initial γ subpath of γ p does not lift to a closed path, then there
would be two distinct lifts of γ p−1. And therefore σ = γ p would lift to a closed path
γ̂ p, and so its projection σ1 to Λβ would be of the form γ

p1

1 where p1 is a multiple
of p.

The case where γ p−1 does not have a unique lift is trickier and it is here that we

use our three hypotheses. Since there are two distinct lifts, we see that there is a lift
of γ p−1 to a non-diagonal component of Λe ⊗Λe. Thus γ p−1 is of the form S(Td)rU

for some triple (S,T,U ).

Every point in the path S(Td)rU , except for the initial ST and the terminal TU , is

contained in the middle third of a T3 subpath. Thus every point of γ p−1 except for the
initial length |ST| and terminal length |TU | subpaths has a strict T3 neighborhood.
We will show that every point of the word γ p−1 has a strict T3 neighborhood.

Since |γ p−1| > 3(|S| + |T| + |U |), every point in the middle third of γ p−1 has a

strict T3 neighborhood. By property (1), p − 1 ≥ 3, and so each vertex in the closed
path γ is identical to a vertex in the middle third of γ p−1, and thus has a strict T3

neighborhood. Consequently, by translating these strict T3 neighborhoods around,
we find that every vertex of the cyclic word σ = γ p has a strict T3 neighborhood. It

follows from Lemma 5.23 that σ is a power of T and therefore the lift of γ p−1 extends
to a lift of σ.

Now, by property (3), |σ| is a multiple of |Td| and so the lift of σ to Λe ⊗ Λe is
closed and so the lift of σ to Λe is closed. Furthermore, the closed lift of σ to Λe

projects to a closed path in Λβ which is of period at least |σ|/|Td| which is ≥ 4 by
hypothesis (3).

5.4 Generalizations and a Conjecture

The results we have described have several straightforward generalizations. First of
all, there are results similar to those of Section 5.4 for general nonpositively
curved square complexes. They can be obtained from our point of view by taking the
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branched cover of Section 3 and using the correspondence between flats described
there.

Secondly, Theorem 5.18 can be refined in a straightforward way by allowing a
slightly less local approach. Instead of looking at the edge subgroups, one can look
at the intersection of edge subgroups corresponding to finite trajectories and ask that

these be cyclonormal. The idea is very similar to Theorem 5.18.

We now propose a conjectured generalization of the theorems of Section 5.3:

Conjecture 5.28 (Word-Hyperbolic Generalization) Let Γ be a finite graph of

word-hyperbolic groups where each of the edge groups is embedded by a quasi-isometry.

Suppose that Γ is a cyclonormal graph of groups. Then π1Γ is word-hyperbolic if and

only if it contains no BS(n,m) subgroups. If Γ is a malnormal graph of groups, then π1Γ

is word-hyperbolic if and only if it contains no Z
2 subgroups.

6 Connections to Subgroup Separability

Definition 6.1 (Subgroup Separability) Let H be a subgroup of the group G. Then
G is subgroup separable with respect to H, or H-separable, if for each g ∈ G−H there is

a finite quotient G→ Ḡ such that ḡ /∈ H̄. A group is subgroup separable if it is H-sep-
arable for each finitely generated subgroup H ⊂ G. Note that G is {1G}-separable if
and only if G is residually finite.

Definition 6.2 (Clean Complex) A directed VH-complex X is clean if all the attach-
ing maps of edge spaces are embeddings.

Remark 6.3 (Clean⇒Malnormal) Note that if X is a clean VH-complex, then X is
a malnormal VH-complex. This is because an embedding of a subgraph in a graph

is malnormal. Furthermore, if X is clean then X is nonpositively curved.

Let X be a connected directed VH-complex. Then we say π1X is π1Λe-separable

if π1(X, x) is π1

(
Λe × {1/2}, xe

)
-separable for some point xe ∈ Λe × {1/2} ⊂ X.

This is independent of the choice of basepoint since it depends only on the conjugacy
class of subgroup represented by Λe → X.

The following is proven in [23].

Theorem 6.4 (Separable⇔ Virtually Clean) Let X be a compact nonpositively

curved directed VH-complex. Then π1X is π1Λe-separable for each e, if and only if

X has a finite cover X̂ whose induced VH-structure is clean.

Lemma 6.5 (Virtual Limits) Let X be a nonpositively curved space, and let X̂ → X

be a finite cover. Then for each of the properties below, X̂ has the property if and only if

X has the property.

(1) If there is an immersed flat plane, then there is an immersed flat torus.

(2) Every immersed flat plane is the limit of tori.

(3) Every immersed flat plane is the strong limit of cylinders.
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Proof We prove this for property (2); the other proofs are similar. Consider an
immersed flat plane F → X. It lifts to an immersion F → X̂. Now suppose that

F → X̂ is the limit of tori Tn → X̂. Then F → X is the limit of their projections
Tn → X̂ → X.

In the other direction, consider an immersed flat plane F → X̂. Its projection

F → X is the limit of tori Tn → X. Then each such torus has a finite cover T̂n which
lifts to X̂. The sequence T̂n → X̂ limits to F̂.

Remark 6.6 (Edge-Separable⇒ Properties) A consequence of Theorem 6.4 and
Lemma 6.5 is that if π1X is subgroup separable with respect to its edge subgroups

then X inherits the following properties from its finite clean cover X̂.

(1) For each trajectory τ , the graph Θτ has compact components; in particular X

admits no immersed anti-torus.
(2) If it admits an immersed flat plane, then it admits an immersed torus.
(3) Each immersed flat is the strong limit of immersed cylinders.
(4) Each immersed flat is the limit of immersed tori.

We turn Remark 6.6 to our advantage in [21]. The idea is that if a complex X fails to

have one of the above properties, then it cannot have a clean finite cover. Therefore
we can conclude (the more algebraic property) that π1(X) is not Λe-separable for
some e ∈ Γx. This was the starting point for the solution of several long standing
open questions, concerning residual properties of certain groups.

Question 6.7 (Malnormal or Cyclonormal⇒ Virtually Clean) Let X be a compact
nonpositively curved directed VH-complex. Is X virtually clean provided that X is
malnormal? Provided that X is almost-cyclonormal? Are there any obstructions to
virtual cleanliness besides properties enjoyed by flats in clean complexes, which are

inherited by complexes that they cover?

Remark 6.8 During the course of the last seven years since I raised this question, I
have made some progress on it in [25] and [26]. In [25] I proved virtual cleanliness
for the cylindrical complexes of Theorem 5.13, and in [26] I proved virtual cleanliness

for square complexes that satisfy a slightly stronger hypothesis than malnormality.

Conjecture 6.9 (Subgroup Separable CAT(0)⇒ Limits) Let G act cocompactly and

properly-discontinuously on a CAT(0) space X̃. If G is subgroup-separable, then every

flat in X̃ is the limit of tori. In particular, if there is an immersed flat plane, then there is

an immersed flat torus.

I suspect that as in Theorem 6.4, a separability hypothesis relative to certain sub-
groups of G would suffice.

Remark 6.10 (General Square Complex) Some evidence to support Conjecture 6.9

is that Conjecture 6.9 is true in the case of general compact nonpositively curved
square complexes. This is because, if π1X is subgroup separable with respect to the
subgroups corresponding to edge spaces of the double branched cover X, then one
can deduce that X is virtually clean, using arguments similar to Theorem 6.4.
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In the search for even stronger results we ask:

Question 6.11 Which clean complexes have subgroup separable π1?

Some partial results towards this are given in [25] where subgroup separability

is proven for cylindrical VH-complexes. Further results were proven in [23] under
even more general conditions.

However, not every clean complex has subgroup separable π1. Indeed, F2 × F2 is
not subgroup separable but it is the fundamental group of a clean complex. Further-

more, the non subgroup separable Burns-Karrass-Solitar example is π1 of a virtually
clean complex [5]. However, in joint work with Tim Hsu, we proved that all quasi-
convex subgroups are separable [12], so perhaps one should only try to show that all
quasiconvex subgroups are separable.

7 Limits of Tori in CSCs

In this final section, we show that any immersed flat plane in a compact CSC is the

limit of periodic planes. The proof given is easily seen to generalize to higher dimen-
sional CSCs. While the results from Section 4 stem from a scarcity of flat planes,
Theorem 7.8, the main result of this section, derives from the density of flat planes.

Definition 7.1 A complete bipartite graph is a graph whose vertices are divided into
two classes such that there is exactly one edge joining each pair of vertices from dis-
tinct classes. A complete square complex or CSC is a square complex X such that for
each x ∈ X0, the graph Link(x) is complete bipartite.

Proposition 7.2 We record some properties of CSCs. See [24, 21] for the details.

(1) Every CSC X has a (single or) double cover X̂ which is a VH-complex.

(2) X is a CSC if and only if its universal cover X̃ is the product of two trees. In partic-

ular, if X is VH then X̃ ∼= Ṽx × H̃x for x ∈ X0.

(3) Let X be a directed VH-complex, then X is a CSC if and only if all attaching maps

in the decomposition of X are covering maps.

Example 7.3 There is a CSC X consisting of six squares described in [24] and [21]
such that X̃ contains an anti-torus. An anti-torus is a flat plane F in X̃ such that each

horizontal and vertical line in F is periodic, but F is not periodic.

I strongly believe that there are CSCs containing flat planes that are not strong
limits of tori. By doubling, one sees that this is not true for every anti-torus, but
perhaps it is true for typical examples.

Definition 7.4 (Combinatorial Convex Closure) Let X̃ be a CAT(0) 2-complex and
let S ⊂ X̃ be a subspace. The combinatorial convex hull S̄ of S is the intersection of all
convex subcomplexes of X̃ containing S.
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Definition 7.5 (Diagonal line) Let X̃ be the universal cover of a CSC X and let D→
X̃ be an isometrically embedded line. We say D is a diagonal line if D * X1. We will

be interested in diagonal lines that pass through a 0-cell of X̃, and that have a rational
slope. We define a diagonal line segment similarly.

Lemma 7.6 (Convex Closure of Diagonal) The combinatorial convex hull of a diag-

onal line segment in the universal cover X̃ of a CSC X is a rectangle. The combinatorial

convex hull of a diagonal line in X̃ is a plane.

Proof Consider the union of the set of squares intersecting D, and use the com-
pleteness of the links of X̃ to extend outwards.

Alternatively, note that X̃ is the direct product V x̃ × Hx̃, and observe that the
combinatorial convex hull of D is the direct product of its projection onto the two
factors.

A diagonal line D →֒ X̃ is periodic if the map D→ X factors through a circle.

Lemma 7.7 (Convex Closure Is Periodic Plane) Let X be a compact nonpositively

curved square complex. Let D → X̃ be a periodic diagonal line. Then the combina-

torial convex hull D̄ of D is a periodic plane.

Proof The cyclic group acting on D must stabilize D̄. Consequently each line in

D̄ parallel to D is periodic and so D̄ is cylindrical. Therefore, up to covering space
transformation, there are finitely many lines in D̄ parallel to D which intersect X̃0.
Since D̄ is the combinatorial convex hull of any such line, we see that D̄ admits an
additional symmetry by translating along a line orthogonal to D, and so D̄ is (doubly)

periodic.

Theorem 7.8 (Limit of Tori in CSC) Let X be a compact CSC, and let E → X be an

immersed flat plane. Then E is the limit of tori.

Proof Without loss of generality, we assume that X is a VH-complex and that X

is vertically and horizontally directed. Choose an n × n region Sn ⊂ E. We will
find a periodic diagonal line D whose combinatorial convex hull D̄ contains Sn. By
Lemma 7.7, D̄ is a periodic plane extending Sn, and this proves the theorem.

Imagine that Sn is embedded in the Euclidean plane in the obvious way. Let sw

denote the southwest square of Sn and let ne denote the northeast square of Sn.

Below we will produce a VH-immersion L → X such that L is the union of Sn

and two width 1 flat strips (see Figure 6). Let sw and ne denote the southwest and
northeast squares of Sn. We will choose a horizontal strip from ne to a square q and
a vertical strip from q to a square sw ′. The square sw ′ will have the property that the
maps sw→ X and sw ′ → X are identical if we identify sw and sw ′ by translating one

to the other through Sn and the flat strips.

Now, the diagonal geodesic segment γ in the rectangle L̄ connecting the southwest
corner of sw to the southwest corner of sw ′ determines a closed geodesic in X. We
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Figure 6: Illustrated above is an example of L. The shaded 4 × 4 square at the bottom left of L

represents S4. The square sw at the bottom left corner of Sn is labeled with an arrow (so that we

can keep track of its orientation in L). The square ne is at the upper right-hand of Sn. There is

a horizontal strip which travels to the right from ne and ends at q. There is then a vertical strip

which begins at q and travels north to sw ′ which is oriented in the same way as sw.

consider L to be a subcomplex of X̃, and we let D = γ∞ be the periodic extension of
γ in X̃. Observe that L̄ and hence Sn is contained in D̄ and we are done.

To construct L, consider the horizontal edge space Ch
ne containing ne and the ver-

tical edge space Cv
sw containing sw. Beginning at ne we travel in Ch

ne until we arrive at

a square q of the vertical edge space Cv
sw which is oriented horizontally in the same

direction as sw. We then travel in Cv
sw until we pass through the square sw in such a

way that it is oriented vertically in the same direction as our original sw. These two
trips determine the horizontal and vertical strips.

To see that the orientations of sw and sw ′ can always be chosen consistently, we

note that orientations can be reversed within edge spaces unless they are cylinders.
However, if a vertical (respectively horizontal) edge space is a cylinder, then all ver-
tical (respectively horizontal edge spaces) are cylinders, and so there would be no
orientation problem to begin with.

8 Commuting Powers

A pair of elements g and h of a group G nearly commute if gn and hn commute for
some n > 0. The problem of whether two elements nearly commute is a difficult one.
Since there are groups with unsolvable word problem, it is easy to see that there are
groups for which it is undecidable in general whether two elements nearly commute.

Furthermore, it seems likely that there are groups with solvable word problem for
which the problem of deciding if two elements nearly commute is recursively unde-
cidable. In fact I suspect the following:

Conjecture 8.1 There is a compact nonpositively curved square complex X such that

the problem of deciding whether elements g, h ∈ π1X nearly commute is recursively

undecidable. In particular, there is a compact CSC with this property.
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The connection between Conjecture 8.1 and the problem addressed in this paper
is that for a nonpositively curved 2-complex X, the problem of whether two elements

of π1X nearly commute can be interpreted concretely mostly in terms of periodic
tilings. Indeed, if g and h virtually commute then 〈gn, hn〉 is a free abelian subgroup
of rank 1 or rank 2. The cyclic case is easy to determine by comparing axes for g and
h, and the second case degenerates into the question of whether or not the flat plane

containing their axes is periodic.
Let X be a nonpositively curved square complex. The angle between a pair of ends

of 1-cells is 0 if they are identical, is π/2 if they meet along a corner of a square, and
is π-otherwise. We define a turning angle between two consecutive 1-cells in a path

in X1 analogously. The following is implicit in the proof of Theorem 7.8:

Lemma 8.2 Let X be a nonpositively curved square complex. Let σ be a closed geodesic

path in X1 with a π/2 turning angle. Then up to covering translation, the universal cover

σ̃ of σ is contained in at most one periodic plane σ̃ ⊂ T̃ ⊂ X̃.

Theorem 8.3 (Nearly Commute) Let X be a compact nonpositively curved square

complex which does not contain an immersed anti-torus. There exists an algorithm

which determines if g and h nearly commute for any pair of elements g, h ∈ π1X.

Sketch of Proof If g has a π/2 turning angle, then the centralizer of g is equal to
the centralizer of gn for each n, and this centralizer is a quasiconvex Z or Z

2 subgroup

and by applying Lemma 8.2, it is a simple matter to compute the centralizer and test
if h lies in the centralizer. The same argument holds if h has a π/2 turning angle.

Now assume that neither g nor h has a π/2 turning angle. Suppose each angle
between g and h is π, in the sense that the immersed paths homotopic to gh, gh−1,

hg, and hg−1 have no π/2 turning angles. Form the graph g ∨ h→ X1 by identifying
basepoints, and fold until we obtain an immersion Y → X1 which is a local isometry
and hence π1-injective. Now g and h are immersed cycles in the graph Y , and hence
they commute if and only if they are powers of the same element and this is readily

verified by examining the corresponding words.
Finally, suppose that in the sense above, some angle between g and h is π/2. It

is in this last case that we employ the hypothesis that X contains no immersed anti-
torus. By possibly inverting one or both of g and h and by possibly simultaneously

conjugating, we may assume that a π/2 angle occurs immediately in the positive
direction.

We now algorithmically produce the convex hull of the quarter plane bounded by
g∞ and h∞ by adding squares whenever two edges at one of their corners appear.

Note that the nonpositive curvature implies that there is at most one way to add
missing squares at each stage. Eventually, one either obtains the fundamental domain
of a torus at some point or else the filling procedure terminates with a missing square
at some corner. Indeed, since there is no immersed anti-torus, the filling procedure

cannot continue indefinitely without producing a torus.

Applying the results of the previous section, we can give some positive results
determining whether elements nearly commute for fundamental groups of certain
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nonpositively curved square 2-complexes. These results are based upon the following
fact:

Lemma 8.4 (No Anti-Torus) Let X be a nonpositively curved cyclonormal VH-com-

plex, then X does not admit an immersed anti-torus.

Proof An immersed anti-torus determines an injective path of infinite length in Θτ ,
where τ is the trajectory of the anti-torus.

Corollary 8.5 Let X be a compact nonpositively curved square complex. If its

VH-branched cover X is cyclonormal (after subdividing to make it directed), then it

is decidable whether elements of π1X nearly commute.

Proof Combine Lemma 8.4, Theorem 8.3 and a variant of Theorem 3.1 showing
that X̄ has an anti-torus if and only if X has an anti-torus.
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[11] B. Grünbaum and G. C. Shephard, Tilings and patterns. W. H. Freeman, New York, 1987.
[12] T. Hsu and D. T. Wise, Separating quasiconvex subgroups of right-angled Artin groups. Math. Z.

240(2002), 521–548.
[13] M. Kapovich, Flats in 3-manifolds. Preprint, 1998.
[14] H. B. Lawson, Jr. and S. T. Yau, Compact manifolds of nonpositive curvature. J. Differential Geom.

7(1972), 211–228.
[15] L. Mosher, Geometry of cubulated 3-manifolds. Topology 34(1995), 789–814.
[16] E. Rips, Subgroups of small cancellation groups. Bull. London Math. Soc. 14(1982), 45–47.
[17] V. Schroeder, Codimension one tori in manifolds of nonpositive curvature. Geom. Dedicata

33(1990), 251–263.
[18] P. Scott and T. Wall, Topological methods in group theory. In: Homological group theory, London

Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press, Cambridge, 1979, pp. 137–203.
[19] J. R. Stallings, Topology of finite graphs. Invent. Math. 71(1983), 551–565.
[20] C. M. Weinbaum, The word and conjugacy problems for the knot group of any tame, prime,

alternating knot. Proc. Amer. Math. Soc. 30(1971), 22–26.K, 1971.
[21] D. T. Wise, Complete squared complexes. Preprint 2003.
[22] , Cubulating small-cancellation groups. Geom. Funct. Anal. 14(2004), 150–214.
[23] , Subgroup separability of the figure 8 knot group. Preprint 1998.

https://doi.org/10.4153/CJM-2005-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-018-x


448 D. T. Wise

[24] , Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups.
PhD thesis, Princeton University, 1996.

[25] , Subgroup separability of graphs of free groups with cyclic edge groups. Q. J. Math. 51(2000),
107–129.

[26] , The residual finiteness of negatively curved polygons of finite groups. Invent. Math.
149(2002), 579–617.

[27] , A flat plane that is not the limit of periodic flat planes. Algebr. Geom. Topol. 3(2003),
147–154 (electronic).

Deptartment of Mathematics and Statistics

McGill University

805 Sherbrooke Street West

Montreal, QC

H3A 2K6

e-mail: wise@math.mcgill.ca

https://doi.org/10.4153/CJM-2005-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-018-x

