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Abstract

This paper is concerned with graphs of order n and diameter at most 3 having the property
that by deleting any 5 or fewer vertices (edges) the resulting subgraphs (partial graphs) have
diameter at most A. A graph satisfying the above constraints and having minimum number of
edges is said to be extremal. A characterization of extremal graphs is presented for the case s = 1.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 35.

1. Introduction

We consider only undirected graphs without loops or multiple edges. The termi-
nology of Bondy and Murty (1976) will be adopted throughout unless stated
otherwise.

Denote by Gv{n, k, A, s) the class of graphs with n vertices and diameter at most k
having the property that by deleting any s or fewer vertices the resulting subgraphs
have diameter at most A ̂  k. A graph with minimum number of edges within the
class GF(n, k, A, s) is denoted by Min Gr(n, k, A, s) and the minimum possible
number of edges is denoted by Mr(n,k, A,5). Similarly the class GE(n,k,A,s)
consists of those graphs with n vertices and diameter at most k having the property
that by deleting any s or fewer edges the resulting partial graphs have diameter at
most A ̂  k. A graph with the minimum possible number of edges within the class
(JE(/i, k, A, s) is denoted by Min GE(n, k, A, s), and the minimum possible number
of edges is denoted by ME(n, k, A, s). The graphs with the minimal number of
edges within these classes will be called extremal graphs.

Several papers have appeared in the literature on this problem. In Caccetta
(1978) we presented a comprehensive bibliography of all pertinent developments.
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68 L. Caccetta [2]

An earlier paper by Bollobas and Harary (1976) also provides an exposition of some
of the known results. In this paper we are concerned only with the case of diameter
3, that is k = 3. For s> 1 some asymptotic results are known (see Bollabas (1976)
and Caccetta (1978)); in particular

s+l

and for

For s= 1 the functions Mr(n, 3, A, 1), A ̂ 4 , and ME(n,3, A, 1), A>6 were deter-
mined by Bollobas (1968a, b). Apart from determining ME(n, 3, A, 1) for A = 4 and
5, which was previously unknown, the main contribution of this paper is the
characterization of the extremal graphs. The case A = 3 was studied in Caccetta
(1976a) and so in the following we consider only the case

2. Preliminaries

Throughout this paper G always denotes an extremal graph with M edges; the
class of graphs for which G is a member will be clear by the context in which G
is used. The diameter of G is denoted by D(G). We denote by V(G) (E(G)) the
vertex (edge) set of G. For any set S of vertices or edges we denote by | 5 | the
number of elements in S. The minimum degree of G is denoted by (J-(G). We
denote by <x any vertex of G having minimum degree. P, Q and R denote the sub-
graphs of G—a. whose vertices are at distance 1, 2 and 3, respectively, from a in G.
If Rjk0 we let R1,R2,..-,Rp denote the components of R. Denote by:

A: those vertices of Q that are adjacent to at least two vertices of P or Q.
W: those vertices ofQ—A that are adjacent to exactly one other vertex of Q.
U: the vertices oiQ-A-W.

Qi. those vertices of Q that are adjacent to vertices of Rt.
Aif Wt and Ut: those vertices of Qt that are in A, Wand U, respectively.

Q*: the subgraph spanned by the vertices of Q that are not adjacent to
any vertex of R.

et: the number of edges in Rt.
fi: the number of edges connecting Ri to Q.
[x]: integer part of x.

For each set of vertices defined above the corresponding lower case letter will
always denote the number of vertices in that set, for example a denotes the number
of vertices in A.
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[3] Extremal graphs of diameter 3 69

We conclude this section with the following rather obvious observations:
(1) A Gr{n,k, A,s) (GE{n,k, X,s)) graph is also a Gv(n,k', X',s') (GE(n,k', X',s'))

graph, whenever k'^k, A' ^ A and s' < s. Consequently the functions Mv(n, k, A, s)
and ME(n, k, A, s) are monotonic non-decreasing in s, and monotonic non-increasing
in k and A.

(2) In a Gv(n,k,X,s) (GE(n,k,A,s)) there will be at least s+\ vertex (edge)
disjoint paths of length < A between any two non-adjacent (any two) vertices,
at least one of which has length < k.

(3) The degree of every vertex of G is at least s+l, that is, n(G)^s+l.
(4) If /x(G) = s+1, then every vertex of G which is not adjacent to <x must be

connected to each of the s+l vertices adjacent to a by a path of length ^ A— 1
(from observation (2)).

3. The structures of Min Gr(n, 3,4,1)

Denote by K2m the class of graphs on 2m (^6) vertices that are obtained by
connecting two vertices xx and x4 by m disjoint paths of length 3. The class K2m+1

is obtained from the class K2m by adding one vertex and connecting it to any two
non-adjacent vertices of K2m. Clearly the graphs of K2m and K2m+1 belong to the
class (7F(M,3,4, 1) and they have [£(3«-5)] edges (see Figure 1; we have labelled
the vertex Xi as i). Note that there are 3 members Kfn+I,j= 1,2,3, of the class
K2m+1. Bollobas (1968a) conjectured that these are the only extremal graphs of
Gr(n, 3,4,1). We shall prove this is indeed the case.

K\

FIGURE 1.

The graphs of K2m and K2m+1 have one common feature, namely two adjacent
vertices of degree 2. We shall prove that every G has two adjacent vertices of
degree 2 for all « ̂  6 except for n = 9, and furthermore for n = 9 the only other
possible graph is the graph H9 of Fig. 2. Once this is established we can easily
obtain the extremal structures because of the following lemma.
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70 L. Caccetta [4]

LEMMA 1. If G possesses two adjacent vertices of of degree 2, then

and the graphs of K2m and K2m+1 are the only elements of MinGF(w,3,4,1) for
n = 2m and n = 2m +1, respectively.

PROOF. Let a. and jS denote any two adjacent vertices of G having degree 2 and
suppose a (jS) is adjacent to x (y). We adopt the notation of the previous section
with one minor modification. Here we let Q denote the subgraph of G—<x—/S
whose vertices are adjacent to at least one of x and y, and denote by R the subgraph
formed by the remaining vertices. Every vertex of RuQ must be connected by a
path of length ^ 2 to each of x and y (by observation (4) of Section 2). Hence
U = 0 and every vertex of R is adjacent to at least two vertices of Q. Therefore
simply by counting the number of edges:

(1) M>3 + 2a + %w + 2r + e= £(3«-6) + £(a + r + 2e),

where

(1, if x and y are adjacent,

0, otherwise.

Clearly e = 0 and a+r^l for otherwise M>(3n-5) /2 . Now M = \{2>n-6) only
if A u R = 0 and n is even, giving the structures Kim, n = 2m. If n is odd,
M = f (3« — 5) only if a + r < 1, hence the structures K*m+1, n = 2m +1. This com-
pletes the proof of Lemma 1.

Before proceeding to prove the existence of two adjacent vertices by degree 2 in
G we introduce some further notation. Denote by:

Ra): those vertices of R that are adjacent to at least two vertices of Q.
R™: the vertices of R - Ra).
RW and R\2): the vertices of R{ n Ra> and Rt n R™, respectively.

F> those vertices of 17* that are adjacent to at least one vertex of Rlv.
For each of the above sets the corresponding lower case letter will denote the
number of elements in that set.
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[5] Extremal graphs of diameter 3 71

The following observations are easily made.
(1) JJ.(G) = 2 since M<3n/2 (by the above constructions). We let P = {x,y}.
(2) Every vertex of Q u R should be connected by a path of length < 3 to each

of x and y (by observation (4) of Section 2). Hence every vertex of U must be
adjacent to at least one vertex of Ra).

(3) If R = 0 then G possesses two adjacent vertices of degree 2 for otherwise
Q = A and hence jW>2n-4>£(3w-5 ) .

As the aim is to prove the existence*of two adjacent vertices of degree 2, let us
suppose that no two adjacent vertices in G have degree 2. Then from observation

(3)above/J^0.
For a connected component Rt, we have e^/^— 1, / ^max^ . r i+ r j 1 1 } and

hence

(2) e,+/ i>fr i + K + M(?i-^)+

Thus we have

LEMMA 2. For every i = 1,2, ...,p we have

(3) ^ = ^+/i-fri-^>K(^-^)+

Observe that d^—\, since if r|1( = 0, t^ = 0 and q^l. Also, if dt> —\ then
^SsO.

The following are three useful corollaries of Lemma 2.

COROLLARY 1. If di = —\, then r j 1 ' = ri = \ andqi — vi = 2.

COROLLARY 2. Ifdt = 0,
(a) r|x) = 1 and one of the following conditions is satisfied:

(i) t>j = 2, rj = 2 a«^/ qi = 2or 3,
(ii) i^ = <7f = 3 andri=\,
(iii) i^ = r{ = Wj = 1 and qt = 2,

or
(b) /f' = 2, 9 i = vt = 4 anrf rt = 2.

COROLLARY 3.1fdi = £, ^en one of the following must hold:
(a) r^1' = 0 anrf^i = ri = 'iorqi = r t - 1 = 2.
(b) rj11 = 1 and one of the following conditions holds:

(i) vi = 2,ri = 2> andqi = 2,2>orA
(ii) Uj = 2, r t = 1 anJ ^ = 3

(iii) vi = wi=\,ri = 2 andqx = 3
(iv) oi = 0, ̂  = 1 and qt = 2.
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(c) rj1' = 2 and one of the following conditions holds:
(i) qi = vi = 3andri = 2

(ii) qi = vi = A and rt = 3
(iii) qi = 5,vi = A and ri = 2>

(d) r P = 3 andqi = vi = 6.

The above corollaries are easily established from Lemma 2.

LEMMA 3. G possesses two adjacent vertices of degree 2 for every n ̂  5 except
possibly n = 9 for which case the only other possible graph is the graph H9 of Figure 2.

PROOF. Simply by counting the number of edges:

2(4)

where s is defined as in the proof of Lemma 1.
Since every vertex of U is adjacent to at least one vertex of Ra) we must have

(5) £»<>«.
Note that if Vt n F3# 0 for any i^j, then strict inequality holds in (5). Equations (2),
(4) and (5) give:

(6) j lt
t=l i=l

Now if ia + e + '£lf=,1di>$, then obviously M>${3n-5). Therefore, since
M^ \(2>n — 5) (by above constructions), we may suppose that

(7) ii
Let

dx = min

Obviously a\ = 0 or —£. We consider the two cases separately.

(a) dx = 0.
Clearly for (7) to hold we must have A = 0 , e = 0, dt = 0 for every i = 1,2, ...,p

and F^ n F3- = 0 for every i^y. So every component Rt of i? must satisfy one of
the conditions of Corollary 2 of Lemma 2. If p = 1, then condition (a) of that
corollary can be discarded, since in all cases one of x or y has degree 2 in which
case G would have two adjacent vertices of degree 2. In the other case we obtain the
graph H9. If p>\, then it is easily checked that the diameter constraints are
violated under the assumption that F* n V] = 0 for every i

https://doi.org/10.1017/S1446788700014932 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014932


[7] Extremal graphs of diameter 3 73

Case{b)dx = -\.
If p = 1, then obviously G has adjacent vertices of degree 2, hence p^2. By

Corollary 1 of Lemma 2 we must have v1 = q1 = 2 and rx = 1. For every z>2,
Q\ <"> (?*# 0 since Z)(G) < 3. Hence if rf< = - £, then Fx n 7 f # 0 since 0* = F;. Also,
if dt = 0, J > 2 , then V1nVi^0 to provide for an alternative path of length ^ 4
between the vertices of R1 and i?i when we delete the vertex of V1 n Qi (note that
r ^ 2 and r ^ ' ^ l , since ^ = 0). If rf* = i *>2, then either V1nVrf0 or else
l ^ i n 2 t | = 2, r< = 3 and r[v = 0 or 1 for otherwise the diameter constraints are
violated.

Let px, p2, p3 and p4 denote the number of components of R with dt = — £, 0, \
and >£ respectively. For J > 2 we let V'i = Vi-Vic\V-l, and for &j>2 we let
6 « = I F i n Kyl- J t follows from the above that

(8) Il(vi+di)>u+p2+p3+2pi-l+ S 6i3..
i=l

Equations (2), (4) and (8) give:

(9)

If ^ ^ 0 , then M=\(ln-S) only if a = l , e = 0, p2=p3=pi = 0 and
22^i#j<p *i3- = 0. that is, only if G has adjacent vertices of degree 2. Therefore
we may suppose that A = 0 . If n is even, then clearly M = £(3n — 6) only if G has
adjacent vertices of degree 2. So the only case that needs to be considered is the
case n odd. Now clearly M = \(3n — 5) only if

e = 0, />4 = 0 and p2+p3+

Since x and y are not adjacent (e = 0) every component R{ with rf4 = — \ must
have one vertex of Vt adjacent to x and the other to y in order to provide for an
alternative path of length < 4 between a and the vertex of iJ4 when we delete
one of x or y. Two possibilities arise:

(0 P2+P3 = 1- Then bti = 0 for every i,j>2, i^=j. Suppose dp> — £. Then
rfp = 0 or | . If dp = 0, then r p < 2 and qp^3 (by Corollary 2 of Lemma 2). The
lemma is obvious if p^ 3, hence we suppose/? = 2. Then | V1 n Qp | = 2 for otherwise
we have adjacent vertices of degree 2. But then q < 3, and hence one of x or j has
degree 2. Suppose now that dp = £. Clearly VpnVi = 0 for every JV/> for otherwise
strict inequality holds in (8). Therefore | Vx n Qp \ = 2. Since </p = \, Rp must be a
tree and rp = rp

2) = 3. Consequently at least one vertex, s say, of Vt must be adjacent
to a vertex, f say, of Rp having degree 2. But then there is no (t, jc)-path of length
<4 when we delete the vertex s, hence the lemma is proved for this case.

(") P2 = Ps = 0. Then S 2 «<^«p*«<l and ^ = - J for every i=\,2,...,p.
for every i^j since X>(G)<3. Now q^4 for otherwise one of x or y has

https://doi.org/10.1017/S1446788700014932 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014932


74 L. Caccetta [8]

degree 2. Consequently G must have adjacent vertices of degree 2 as otherwise

2 bu > 2.

This completes the proof of Lemma 3.

Lemmas 1 and 3 give:

THEOREM 1. For every n>5, MF(n,3,4,1) = [\(3n-5)] and the graphs of H9

KZm andK*m+1 are elements o/MinGr(«,3,4, X)forn = 9,n = 2mandn = 2m+\,
respectively.

4. The structures of Min Gr(n, 3, A, 1), A ^ 5

Bollobas (1968a) showed that Mr(n,3,A, 1) = [£(3«-6)], X>5. In this section
we confirm this result and the structures of Min Gr(n, 3, A, 1).

Denote by L | m + 1 the class of graphs on 2w +1 vertices (m > 3) obtained from
the class Kim (defined in the previous section) by inserting a vertex x7 along the
edge xt xe. The class L |m + 1 is obtained from the class L*m'+1 (rn' < m) by adding
m—m' disjoint (jcls x5)-paths of length 3. We form the class Lf from the class

adding 3 vertices, x2m_2, x2m-i ar"d X2m together with the edges x1x2m_2,

.» X2mxi a n d X2m-lx6 o r X2m-lx5- T n e c ' a s s 1̂™ ' s formed
from the class Lfm-1 or Lf""1 by adding one vertex xim and connecting it to xx

and any one of the vertices x3, xt, x5 or x6. The class Lf" is obtained from the
class Lf1-1 by adding a vertex xim and connecting it to x-, and any one of the
vertices x3> xt or x5. For w ^ 4 put L|m = K2m. We illustrate some of these con-
structions in Figure 3.

T. b
5

£

FIGURE 3.
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[9] Extremal graphs of diameter 3 75

It is easily seen that the graphs of Z | m + 1 (J = 1,2) and Z.|w 0 = 1 , 2 , 3 , 4 ) belong
to the class Gv{n, 3, A, 1), A> 5, for n = 2m +1 and n = 2w, respectively, and they
have [£(3«-6)] edges (see Figure 3). We shall prove that these graphs together
with the graph /712 of Figure 4 are the elements of MinGF(n, 3, A, 1), A ^ 5 , for
every n > 6. To do this we need the following lemma.

LEMMA 4. G possesses two adjacent vertices of degree 2 for every n ̂  6, except
possibly for n = \2for which case the only other possible graph is the graph H12 of
Figure 4.

Replacing vt by ut in (3) and noting that dt may now take on the value — 1
(unlike the case A = 4 it is not necessary that every vertex of U be adjacent to a
vertex of Ra)), we can establish Lemma 4 by using arguments similar to those in
the proof of Lemma 3. He omit the details here, but full details can be found in
Caccetta (1976b).

THEOREM 2. If A^5 and n^6, then Mr(n,3, A, 1) = [£(3n-6)] and the graphs of
I*m+I(j= 1,2) and L]m{j= 1,2,3,4) are the elements of MinGv(n,3, A, 1) for
n = 2m+\ and n = 2m, respectively.

PROOF. By Lemma 4, G has two adjacent vertices, a and j8 say, of degree 2.
We adopt the notation in the proof of Lemma 1. Since D(G) < 3 every vertex of
Ri must be adjacent to at least two vertices of Q, hence

If U = 0 , then simply by counting the number of edges

Therefore M = [J(3« — 6)] only if n is even and A u R = 0 , giving the structures
L\m, n = 2m.
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We now consider the case 1/^0 and hence R^0. Clearly each component Rt

of R satisfies the inequality,

(10)

where

(11) 3i

Let

Sx = min {SJ.

Simply by counting the number of edges:

(12) A/>3 + 2a+fw + u+f;

If §!>(), then (10) and (12) give M^|(3«-5), hence S^O. Two cases arise.

Case (a). Bx = 0.

Then

(13) i(
i=l

Note that strict inequality holds in (13) if either Ut n Urf 0 for some i^j or Si > 0
for some i>2. Now equations (10), (12) and (13) give A/>$(3w—6), w ' t n s t " c t

inequality holding if A=£0 or one of (12) or (13) holds with strict inequality. There-
fore, as D(G) ^ 3, the only possibility is p = 1 and « even, giving the structures
Lfm (when rx = 2 and g1 = u1 = 4) and L|m (when rx = 1 and q1 = u1 = 3).

Case(b). S1 = - £ .
Then rx = 1 and ^ = Wl = 2. L ^ n l / ^ 0 for every z>2 since i)(G)^3.

Consequently

(14) i ( « i + 8i)>ii-2+/>1+2/>, + 3ft,
i=l

where /jĵ , /?2
 an<i ft denote the number of components with Sj = 0, \ and ^ 1,

respectively. Clearly p2 = p3 = 0 and /?x^ 1 for otherwise M ̂ ^(3n —5). Therefore
Si = — £ for all except possibly one /, i = l,2,...,p.

If px = 0, then equality in (14) holds only if | t/xn 17̂ | = 1 for every i>2 and
U\n U'j = 0 for every i,j>2, i^j, where U^ = Vi-XJinU^. Equations (10), (12)
and (14) give:
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[11] Extremal graphs of diameter 3 77

Now M = \{2>n-l) only if A = 0 and strict equality holds in (12) and (13).
Hence when n is odd the only possible structures are the graphs Lfm+1 (if p = 1)
and Llm+1 (if p> 1), n = 2m+1.

Clearly M = \(}n-6) only if a+pjSj 1, and if a+pt = 1 then C/Jn C/J = 0 for
every i^j ^ 2 and 11^ n t/f | = 1 for every i ̂  2. When a +/>! = 1 we get the structures
L|m, « = 2m. When o = ft = 0we simply have two vertices of R connected to the
same two vertices of Q thus giving the structures L|m (if W — 0) and L\m (if
W+ 0). This completes the proof of Theorem 3.

5. The Structures of Min GE(n, 3,4,1)

Consider the graphs displayed in Figure 5 below. For m > 4 we obtain the class
M ? m 0 = 1,2,..., 6) from the class M?m"2 by adding an (xlt x^-path of length 3.
The class Mijm is obtained from the class Affm', m'<m, by adding m—rri triangles
with jq being a common vertex in all triangles and the other two being new vertices.
It is easily seen that these graphs belong to the class G^n, 3,4,1) and have [£(3n — 4)]
edges. It turns out that these graphs together with the graphs K\m+1 will exhaust all
the extremal graphs in the class GE(n,3,4,1) except for n = 8, 10 and 12 for which
the graphs of Figure 6 also belong to the class GE(n, 3,4,1) and have [J(3« —4)]
edges.

We note that the graphs of Mf" are the only one of the above graphs having
a cut vertex. Suppose that G has a cut vertex, c say, and G = G1 u G2, where

FIGURE 5.
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FIGURE 6.

V(G1)nV(G2) = c. Let n1 = \V(G1-c)\ and ni = \V(G2)\ so that n = n1+n2.
Since D(G)^3, it can be supposed that every vertex of G1—c is adjacent to c.
Hence the subgraph spanned by Gx has ~^\n-± edges. Bollobas (1968b) proved that
for A ^ 6, ME(n, 3, A, 1) = [\(Sn - 6)]. This together with observation (1) of Section 2
gives

[K3« -6)H Mjfyi, 3,4,1) < [K3B - 4)].

Therefore ME(«, 3,4,1) = [J(3«-A:), where k is an integer taking on values between
4 and 6. Now the subgraph obtained by deleting the «x vertices of G1—c belongs
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[13] Extremal graphs of diameter 3 79

to the class G^n, 3,4,1) and has at least

M-\nx = [$(3n-k)] — \nx = [i(Sn2—k)] edges.

We can therefore restrict our structural study of Min G#(w, 3,4,1) to the case
where G has no cut vertex, since if it had, then we can delete vertices and once we
have a basic graph then we can add vertices to it so as to form a cut vertex.

We notice that Lemma 2 with its three corollaries holds for the edge case. Also,
equations (4)-(9) (with equality possible in (7)) hold. It seems natural to expect
that the proof of Lemma 3 can be used to establish an edge analogue of that lemma.
This is in fact the case. However, here the problem becomes much more complex
as there are more cases to be considered (for example, we need to consider the
case d1 = \). Consequently we do not give the details here but simply state the
results, for full details we refer to Caccetta (1976b).

LEMMA 5. G possesses two adjacent vertices of degree 2 for every n ̂  5 except
possibly n = 8, 10 and 12. Furthermore, for these values ofn the only other possible
structures are the graphs H\, Hf (J = 1,2,3,4) and Hf 0=1 ,2 ,3 ) of Figure 6.

With only minor modification the proof of Lemma 1 can be used to prove,

LEMMA 6.IfG has no cut vertex then M^n,3,A, 1) = [¥?n—5)], and the graphs
of HI, Hf(J = 1,2,3,4), Hj*(j = 1,2,3), Af?»(/ = 1,2,...,6) and K\m+* are
the elements of Min GE(«, 3,4,1) for n = 8, 10, 12, 2m and 2m +1 respectively.

If G has a cut vertex it must be x1 or x4 since D(G) < 3. It is easily seen that the
basic graph Mf is the only graph which can have a cut vertex. This together with
Lemma 6 gives

THEOREM 3. For every n 3s 4, ME(n, 3,4,1) = [i(3«-4)] and the graphs ofH\, Hf
(7= 1,2,3,4), Hf ( y = l , 2,3), M2m (; = 1,2,..., 7) and M\m+1 are the elements of
Min G^n, 3,4,1) for n = 8,10,12,2m and 2m +1 respectively.

6. The structures of Min GB(n, 3, A, 1), A > 5.

Bollobas (1968b) proved that if X>6 and n>6, then ME(n,3, A, 1) = [£(3/1-6)].
In the following we show that the structures of Min(7E(w, 3, A, 1), A>6, coincide
with the structures of Min GE(n, 3, A', 1), A' > 5.

As in the previous section we can restrict our structural study of extremal graphs
to the case when G has no cut vertex. Then obviously the graphs of L|m + 10' =1,2)
and Ljm (J= 1,2,3,4) defined in Section 4 are the only extremal graphs. From
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these graphs it is clear that if G has a cut vertex then it should be either x1 or x4.
In either case it is easily seen that D{G) > 3 if xx or xt is a cut vertex. Consequently,

THEOREM 4. If A > 6 a«rf n > 6, */«?« M^n, 3, A, 1) = [£(3« - 6)], and the elements
of Min GE(n, 3, A, 1) and Min GF(n, 3, A, 1) coincide.

We now consider the case A = 5. The following constructions show that
ME(n,3,5, l)<[i(3n-5)]. Denote by P]m(j = 1,2) the class obtained from the
class LI™-1 by adding a vertex x2m and connecting it to xx and one of x2 or x3

(see Figure 3). The class jf|m+1 (^|m+1) is obtained from the class Pf" (.Pf1) by
adding a vertex x2m+1, joined to each vertex in the neighbour set of x2m. The class
K\m+1 is obtained from the class Kfn+1, rri<m, by adding m—m' triangles with
xx being a common vertex in all triangles and the other two being new vertices.
Put P$m = K2m. Clearly the graphs of Pf(j = 1»2,3) and Kf*+x(J= 1,2,...,6)
belong to the class G%(n, 3,5,1), for n = 2m and n = 2m + \, respectively, and they
have [i(3n—5)] edges.

It follows from observation (1) of Section 2 and Theorem 4 above that

[K3» - 6)] < MJn, 3,5,1) < U(3n - 5)].

As in the case A = 4 we can restrict our structural study of extremal graphs to the
case when G has no cut vertex. Therefore G belongs to the class Gr(n, 3, A', 1)
for some A'. If A' = 4 then, by Theorem 1, JW> li(Sn-5)]. If A'^5 then, since for
n odd the graphs of MinGr(n,3, A', 1) do not belong to the class G%(n,3,5,1)
(see Figure 3), M>[^3n-S)]. Hence ME(n,3,5,1) = [i(3n-5)).

With only minor modification the proof of Lemma 3 can be used to prove

LEMMA 7. Let GeMinGE(n,3,5,l). Then G possesses two adjacent vertices of
degree 2 for every n^5 except possibly n = 9 for which case the only other possible
structure is the graph H9 of Figure 2.

We can now easily establish the following theorem.

THEOREM 5.1fn>5, then ME(«,3,5,1) = $(3n-5)], and the graphs of H9, Pfm

(./= 1,2,3) and K?m+I(j= 1,2,...,6) are the elements ofMinGE(n,3,5,\) when
n = 9, n = 2m and n = 2m +1, respectively.
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