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One of the methods of preparing samples for analysis by Trans-
mission Electron Microscopy (TEM) is the well-known procedure
using a Tripod polisher and the wedge technique (1-3), developed in
our laboratory. Though developed explicitly for preparing samples of
integrated circuit structures built on silicon, the technique lias been
used in our lab for a wide variety of other materials, including metals
and ceramics. In general when working with silicon samples, we have
the luxury of starting with large wafer pieces or chips that are generally
at least a couple of millimeters square or larger. Recently, however, we
needed to work for an extended period on GaAs based lasers, where
the devices requiring analysis were individual lasers extracted from
individual packages. These small samples, measuring 100x100x50
microns, are too small for the manual handling involved in routine
mechanical cross sectioning methods. A typical example of such a
device can be seen in Figure 1 where the actual device, indicated by
the arrow, has been detached from the package and is being held by
the bond wire. Furthermore, we found the GaAs used in these lasers
to be less robust mechanically than silicon during mechanical polish-
ing. This article describes the method we developed for dealing with
these tiny devices.

Figure 1 -• Depackaged laser device still attached to package by the bond wire.

A larger sample, for easier manual handling, is made by gluing
the original small sample between a larger piece of silicon and a larger
piece of dimpled quartz. The dimpled depression in the quartz is just
large enough to surround the original sample. The sample is then
mechanically thinned down using a Tripod polisher and the wedge
technique. The quartz piece, glued to the top of the original sample,
allows the progress of the polish to be monitored as the first side of
the cross section is being mechanically polished. The silicon piece,
glued to the bottom of the original sample, is used to gauge the final

Figure 2 — Laser device glued to silicon support piece next to a dime.

thickness of the wedge produced when polishing the second side of
the cross section using the wedge technique. A final brief ion mill is
used to remove any mechanical damage and to bring the device to
electron transparency.

Before polishing, a pre-glue process is necessary where the three
parts: the dimpled quartz piece, the silicon piece, and the sample are
glued together in a stack. The first step is to mount the device to a piece
of silicon, typically 10x10 mm for easy handling. The gluing process
starts with a very small drop of epoxy (we use Gatan G-l) that is ap-
plied to the rough, backside, of the silicon piece using the small tip of
a toothpick. It is best to use a minimal amount of epoxy for this step,
just enough to extend completely under the laser device. The laser is
gently pressed down into the glue and the glue is allowed to cure at
80°C for 4 hours. The device, mounted on silicon, is seen in Figure 2,
with a dime as a reference for size.

Next, a 10x10x1 mm square is cut from a piece of quartz. The
quartz we used was a large block purchased from a local Science and
Hobby store. The quartz block had to be cut down to a 10x10mm rod,
then sliced into lmm thick pieces. This square is then mounted on the
bottom of a Tripod polisher using glycol pthalate. The quartz is polished
flat on both sides using diamond lapping film down to a 3 urn finish,
ending with a final thickness of-0.75 mm. These polishing operations
were required to remove the damage from cutting the quartz and make
it possible to see through the quartz during the specimen preparation
steps. After polishing, the quartz is taken off of the Tripod polisher
and a dimple made in the center of the quartz piece using an ultrasonic
cutting tool. We used a standard, solid, ultrasonic tip that we modified
by fileing the tip down to a size slightly larger than the device we would
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Figure 3 — Diagram showing-encapsulation structure.
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FigiLre 4 — Tripod mounting configuration for first side polishing,

be mounting. The depth of the hole was gauged by placing the quartz
over the mounted device, and cutting repeated until the quartz and
silicon surfaces would meet without the quartz resting on the device.
The quartz piece is now cleaned off in acetone and allowed to air dry.

After curing, the dimple in the quartz piece is filled with G-I epoxy
and a small drop of epoxy applied to the top of the device package with
a toothpick. Filling the cavity and coating die device with tresh drops
of epoxy minimizes the likelihood that an air bubble will be trapped
around the device, causing difficulties during mechanical polishing.
The dimple is then carefully inverted over the device package a.nd the
quartz is pressed down on to the silicon piece with the epoxy drops
filling the cavity around the device and extruding out between the
quartz and silicon, bonding the pieces together, as seen in Figure 3. The
dimple is then inspected to make sure that there are no air bubbles in
the epoxy and the epoxy is allowed to cure overnight at 80°C.

This silicon/device/quartz stack is now polished with a Tripod pol-
isher. (South Bay Technology, Inc.) (4)Glycol phthaiate is used to attach
the stack to a Tripod polisher, with the quartz layer facing towards the
front of the polisher Figure 4. The stack is then polished down to the de-
vice with progressively finer grits of diamond paper, using only 3 micron
or finer to polish the device. The final polishing is done by using 0.25
micron diamond slurry on a "Final A" polishing cloth (Allied High Tech
Products Inc.) for thirty seconds, followed by ten seconds of colloidal
silica on the same cloth. Longer final polishing times cause rounding of
the sample edges and should be avoided. The polished surface is
carefully wiped clean using soap and water, followed by acetone.

Figure 5 — Optical image of fmai polished laser structure, Note the
thickness fringes in the silicon support.
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Figure S— TEM image of a typical laser after a-few minutes ofAr ion
milling to remove polishing damage.

Before second side polishing, a grid is mounted to the first side
polished surface. M-Bond 610 epoxy (Measurements Group Inc.) is
painted on one side of a 0.4 X 2 mm slotted molybdenum grid. The
epoxy side of the grid is then carefully pressed down on the polished
surface, aligning one edge of the grid with the back side of the laser
device so that the laser/silicon interface is in the grid opening. The
M-Bond epoxy is now cured for two hours at 80°C. The Tripod is pre-
pared for wedge polishing using die mediod discussed in Benedict, etal.
(1996). A small drop of cyano aery late (super) glue is placed in the slot of
the grid and on the sample post of the Tripod polisher to minimize the
incursion of air bubbles during mounting, The stack is oriented over the
sample post so now the silicon layer is facing the front of the polisher.
The grid is then carefully pressed down in the glue on the sample post
and the excess glue around the grid is removed with a piece of filter
paper. The cyanocrylate glue is cured overnight at 80°C.

The rear feet of the Tripod are extended out an additional 100
microns to compensate for the thickness of the grid and provide suf-
ficient wedge for the structural integrity of the sample. The stack is
wet polished using diamond paper while monitoring the thickness of
the wedge using the changes in transmitted light color of the silicon
layer. The stack is mechanically polished until the transmitted light
forms a multicolored fringe along the silicon-to-device interface. In
cases where the laser substrate cannot be depackaged from the laser,
the transmitted light fringes from that part of the device can be used
to gauge the final thickness. This can be seen in Figure 5, with the
various parts of the specimen identified. The device is thinned to
TEM transparency using low angle Ar ion milling and monitoring the
thinning process with the TEM. A typical example of a final thinned
laser is seen in Figure 6.

Using this technique, we have successfully prepared a large number
of laser devices, and have adapted the technique to other structures too

small to be prepared by Tripod polishing directly. •
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4. The Tripod Polisher as well as given] phthalate wax and other supplies is available
from South Bay Technology, Inc. (ivww.sontlibaytech.com).
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