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Abstract

In the literature on active redundancy allocation, the redundancy lifetimes are usually
postulated to be independent of the component lifetimes for the sake of technical con-
venience. However, this unrealistic assumption leads to a risk of inaccurately evaluating
system reliability, because it overlooks the statistical dependence of lifetimes due to
common stresses. In this study, for k-out-of-n:F systems with component and redun-
dancy lifetimes linked by the Archimedean copula, we show that (i) allocating more
homogeneous redundancies to the less reliable components tends to produce a redundant
system with stochastically larger lifetime, (ii) the reliability of the redundant system can
be uniformly maximized through balancing the allocation of homogeneous redundancies
in the context of homogeneous components, and (iii) allocating a more reliable matched
redundancy to a less reliable component produces a more reliable system. These novel
results on k-out-of-n:F systems in which component and redundancy lifetimes are statis-
tically dependent are more applicable to the complicated engineering systems that arise
in real practice. Some numerical examples are also presented to illustrate these findings.

Keywords: Archimedean copula; completely monotone; left tail permutation decreasing;
likelihood ratio order; majorization; multivariate mixture; reversed hazard rate order;
usual stochastic order
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1. Introduction

It is a common practice to allocate redundancies to a system at the component level, in
order to enhance system reliability by reducing the chance of unexpected system failure, and
this is of wide interest in reliability engineering and system security. In industrial engineer-
ing, two types of allocations are commonly practiced: (i) an active redundancy, also referred
to as a hot standby, runs in parallel to system components and starts functioning at the
same time as the system components are initiated; (ii) a standby redundancy, also referred
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to as a cold standby, is put in standby and starts functioning once some component fails.
For pioneering discussions on redundancy allocation, the reader may refer to Boland et al.
[6, 7], Shaked and Shanthikumar [40], Singh and Misra [43], and Singh and Singh [44], among
others. For a review of recent advances in active redundancy allocation, we refer the reader to
Li and Ding [25]. In the literature, some authors have studied the general standby model, which
includes active redundancy and standby redundancy as special cases and hence is also referred
to as warm standby. See, for example, She and Pecht [42], Amari et al. [1], and references
therein.

In most of the research on redundancy allocation, component lifetimes and redundancy
lifetimes are assumed to be independent. However, since components and active redundan-
cies operate together and thus bear common stresses, their lifetimes are usually statistically
dependent. Thus, evaluations of system reliability may be inaccurate under the assumption
of independence. Recently, some authors have studied redundancy allocation in the context
where system component lifetimes are mutually dependent but statistically independent of
redundancy lifetimes. See, for example, You and Li [47] and You et al. [49]. In this study,
we focus on active redundancy allocation to k-out-of-n:F systems with component and redun-
dancy lifetimes being statistically dependent. Our results in this more general context enrich
the research on active redundancy allocation and provide guidelines to practice engineering
reliability.

In the theory of reliability, the coherent structure, taking into account monotonicity and
system structure with respect to components, defines a very broad class of systems, includ-
ing series, parallel, and k-out-of-n:F systems as special cases. See, for example, Barlow and
Proschan [2] for a comprehensive discussion on coherent systems. A k-out-of-n:F system fails
once k of its n components fail to operate properly. Apart from the well-known fact that the
k-out-of-n:F structure includes series (i.e., k = 1) and parallel (i.e., k = n) systems as two typi-
cal cases, the lifetime of a k-out-of-n:F system takes the form of the kth smallest order statistic,
and this facilitates the analytical study of system reliability. Thanks to the invention of the
signature, a coherent system with exchangeable component lifetimes can be decomposed as
a mixture of k-out-of-n:F systems according to system signature, and thus the k-out-of-n:F
structure actually serves as the basic building block for coherent systems with homogeneous
components. (For more on signatures, the reader may refer to Navarro et al. [35] and the mono-
graph of Samaniego [38].) As a consequence, the k-out-of-n:F structure has received special
attention in recent research on engineering reliability. In the literature, Boland et al. [6] were
among the first to study the optimal allocation of multiple active redundancies to k-out-of-
n:F systems by means of the majorization order. For example, for a k-out-of-n:F system with
independent and stochastically ordered component lifetimes, the redundant system survival
function was shown to be Schur-concave with respect to the allocation policy. Since the system
hazard rate function plays a significant role in describing the way in which the system wears
out, Misra et al. [30] further proved that the hazard rate function of a redundant series system
is Schur-convex with respect to the allocation policy in the above context. Afterward, for a
redundant k-out-of-n:F system with component and active redundancy lifetimes statistically
independent and identically distributed (i.i.d.), Hu and Wang [19] showed that the redundant
k-out-of-n:F system survival function is Schur-concave with respect to the allocation policy. In
consideration of the fact that system components usually share common stresses and thus admit
statistically dependent lifetimes, You and Li [47] examined the optimal allocation of active
redundancies to a k-out-of-n:F system with stochastic arrangement increasing component life-
times. In addition, You et al. [49] further studied the allocation of active redundancies to a
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k-out-of-n:F system with component lifetimes being left tail permutation decreasing, which is
an even weaker assumption than the stochastic arrangement increasing assumption. For more
on related research in this line, the reader may refer to Shaked and Shanthikumar [40], Boland
et al. [7], Singh and Misra [43], Singh and Singh [44], Li and Hu [26], Li and Ding [25],
Belzunce et al. [3, 4], Zhao et al. [50], and Fang and Li [16, 17].

In most research on active redundancy allocation to k-out-of-n:F systems with statistically
dependent component lifetimes, the redundancy lifetimes are usually assumed to be indepen-
dent of component lifetimes. It is worth noting that such an assumption is rather restrictive in
some real-world contexts. In many practical situations, system components and active redun-
dancies operate in the same environment or share the same load, which means their lifetimes
should be statistically dependent. This more general context is particularly apropos to com-
plicated engineering systems in real practice. To the best of our knowledge, Belzunce et al.
[3, 4] were the first to study the k-out-of-n:F system with component lifetimes statistically
dependent on a single redundancy lifetime. Specifically, they established the usual stochastic
order on the redundant k-out-of-n:F system lifetime under the assumption that component
lifetimes conditioned by the redundancy lifetime are stochastic arrangement increasing.
Subsequently, You and Li [48] rebuilt the usual stochastic order on the redundant k-out-of-
n:F system lifetime in the context that, conditioned by the redundancy lifetime, component
lifetimes are left tail weakly stochastic arrangement increasing. Recently, Torrado et al. [45]
considered dependence among components and redundancies in their study of multi-level
redundancy allocation for coherent systems formed by modules. In this vein, we compare
redundant system lifetimes in the context in which component lifetimes and redundancy
lifetimes are statistically dependent. For the sake of convenience, component lifetimes and
redundancy lifetimes are assumed to be linked by an Archimedean copula, which is rather
popular in statistics, operations management, actuarial and financial risks, etc.

This paper deals with k-out-of-n:F systems with component lifetimes and active redundancy
lifetimes linked by an Archimedean copula. Our work is threefold. For multiple homogeneous
redundancy lifetimes, we show that allocating more redundancies to the less reliable compo-
nents tends to produce a stochastically larger system lifetime. For component lifetimes and
redundancy lifetimes both homogeneous, we prove that the system reliability can be uniformly
maximized by balancing the allocation of redundancies. In the context of matched redundan-
cies, we find that system reliability can be improved by allocating a redundancy with a larger
baseline reversed hazard rate to a component with smaller baseline reversed hazard rate.

The rest of the paper proceeds as follows. Section 2 reviews some basic concepts related to
the main results and introduces a technical lemma which will be useful in developing the main
result. In Sections 3 and 4, we present the main comparison results concerning the allocation of
redundancies to k-out-of-n:F systems with components and redundancy lifetimes linked by an
Archimedean copula. In Section 5, we develop the usual stochastic order on the lifetime of the
system with matched redundancies under the multivariate mixture model, and then we present
the result in the Archimedean copula setting as a direct consequence. Finally, Section 6 closes
the study with some concluding remarks on further topics for research in this line.

Throughout the remaining sections, real vectors such as x = (x1, · · · , xn) and a =
(a1, · · · , an) and random vectors such as X = (X1, · · · , Xn) and Y = (Y1, · · · , Ym) are all
assumed to be nonnegative, and I(A) denotes the indicator function on a set A, which takes
the value 1 or 0 according to whether A occurs or not. For brevity, we denote the maximum
by max(x, y) = x ∨ y and the minimum by min(x, y) = x ∧ y, and for sub-vectors we use the
notation x{1,2} = (x3, · · · , xn). Also, all expected values are implicitly assumed to be finite
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whenever they appear. For convenience, the terms ‘increasing’ and ‘decreasing’ stand for
‘nondecreasing’ and ‘nonincreasing’, respectively.

2. Some preliminaries

Before proceeding to the main results, for ease of reference we review important notions
such as majorization, stochastic orders, and copulas. We also introduce one technical lemma,
which will be useful in developing our main results.

For a real vector (a1, · · · , an), denote by a[i] the ith largest element of a1, · · · , an, for
i = 1, · · · , n.

Definition 2.1. A real vector b = (b1, · · · , bn) is said to be majorized by another real vector
a = (a1, · · · , an), and we write b ≺m a, if

n∑
i=1

bi =
n∑

i=1

ai and
k∑

i=1

b[i] ≤
k∑

i=1

a[i], for k = 1, · · · , n − 1.

Note that b ≺m a implies that a is more dispersed than b. A linear transformation M on R
n is

called a T-transform if

M = λJ + (1 − λ)Q, for some λ ∈ [0, 1], (2.1)

where J is the identity matrix, and Q is a permutation matrix that interchanges two coordinates.
Majorization b ≺m a is known to be realizable by using successive T-transforms.

Lemma 2.1. (Marshall et al. [29, Lemma 2.B.1].) If a ≺m b, then a can be derived from b by
successive applications of a finite number of T-transforms.

A real function g(x) : Rn �→R is said to be Schur-convex (Schur-concave) if

g(b) ≤ (≥)g(a), for any a, b ∈R
n such that b ≺m a.

Majorization is usually utilized to characterize various interesting inequalities associated
with Schur-convex (Schur-concave) functions. In the sequel, we will employ majorization
to compare the degree of balance of allocation policies. For a comprehensive exposition on
majorization, we refer the reader to the monograph of Marshall et al. [29].

Definition 2.2. Consider a random variable X with cumulative distribution function (CDF)
F, survival function (SF) F̄ = 1 − F, and probability density function (PDF) f , and another
random variable Y with CDF G, SF Ḡ = 1 − G, and PDF g. We make the following definitions:

(i) X is said to be smaller than Y in the sense of the likelihood ratio order (and we write
X ≤lr Y) if g(x)/f (x) is increasing in x.

(ii) X is said to be smaller than Y in the sense of the hazard rate order (and we write X ≤hr Y)
if Ḡ(x)/F̄(x) is increasing in x.

(iii) X is said to be smaller than Y in the sense of the reversed hazard rate order (and we
write X ≤rh Y) if G(x)/F(x) is increasing in x.

(iv) X is said to be smaller than Y in the sense of the usual stochastic order (and we write
X ≤st Y) if F̄(x) ≤ Ḡ(x) for any x.
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Stochastic orders are popular in many areas of applied probability and statistics, including
engineering reliability, operations management, quantitative risk, business and economics, etc.
Standard references on stochastic orders with applications include Kaas et al. [21], Denuit
et al. [13], Shaked and Shanthikumar [41], and Li and Li [23]. The reader may refer to these
works for more detailed discussions.

For any {i, j} such that 1 ≤ i< j ≤ n, define the permutation

τij(x1, · · · , xi, · · · , xj, · · · , xn) = (x1, · · · , xj, · · · , xi, · · · , xn).

Definition 2.3. A multivariate real function g(x) : Rn →R is said to be

(i) arrangement increasing (AI) with respect to {i, j} such that 1 ≤ i< j ≤ n if

(xi − xj)[g(x) − g(τij(x))] ≤ 0, for all x ∈R
n;

(ii) left tail permutation decreasing (LTPD) with respect to (i, j) such that 1 ≤ i< j ≤ n if

∫ t

−∞
[
g(x) − g(τij(x))

]
dxi ≥ 0, for any t ≤ xj and all x ∈R

n.

AI functions and LTPD functions are useful in many applied areas, such as econometrics,
actuarial risk management and reliability theory, etc. For references on AI functions with appli-
cations, we refer the reader to Hollander et al. [18], Boland and Proschan [2], Boland et al. [6],
and Li and You [27]. Absolutely continuous random vectors with an AI or LTPD PDF play a
part in the development of our main results.

Definition 2.4. An absolutely continuous random vector X is said to be

(i) stochastic arrangement increasing (SAI) if the joint PDF f (x) is AI with respect to any
(i,j) such that 1 ≤ i< j ≤ n;

(ii) left tail permutation decreasing (LTPD) if the joint PDF f (x) is LTPD with respect to
any (i,j) such that 1 ≤ i< j ≤ n.

It should be remarked here that the SAI property implies the LTPD property. Both the SAI
property and the LTPD property can be extended to generic random variables; in a general
context, the latter is known as the left tail weak stochastic arrangement increasing (LWSAI)
property. For more on the SAI and LTPD properties and their applications in quantitative risk
and engineering reliability, we refer the reader to Cai and Wei [10, 11], Li and You [27], and
references therein.

For a random vector X = (X1, · · · , Xn) with univariate marginal CDFs F1, · · · , Fn, if there
exists a mapping C : [0, 1]n �→ [0, 1] such that the CDF of X may be represented as

F(x1, · · · , xn) = C(F1(x1), · · · , Fn(xn))

for all x1, · · · , xn, then C(u1, · · · , un) is called the copula of X.
A function ϕ on (0,+∞) is said to be n-monotone if (−1)kϕ(k)(t) ≥ 0 for any k =

0, 1, · · · , n and all t ∈ (0,+∞), where ϕ(0)(t) ≡ ϕ(t) and ϕ(k)(t) denotes the kth-order deriva-
tive for k> 0. The function ϕ is said to be completely monotone if (−1)kϕ(k)(t) ≥ 0 for any
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t> 0 and k = 0, 1, · · · . Obviously, an n-monotone function ϕ(t) is such that (−1)kϕ(k)(t) is
always decreasing in t for k = 1, · · · , n − 1.

Definition 2.5. For an n-monotone function ϕ : [0,+∞) �→ (0, 1] with ϕ(0) = 1 and
lim

t→∞ ϕ(t) = 0, the function

C(u1, · · · , un) = ϕ
(
ϕ−1(u1) + · · · + ϕ−1(un)

)
is called an Archimedean copula, and ϕ is referred to as the generator function.

As for two random variables with reversed hazard rate order and the generator of an
Archimedean copula, we introduce a technical lemma which will be useful in developing our
main results.

Lemma 2.2. For Xi ∼ Fi with PDF fi, i = 1, 2, and a log-convex generator ϕ, if X1 ≤rh X2, then

f1(x)ψ ′(F1(x)) ≥ f2(x)ψ ′(F2(x)) for all x ≥ 0,

where ψ = ϕ−1 is the generalized inverse of ϕ.

Proof. Since ϕ is log-convex, ϕ(x)
ϕ′(x) is decreasing. Because ψ = ϕ−1 is decreasing, it follows

that

xψ ′(x) = ϕ(ψ(x))

ϕ′(ψ(x))

is increasing. Also, X1 ≤rh X2 implies X1 ≤st X2, i.e., F1(x) ≥ F2(x) for all x. Thus, it holds
that

F1(x)ψ ′(F1(x)) ≥ F2(x)ψ ′(F2(x)), for all x.

In view of the fact that ψ ′(x) ≤ 0 for all x, we have

0 ≤ F1(x)ψ ′(F1(x))

F2(x)ψ ′(F2(x))
≤ 1, for all x.

On the other hand, X1 ≤rh X2 implies f1(x)
F1(x) ≤ f2(x)

F2(x) for all x. Therefore, it holds that

F1(x)ψ ′(F1(x))

F2(x)ψ ′(F2(x))
· f1(x)

F1(x)
≤ f2(x)

F2(x)
,

which is equivalent to f1(x)ψ ′(F1(x)) ≥ f2(x)ψ ′(F2(x)) for all x. �
A widely used tool in statistical practice, copulas are utilized to model statistical dependence

among multiple random variables in many applied areas, such as biostatistics, econometrics,
actuarial risk, etc. For comprehensive expositions on copula theory, one may refer to the mono-
graphs of Joe [20] and Nelsen [36]. In the past two decades, much attention has been paid to
Archimedean copulas because of their mathematical tractability and the flexibility they allow in
specifying the dependence structure of multivariate distributions. In the sequel, we will employ
Archimedean copulas to model the dependence structure of the component and redundancy
lifetimes.
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3. On systems with stochastically ordered component lifetimes

Consider a redundant k-out-of-n:F system with dependent component lifetimes X =
(X1, · · · , Xn) and dependent active redundancy lifetimes Y = (Y1, · · · , Ym). Let r =
(r1, · · · , rn) be the allocation policy, under which ri ≥ 0 redundancies are allocated to the
ith component, i = 1, · · · , n, and r1 + · · · + rn = m, i.e.,

r ∈An,m = {(r1, · · · , rn) : r1 + · · · + rn = m, ri ≥ 0, i = 1, · · · , n}.
For k = 1, · · · , n, denote by (X1, · · · , Xn)k the kth smallest order statistic based on
X1, · · · , Xn. Then, with the allocation policy r, the redundant k-out-of-n:F system attains the
lifetime

Tk:n(X, Y; r) = (
X1 ∨ Y1 ∨ · · · ∨ Yr1 , · · · · · · , Xn ∨ Yr1+···+rn−1+1 ∨ · · · ∨ Ym

)
k. (3.1)

Li and Ding [24, Theorem 1] proved for k-out-of-n:F systems that, under the framework of
i.i.d. redundancy lifetimes and independent component lifetimes, more redundancies should be
allocated to the components with stochastically smaller lifetimes: if X1, · · · , Xn are indepen-
dent, Y1, · · · , Ym are i.i.d., and X is independent of Y, then, for any r ∈An,m, k = 1, · · · , n,
and any (i,j) such that 1 ≤ i< j ≤ n,

Tk:n(X, Y; r) ≤st Tk:n
(
X, Y; τij(r)

)
whenever Xi ≤st Xj and ri ≤ rj. (3.2)

Subsequently, You and Li [47] presented a similar conclusion on the allocation of redundan-
cies to k-out-of-n:F systems in the setting of SAI component lifetimes and i.i.d. redundancy
lifetimes: if (X1, · · · , Xn) is SAI, Y1, · · · , Ym are i.i.d., and X is independent of Y, then, for
any r ∈An,m, k = 1, · · · , n, and any (i,j) such that 1 ≤ i< j ≤ n,

Tk:n(X, Y; r) ≤st Tk:n
(
X, Y; τij(r)

)
whenever ri ≤ rj. (3.3)

You et al. [49, Theorem 4.3] further strengthened (3.3) from SAI component lifetimes to LTPD
ones: if X is LTPD, Y1, · · · , Ym are i.i.d., and X is independent of Y, then, for any r ∈An,m,
k = 1, · · · , n, and any (i,j) such that 1 ≤ i< j ≤ n,

Tk:n(X, Y; r) ≤st Tk:n
(
X, Y; τij(r)

)
whenever ri ≤ rj. (3.4)

As per Proposition 4.1 of Cai and Wei [11], for (X1, · · · , Xn) linked by an Archimedean
copula with a completely monotone generator, X1 ≤rh · · · ≤rh Xn implies that (X1, · · · , Xn) is
LWSAI. Thus, based on the result of (3.4), one can extend the result of (3.2) from independence
of component lifetimes to an Archimedean copula, at the cost of upgrading the usual stochastic
order of component lifetimes to the reversed hazard rate order.

It is worth mentioning that all of the above research work is developed under the assumption
that system component lifetimes X and redundancy lifetimes Y are statistically independent of
each other. Such an assumption is often impractical in real-world applications of reliability
engineering. In this section we study the allocation of m redundancies to n components in the
novel context in which the m + n lifetimes involved are statistically dependent, by conducting
stochastic comparison on the redundant system lifetime. Specifically, we compare the redun-
dant k-out-of-n:F system with stochastically ordered component lifetimes and redundancy
lifetimes linked by an Archimedean copula.

Now let us present our first main result on the redundant k-out-of-n:F system with com-
ponent and redundancy lifetimes linked by an Archimedean copula. This result serves as
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an interesting generalization for both Li and Ding [24, Theorem 1] and You et al. [49,
Theorem 4.3].

Theorem 3.1. Suppose that the lifetimes (X1, · · · , Xn, Y1, · · · , Ym) are linked by one
Archimedean copula with a log-convex and (n + 1)-monotone generator, and Y1, · · · , Ym are
identically distributed. Then, for k = 1, · · · , n, any r ∈An,m, and (i,j) such that 1 ≤ i< j ≤ n,

Tk:n(X, Y; r) ≤st Tk:n(X, Y; τij(r)) (3.5)

whenever Xi ≤rh Xj and ri ≤ rj.

Proof. Without loss of generality, we consider (i, j) = (1, 2) with r2 > r1 ≥ 0. Define

Z1 = max(Y1, · · · · · · , Yr1 ),

Z = max(Yr1+1, · · · , Yr2 ),

Z2 = max(Yr2+1, · · · · · · , Yr1+r2 ),

Zi = max
(
Yr1+···+ri−1+1, · · · · · · , Yr1+···+ri−1+ri

)
, i = 3, · · · , n.

As per (3.1), we have

Tk:n(X, Y; r)
st= (

X1 ∨ Z1, X2 ∨ Z2 ∨ Z, X3 ∨ Z3, · · · · · · , Xn ∨ Zn
)

k (3.6)

and
Tk:n(X, Y; τ12(r))

st= (
X1 ∨ Z1 ∨ Z, X2 ∨ Z2, X3 ∨ Z3, · · · · · · , Xn ∨ Zn

)
k, (3.7)

for any k = 1, · · · , n, where
st= means equality in distribution.

Let Fi and fi be the CDF and PDF, respectively, of Xi, for i = 1, · · · , n, and let G and g be
the common CDF and PDF, respectively, of the Yj, j = 1, · · · ,m. For the Archimedean copula
with generator ϕ, let ψ = ϕ−1, and define

�(z, x) = (r2 − r1)ψ(G(z)) + [r1ψ(G(x1)) +ψ(F1(x1))]

+ [r1ψ(G(x2)) +ψ(F2(x2))] +
n∑

i=3

[riψ(G(xi)) +ψ(Fi(xi))]. (3.8)

Then the random vector
(
Z, X1 ∨ Z1, · · · , Xn ∨ Zn

)
has CDF

H(z, x) = P(Z ≤ z, X1 ∨ Z1 ≤ x1 · · · , Xn ∨ Zn ≤ xn) = ϕ
(
�(z, x)

)
and hence PDF

h(z, x)

= ϕ(n+1)(�(z, x))(r2 − r1)g(z)ψ ′(G(z))[r1g(x1)ψ ′(G(x1)) + f1(x1)ψ ′(F1(x1))]

· [r1g(x2)ψ ′(G(x2)) + f2(x2)ψ ′(F2(x2))]
n∏

i=3

[rig(xi)ψ
′(G(xi)) + fi(xi)ψ

′(Fi(xi))].

Note that Z has PDF

l(z) = (r2 − r1)g(z)ψ ′(G(z))ϕ′((r2 − r1)ψ(G(z))).
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The random vector (X1 ∨ Z1, X2 ∨ Z2, · · · , Xn ∨ Zn | Z = z) has PDF

ρ(x|z) = h(z, x)

l(z)

= �(z, x{1,2})[r1ψ
′(G(x1))g(x1) +ψ ′(F1(x1))f1(x1)]

· ϕ(n+1)(�(z, x))[r1ψ
′(G(x2))g(x2) +ψ ′(F2(x2))f2(x2)], (3.9)

where

�(z, x{1,2}) =

n∏
i=3

[
riψ

′(G(xi))g(xi) +ψ ′(Fi(xi))fi(xi)
]

ϕ′((r2 − r1)ψ(G(z))
) . (3.10)

Thus, for any x2 ≥ t ≥ 0, it holds that∫ t

0
ρ(x|z)dx1 = �(z, x{1,2})[r1ψ

′(G(x2))g(x2) +ψ ′(F2(x2))f2(x2)]

·
∫ t

0
ϕ(n+1)(�(z, x))d[r1ψ(G(x1)) +ψ(F1(x1))]

= �(z, x{1,2})[r1ψ
′(G(x2))g(x2) +ψ ′(F2(x2))f2(x2)]

· [ϕ(n)(�(z, t, x2, · · · , xn)) − ϕ(n)(+∞)
]
, (3.11)

and ∫ t

0
ρ(τ12(x)|z)dx1 = �(z, x{1,2})[r1ψ

′(G(x2))g(x2) +ψ ′(F1(x2))f1(x2)]

· [ϕ(n)(�(z, x2, t, x{1,2})) − ϕ(n)(+∞)
]
. (3.12)

As per Lemma 2.2, the fact that X1 ≤rh X2 along with the log-convex generator ϕ implies that

f1(x)ψ ′(F1(x)) ≥ f2(x)ψ ′(F2(x)), for all x ≥ 0, (3.13)

and hence

− r1g(x2)ψ ′(G(x2)) − f2(x2)ψ ′(F2(x2))

≥ −r1g(x2)ψ ′(G(x2)) − f1(x2)ψ ′(F1(x2))

≥ 0, for all x2 ≥ 0. (3.14)

For x2 ≥ t, taking the integral over [t, x2] on both sides of (3.13), we have

ψ(F1(x2)) −ψ(F1(t)) ≥ψ(F2(x2)) −ψ(F2(t)),

and thus from (3.8) it follows that

�(z, t, x2, x{1,2}) − �(z, x2, t, x{1,2})
=ψ(F1(t)) +ψ(F2(x2)) −ψ(F1(x2)) −ψ(F2(t))

≤ 0, for any x2 ≥ t.
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For the (n + 1)-monotone generator ϕ, (−1)nϕ(n)(x) is decreasing, and thus it holds
that

(−1)n[ϕ(n)(�(z, t, x2, x{1,2})) − ϕ(n)(+∞)
]

≥ (−1)n[ϕ(n)(�(z, x2, t, x{1,2})) − ϕ(n)(+∞)
]≥ 0.

Also, from (3.10) it follows that

(−1)n−1
�(z, x{1,2})

= −1

ϕ′((r2 − r1)ψ(G(z)))

n∏
i=3

[−r1ψ
′(G(xi))g(xi) −ψ ′(Fi(xi))fi(xi)]

≥ 0, for any z and x{1,2}.

As a consequence, based on (3.11), (3.12), and (3.14), for any t ≤ x2 we have

∫ t

0
ρ(x|z)dx1 = (−1)n−1

�(z, x{1,2})[−r1ψ
′(G(x2))g(x2) −ψ ′(F2(x2))f2(x2)]

· [(−1)nϕ(n)(�(z, t, x2, x{1,2})) − (−1)nϕ(n)(+∞)
]

≥ (−1)n−1
�(z, x{1,2})[−r1ψ

′(G(x2))g(x2) −ψ ′(F1(x2))f1(x2)]

· [(−1)nϕ(n)(�(z, x2, t, x{1,2})) − (−1)nϕ(n)(+∞)
]

=
∫ t

0
ρ(τ12(x)|z)dx1.

That is, (X1 ∨ Z1, X2 ∨ Z2, · · · , Xn ∨ Zn | Z = y) is LTPD with respect to (1, 2).
On the other hand, for any increasing function u, since, for x1 ≤ x2 and z, the difference

u((x1 ∨ z, x2, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)

=

⎧⎪⎨
⎪⎩

u((z, x2, x{1,2})k) − u((x1, z, x{1,2})k), x1 ≤ x2 ≤ z,

u((z, x2, x{1,2})k) − u((x1, x2, x{1,2})k), x1 ≤ z ≤ x2,

0, z ≤ x1 ≤ x2,

is nonnegative and decreasing in x1 ∈ (−∞, x2], the function

[u((x1 ∨ z, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)]I(x1 ≤ x2)

is nonnegative and decreasing in x1, irrespective of z. Then, as per Lemma 7.1(b) of Barlow
and Proschan [2], we have, for any x2 ≥ 0,

∫ x2

0
[u((x1 ∨ z, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)][ρ(x|z) − ρ(τ12(x)|z)] dx1 ≥ 0.
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As a result, it holds that

E[u((X1 ∨ Z1 ∨ z, X2 ∨ Z2, · · · , Xn ∨ Zn)k | Z = z)]

−E[u((X1 ∨ Z1, X2 ∨ Z2 ∨ z, · · · , Xn ∨ Zn)k | Z = z)]

=
∫

· · ·
∫

Rn

[u((x1 ∨ z, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)]ρ(x|z)
n∏

i=1

dxi

=
∫

· · ·
∫

Rn−1

∫
x1≤x2

[u((x1 ∨ z, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)]ρ(x|z)dx1

n∏
i=2

dxi

+
∫

· · ·
∫

Rn−1

∫
x1≥x2

[u((x1 ∨ z, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)]ρ(x|z)dx1

n∏
i=2

dxi

=
∫

· · ·
∫

Rn−1

∫
x1≤x2

[u((x1 ∨ z, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)]ρ(x|z)dx1

n∏
i=2

dxi

+
∫

· · ·
∫

Rn−1

∫
x1≤x2

[u((x2 ∨ z, x1, x{1,2})k) − u((x2, x1 ∨ z, x{1,2})k)]

· ρ(τ12(x)|z)dx1

n∏
i=2

dxi

=
∫

· · ·
∫

Rn−1

∫ x2

0
[u((x1 ∨ z, x2, x{1,2})k) − u((x1, x2 ∨ z, x{1,2})k)]

· [ρ(x|z) − ρ(τ12(x)|z)]dx1

n∏
i=2

dxi

≥ 0, for any x2 ≥ 0.

Therefore, by using double expectation we conclude that

E[u((X1 ∨ Z1 ∨ Z, X2 ∨ Z2, · · · , Xn ∨ Zn)k)]

≥E[u((X1 ∨ Z1, X2 ∨ Z2 ∨ Z, · · · , Xn ∨ Zn)k)].

Now, from (3.6) and (3.7) it follows immediately that

E
[
u
(
Tk:n(X, Y; r)

)]≥E
[
u
(
Tk:n(X, Y; τ12(r))

)]
.

Owing to the arbitrariness of the increasing u, this implies the desired (3.5). �
As is pointed out in You and Li [46], the log-convex generator of an Archimedean copula

leads to positive dependence in the sense of the left tail decreasing in sequence. The reader may
refer to Joe [20] and Colangelo et al. [12] for more details on this notion of positive depen-
dence. Furthermore, as members of the Archimedean family, the independence copula, Clayton
copula, Gumbel copula, and AMH copula (nonnegative parameter) all are known to have
log-convex generator. According to the proof of Theorem 2.14 of Müller and Scarsini [33],
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the completely monotone generator of an Archimedean copula is always log-convex. Thus, we
obtain the following corollary.

Corollary 3.1. Suppose that the lifetimes (X1, · · · , Xn, Y1, · · · , Ym) are linked by one
Archimedean copula with a completely monotone generator, and Y1, · · · , Ym are identically
distributed. Then, for k = 1, · · · , n, any r ∈An,m, and (i,j) such that 1 ≤ i< j ≤ n,

Tk:n(X, Y; r) ≤st Tk:n(X, Y; τij(r))

whenever Xi ≤rh Xj and ri ≤ rj.

In the context of a single active redundancy, i.e., m = 1, define

1i = ( 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

) ∈An,1, for i = 1, · · · , n.

As a direct consequence of Theorem 3.1, we obtain the next corollary, which was originally
developed by You and Li [48, Theorem 5].

Corollary 3.2. Suppose that the component and redundancy lifetimes (X1, · · · , Xn, Y1) are
linked by one Archimedean copula with a log-convex and (n + 1)-monotone generator. If
X1 ≤rh · · · ≤rh Xn, then

Tk:n(X, Y1; 11) ≥st Tk:n(X, Y1; 12) ≥st · · · · · · ≥st Tk:n(X, Y1; 1n), (3.15)

for any k = 1, · · · , n.

In fact, Belzunce et al. [4, Theorem 3.7] also derived the usual stochastic order of (3.15)
under the assumption that, conditioned by the redundancy lifetime Y1, the component lifetimes
(X1, · · · , Xn) are SAI. In according with Proposition 4.1 of Cai and Wei [11], X1 ≤rh · · · ≤rh Xn

implies that (X1, · · · , Xn) is LWSAI if (X1, · · · , Xn) is linked by the Archimedean copula
associated with a completely monotone generator. Since a completely monotone generator
is always log-convex, Corollary 3.2 successfully relaxes the assumption of SAI component
lifetimes in Theorem 3.7 of Belzunce et al. [4] to the LWSAI assumption in the context of the
Archimedean copula for the component and redundancy lifetimes.

Also, it is worth remarking that the log-convex generator gives rise to LTPD component
lifetimes in the setting of Theorem 3.1, and this finally leads to the usual stochastic order on
the redundant system lifetime. As a consequence, in the setting where component lifetimes and
homogeneous redundancy lifetimes are linked by such an Archimedean copula, more redun-
dancies should be allocated to the components with stochastically smaller lifetimes. Naturally,
one may wonder whether it is possible to upgrade the usual stochastic order on the system
lifetime to the hazard rate order. In what follows we present two numerical examples related
to the first main result.

Example 3.1 below reveals that a dependence structure outside of the Archimedean fam-
ily of copulas may jeopardize the conclusion of Theorem 3.1 if the other assumptions are
unchanged; however, there may also exist some non-Archimedean copula such that the usual
stochastic order in Theorem 3.1 still holds.

Example 3.1. (Extended Gumbel copula.) Consider component and redundancy lifetimes
X1, X2, Y , all having the standard exponential distribution, such that X1 ≤rh X2 is trivially true.
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Assume for the vector (X1, X2, Y) the following 3-dimensional extended Gumbel copula due
to Embrechts et al. [15, Example 6.13]:

C(u1, u2, u3) = exp

{
−
[
(− ln u1)θ1 + (

(− ln u2)θ2 + (− ln u3)θ2
) θ1
θ2

] 1
θ1

}
.

Because θ1 > θ2, this copula is not symmetric and hence is not an Archimedean copula. The
vector of lifetimes (X1, X2, Y) admits the CDF

L(x1, x2, y) = exp

{
−
[
(− ln (1 − e−x1 ))θ1 + (

(− ln (1 − e−x2 ))θ2 + (− ln (1 − e−y))θ2
) θ1
θ2

] 1
θ1

}
,

where x1, x2, y ≥ 0 and θ1 > θ2 > 0.
Corresponding to the allocation policy r = (0, 1), the system lifetimes are

T1:2(X, Y; r) = X1 ∧ (X2 ∨ Y), T1:2(X, Y; τ12(r)) = (X1 ∨ Y) ∧ X2.

It is not difficult to check that T1:2(X, Y; r) and T1:2(X, Y; τ12(r)) respectively have CDFs

P(T1:2(X, Y; r) ≤ t) = P(X1 ≤ t) + P(Y ≤ t, X2 ≤ t) − P(X1 ≤ t, X2 ≤ t, Y ≤ t),

P(T1:2(X, Y; τ12(r)) ≤ t) = P(X2 ≤ t) + P(X1 ≤ t, Y ≤ t) − P(X1 ≤ t, X2 ≤ t, Y ≤ t),

for all t ≥ 0. Thus, it follows that

P(T1:2(X, Y; r) ≤ t) − P(T1:2(X, Y; τ12(r)) ≤ t)

= P(X2 ≤ t, Y ≤ t) − P(X1 ≤ t, Y ≤ t)

= L(∞, t, t) − L(t,∞, t)

= exp
{− 21/θ2 [− ln (1 − e−t)]

}− exp
{−21/θ1 [− ln (1 − e−t)]

}
= (

1 − e−t)21/θ2 − (
1 − e−t)21/θ1

< 0, for all t ≥ 0 and θ1 > θ2.

This invalidates the conclusion T1:2(X, Y; r) ≤st T1:2(X, Y; τ12(r)) claimed by Theorem 3.1.

Next, Example 3.2 illustrates that it is infeasible to upgrade the usual stochastic order of
(3.5) to the hazard rate order in the context of Theorem 3.1.

Example 3.2. (Clayton copula.) Assume X1, X2, Y have exponential distributions with hazard
rates 2,1,3, respectively, and (X1, X2, Y) is linked by a Clayton copula. Then (X1, X2, Y) admits
the CDF

L(x1, x2, y) = [
(1 − e−2x1 )−α + (1 − e−x2 )−α + (1 − e−3y)−α − 2

]−1/α
,

where x1, x2, y ≥ 0 and α ∈ [−1,∞)\{1}.
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FIGURE 1. The curve of P(T1:2(X, Y; τ12(r))> t)/P(T1:2(X, Y; r)> t) for t ∈ (0, 3).

Let r = (0, 1); then it is easy to check that, for all t ≥ 0,

P(T1:2(X, Y; τ12(r))> t)/P(T1:2(X, Y; r)> t)

= P(X1 > t, X2 > t) + P(X1 ≤ t, X2 > t, Y > t)

P(X1 > t, X2 > t) + P(X1 > t, X2 ≤ t, Y > t)

= 1 + P(X1 ≤ t, X2 > t, Y > t) − P(X1 > t, X2 ≤ t, Y > t)

P(X1 > t, X2 > t) + P(X1 > t, X2 ≤ t, Y > t)

= 1 + P(X2 > t, Y > t) − P(X1 > t, Y > t)

P(X1 > t, X2 > t) + P(X1 > t, X2 ≤ t, Y > t)

= 1 + L(t,∞,∞) − L(∞, t,∞) + L(∞, t, t) − L(t,∞, t)

1 − L(t,∞,∞) − L(∞, t, t) + L(t, t, t)
.

For α = 2, as is clearly seen in Figure 1, the ratio

P(T1:2(X, Y; τ12(r))> t)/P(T1:2(X, Y; r)> t)

is not increasing with respect to t ∈ (0, 3), and this fact directly negates the hazard rate order
T1:2(X, Y; r) ≤hr T1:2(X, Y; τ12(r)).

In industrial engineering, when taking care of extremely critical systems, reliability engi-
neers sometimes seek the optimal way to allocate active redundancies in the sense of uniformly
maximizing the resulted reliability function. In this context, an allocation policy with the cor-
responding system lifetime not stochastically lengthened is not feasible. Thus, an allocation
policy r∗ = (r∗

1, . . . , r∗
n) ∈An,m is said to be stochastically optimal if

Tk:n(X, Y; r∗) �≤st Tk:n(X, Y; r), for any r ∈An,m.

As a direct consequence of Theorem 3.1, we end up with a typical feature of the stochasti-
cally optimal allocation policy, which suggests that we should consider only the arrangement
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decreasing allocation policies; this helps narrow down the feasible set for the corresponding
optimization problem.

Theorem 3.2. Suppose the component and redundancy lifetimes (X1, . . . , Xn, Y1, . . . , Ym)
are linked by one Archimedean copula with a log-convex and (n + 1)-monotone generator.
If X1 ≤rh · · · ≤rh Xn and Y1, · · · , Ym are identically distributed, then the optimal allocation
policy r∗ ∈An,m is such that r∗

1 ≥ · · · ≥ r∗
n.

4. On systems with homogeneous component lifetimes

In this section, we pay specific attention to the allocation of multiple redundancies to
k-out-of-n:F systems with homogeneous and dependent component lifetimes. For the case of
i.i.d. components and redundancies, Hu and Wang [19, Theorem 3.3] showed that the SF of
the redundant k-out-of-n:F system is Schur-concave, i.e., if X1, . . . , Xn, Y1, . . . , Ym are i.i.d.,
then

Tk:n(X, Y; s) ≤st Tk:n(X, Y; r), k = 1, · · · , n,

for any r, s ∈An,m such that r ≺m s. This confirms the intuition that for systems with sym-
metric structure, homogeneous components, and homogeneous redundancies, a more balanced
allocation policy tends to produce a redundant system with a stochastically larger lifetime
in the context of mutual independence of the component and redundancy lifetimes involved.
Naturally, one conjectures that such an intuition is still true in the setting of symmetric
statistical dependence among component and redundancy lifetimes.

Along these lines, we present the second main result on the redundant k-out-of-n:F system
with component and redundancy lifetimes linked by an Archimedean copula, which partially
verifies the above conjecture.

Theorem 4.1. Suppose the component lifetimes (X1, . . . , Xn) are identically distributed, the
redundancy lifetimes (Y1, . . . , Ym) are identically distributed, and (X1, . . . , Xn, Y1, . . . , Ym)
is linked by an Archimedean copula with (n + 1)-monotone generator. Then

Tk:n(X, Y; s) ≤st Tk:n(X, Y; r), k = 1, . . . , n, (4.1)

for any r, s ∈An,m such that r ≺m s.

Proof. For the transform M of (2.1), without loss of generality, let us say the permutation
Q interchanges the ith and jth coordinates for 1 ≤ i< j ≤ n. Then, for x = (x1, . . . , xn),

MxT = (x1, . . . , xi−1, λxi + (1 − λ)xj, xi+1, . . . , xj−1, (1 − λ)xi + λxj, xj+1, . . . , xn)T ,

and hence

xi + xj ≡ λxi + (1 − λ)xj + (1 − λ)xi + λxj.

Owing to Lemma 2.1 and the transitivity of the usual stochastic order, it suffices to show
(4.1) only for r and s such that (rj, rl) ≺m (sj, sl) for some j< l and ri = si for i �∈ {j, l}.
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For the sake of convenience, we set j = 1 and l = 2. Since the Archimedean copula is
symmetric, and X and Y are each identically distributed, it holds that

Tk:n(X, Y; r)
st=
(

X1 ∨ Y1 ∨ · · · ∨ Yr1 , X2 ∨ Yr1+1 ∨ · · · ∨ Yr1+r2 , · · · , Xn ∨ Y∑n−1
i=1 ri+1 ∨ · · · ∨ Ym

)
k

st=
(

X2 ∨ Y1 ∨ · · · ∨ Yr1 , X1 ∨ Yr1+1 ∨ · · · ∨ Yr1+r2 , · · · , Xn ∨ Y∑n−1
i=1 ri+1 ∨ · · · ∨ Ym

)
k

st=
(

X1 ∨ Yr1+1 ∨ · · · ∨ Yr1+r2 , X2 ∨ Y1 ∨ · · · ∨ Yr1 , · · · , Xn ∨ Y∑n−1
i=1 ri+1 ∨ · · · ∨ Ym

)
k

st= Tk:n(X, Y; τ12(r)).

Thus, we focus only on (4.1) with s1 < r1 ≤ r2 ≤ s2, s1 + s2 = r1 + r2, and ri = si, i = 3, . . . , n.
Define

Z1 = max(Y1, . . . , Ys1 ),

Z = max(Ys1+1, . . . , Yr1 ),

Zl = max
(
Yr1+···+rl−1+1, . . . , Yr1+···+rl−1+rl

)
, l = 2, . . . , n.

Then we have

Tk:n(X, Y; r)
st= (

X1 ∨ Y1 ∨ · · · ∨ Yr1 , · · · , Xn ∨ Yr1+···+rn−1+1 ∨ · · · ∨ Ym
)

k

= (
X1 ∨ Z1 ∨ Z, X2 ∨ Z2, X3 ∨ Z3, . . . , Xn ∨ Zn

)
k, (4.2)

and

Tk:n(X, Y; s)
st= (X1 ∨ Y1 ∨ · · · ∨ Ys1 , · · · , Xn ∨ Yr1+···+rn−1+1 ∨ · · · ∨ Ym)k

= (X1 ∨ Z1, X2 ∨ Z2 ∨ Z, X3 ∨ Z3, . . . , Xn ∨ Zn)k. (4.3)

Let ϕ be the generator of the Archimedean copula of (X, Y), let F and f respectively be the
common univariate marginal CDF and PDF of X, and let G and g respectively be the common
univariate marginal CDF and PDF of Y. Define

�(z, t, x2, x{1,2}) = (r1 − s1)ψ(G(z)) +ψ(F(t)) + s1ψ(G(t))

+
n∑

i=2

[
ψ(F(xi)) + riψ(G(xi))

]
, (4.4)

and

�(z, x{1,2}) = 1

ϕ′((r1 − s1)ψ(G(z)))

n∏
i=3

[
ψ ′(F(xi))f (xi) + riψ

′(G(xi))g(xi)
]
. (4.5)

Then
(
Z, X1 ∨ Z1, X2 ∨ Z2, . . . , Xn ∨ Zn

)
attains the CDF

H(z, x) = ϕ(�(z, x))
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and hence the PDF

h(z, x)

= ϕ(n+1)(�(z, x))(r1 − s1)ψ ′(G(z))g(z)
[
ψ ′(F(x1))f (x1) + s1ψ

′(G(x1))g(x1)
]

·
n∏

i=2

[
ψ ′(F(xi))f (xi) + riψ

′(G(xi))g(xi)
]
.

Also, since Z has PDF

l(z) = (r1 − s1)g(z)ψ ′(G(z))ϕ′((r1 − s1)ψ(G(z))),

the vector
(
X1 ∨ Z1, X2 ∨ Z2, · · · , Xn ∨ Zn | Z = z) attains the PDF

ρ(x|z) = h(z, x)

l(z)

= [
ψ ′(F(x1))f (x1) + s1ψ

′(G(x1))g(x1)
][
ψ ′(F(x2))f (x2) + r2ψ

′(G(x2))g(x2)
]

· ϕ(n+1)(�(z, x))�(z, x{1,2}). (4.6)

Consequently, for any x2 ≥ t ≥ 0,∫ t

0
ρ(x|z)dx1 = [

ψ ′(F(x2))f (x2) + r2ψ
′(G(x2))g(x2)

]
�(z, x{1,2})

·
∫ t

0
ϕ(n+1)(�(z, x))d[ψ(F(x1)) + s1ψ(G(x1))g(x1)

)
]

= (
ψ ′(F(x2))f (x2) + r2ψ

′(G(x2))g(x2)
)
�(z, x{1,2})

· [ϕ(n)(�(z, t, x2, x{1,2})) − ϕ(n)(+∞)
]

(4.7)

and ∫ t

0
ρ(τ12(x)|z)dx1=

[
ψ ′(F(x2))f (x2) + s1ψ

′(G(x2))g(x2)
]
�(z, x{1,2})

·[ϕ(n)(�(z, x2, t, x{1,2})) − ϕ(n)(+∞)
]
. (4.8)

Since G is increasing and ψ is decreasing, it holds that

(r2 − s1)ψ(G(x2)) ≤ (r2 − s1)ψ(G(t)), for r2 ≥ s1 and x2 ≥ t,

and then by (4.4) we have

�(z, t, x2, x{1,2}) − �(z, x2, t, x{1,2}) = (r2 − s1)ψ(G(x2)) − (r2 − s1)ψ(G(t)) ≤ 0.

As a result, the decreasing property of (−1)nϕ(n)(x) implies that

(−1)nϕ(n)(�(z, t, x2, x{1,2})) − (−1)nϕ(n)(+∞)

≥ (−1)nϕ(n)(�(z, x2, t, x{1,2})) − (−1)nϕ(n)(+∞)

≥ 0, for x2 ≥ t.
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Also, (−1)n−1
�(z, x{1,2}) ≥ 0 and −ψ ′(x) ≥ 0 imply that

[−ψ ′(F(x2))f (x2) − r2ψ
′(G(x2))g(x2)

]
(−1)n−1

�
(
z, x{1,2}

)
≥ [−ψ ′(F(x2))f (x2) − s1ψ

′(G(x2))g(x2)
]
(−1)n−1

�
(
z, x{1,2}

)
≥ 0, for r2 ≥ s1.

Therefore, from (4.7) and (4.8) it follows immediately that, for any t ≤ x2,

∫ t

0
ρ(x|z)dx1 = [−ψ ′(F(x2))f (x2) − r2ψ

′(G(x2))g(x2)
]
(−1)n−1

�(z, x{1,2})

· [(−1)nϕ(n)(�(z, t, x2, x{1,2})) − (−1)nϕ(n)(+∞)
]

≥ [−ψ ′(F(x2))f (x2) − s1ψ
′(G(x2))g(x2)

]
(−1)n−1

�(z, x{1,2})
· [(−1)nϕ(n)(�(z, x2, t, x{1,2})) − (−1)nϕ(n)(+∞)

]
=
∫ t

0
ρ(τ12(x)|z)dx1.

That is, (X1 ∨ Z1, X2 ∨ Z2, · · · , Xn ∨ Zn | Z = z) is LTPD with respect to (1, 2).
Now, completely similarly to the preceding proof of Theorem 3.1, we can show that

E
[
u((X1 ∨ Z1 ∨ Z, X2 ∨ Z2, · · · , Xn ∨ Zn)k)

]
≥E

[
u((X1 ∨ Z1, X2 ∨ Z2 ∨ Z, · · · , Xn ∨ Zn)k)

]
.

In light of (4.2) and (4.3), we reach

E
[
u
(
Tk:n(X, Y; r)

)]≥E
[
u
(
Tk:n(X, Y; s)

)]
.

Owing to the arbitrariness of u, this implies the usual stochastic order of (4.1). �
In accordance with Theorem 4.1, by balancing the allocation of active redundancies, one

can stochastically maximize the lifetime of the redundant k-out-of-n:F system with identically
distributed component lifetimes and identically distributed redundancy lifetimes having some
Archimedean copula. Corresponding to the independence copula, the generator ϕ(x) = e−x

is completely monotone, and then Theorem 4.1 successfully generalizes Theorem 3.3 of Hu
and Wang [19] by equipping component and redundancy lifetimes with the Archimedean cop-
ula with an (n + 1)-monotone generator. Also, it is worth remarking that the generator of the
Archimedean copula is required to be log-convex in the setting of Theorem 3.1. By contrast,
here this assumption is no longer required, because of the homogeneity of the system com-
ponents, and thus the component and redundancy lifetimes can be either positive or negative
dependent.

In what follows, using one numerical example, we point out that the usual stochastic order
on the redundant system lifetime cannot be upgraded to the hazard rate order in the context of
Theorem 4.1.

Example 4.1. (Clayton copula.) Assume that (X1, X2, Y1, Y2, Y3, Y4) is linked by the Clayton
copula with parameter α, that X1, X2 are of common univariate Pareto distribution with
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FIGURE 2. The curve of P(T1:2(X, Y; r)> t)/P(T1:2(X, Y; s)> t) for t ∈ (0, 5).

parameter β, and that Y1, Y2, Y3, Y4 are of common univariate Pareto distribution with
parameter γ . Then (X1, X2, Y1, Y2, Y3, Y4) attains the CDF

L(x1, x2, y1, y2, y3, y4)

=
[(

1 − 1

(1 + x1)β

)−α
+
(

1 − 1

(1 + x2)β

)−α
+

4∑
i=1

(
1 − 1

(1 + yi)γ

)−α
− 5

]− 1
α

,

where xi > 0, yj > 0, i = 1, 2, j = 1, 2, 3, 4, and α, β, γ > 0.

Set r = (2, 2) and s = (1, 3). Obviously, r ≺m s,

T1:2(X, Y; r) = (X1 ∨ Y1 ∨ Y2) ∧ (X2 ∨ Y3 ∨ Y4),

and

T1:2(X, Y; s) = (X1 ∨ Y1) ∧ (X2 ∨ Y2 ∨ Y3 ∨ Y4).

It is routine to check that, for all t ≥ 0,

1 − P(T1:2(X, Y; r)> t) = L(t,∞, t, t,∞,∞) + L(∞, t,∞,∞, t, t) − L(t, t, t, t, t, t)

and

1 − P(T1:2(X, Y; s)> t) = L(∞, t,∞, t, t, t) + L(t,∞, t,∞,∞,∞) − L(t, t, t, t, t, t).

For (α, β, γ ) = (2, 2, 3), the ratio

P(T1:2(X, Y; r)> t)/P(T1:2(X, Y; s)> t)

is seen to be non-monotone with respect to t ∈ (0, 5) in Figure 2, and this gives rise to
T1:2(X, Y; s) �≤hr T1:2(X, Y; r) although r ≺m s.
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A system T(X) with component lifetimes X = (X1, . . . , Xn) is said to be a mixed system if
the reliability function can be represented as

P(T(X)> t) =
n∑

k=1

pkP(Xk,n > t),

for all t ≥ 0 and some pk ∈ [0, 1], k = 1, · · · , n, such that p1 + · · · + pn = 1. For example, the
lifetime of a coherent system with exchangeable component lifetimes can be represented as a
finite mixture of k-out-of-n:F system lifetimes with (p1, · · · , pn) being the system signature
(see Navarro et al. [35]), and thus it is a mixed system. For such systems and generalized mixed
systems we refer the reader to Navarro [34] and some of the references therein.

Corresponding to the allocation policy r, denote by T(X, Y; r) the lifetime of a redundant
mixed system with component lifetimes X and redundancy lifetimes Y, i.e.,

P(T(X, Y; r)> t) =
n∑

k=1

pkP
(
Tk:n(X, Y; r)> t

)
, for all t ≥ 0.

Since the usual stochastic order is closed under taking the mixture (see Shaked and
Shanthikumar [41, Theorem 1.A.3.(d)]), the ordering result of Theorem 4.1 can be extended
from the k-out-of-n structure to the mixed structure. Here we present such an extension,
omitting the technical proof.

Theorem 4.2. Suppose for a mixed system that the component lifetimes X1, · · · , Xn are
identically distributed, the redundancy lifetimes Y1, · · · , Ym are identically distributed,
and the vector (X1, . . . , Xn, Y1, . . . , Ym) are linked by one Archimedean copula with an
(n + 1)-monotone generator. Then

T(X, Y; s) ≤st T(X, Y; r),

for any r, s ∈An,m such that r ≺m s.

To close this section, we employ one example to illustrate Theorem 4.3 in the setting of a
coherent system without exchangeable component lifetimes.

Example 4.2. (Nonexchangeable component lifetimes.) For component lifetimes X =
(X1, X2, X3) and redundancy lifetimes Y = (Y1, Y2), let us consider the system with structure

T(X) = max
{
X1,min{X2, X3}

}
.

Let the allocation policy s assign Y1, Y2 to X1, X2 respectively, and let the allocation
policy r assign Y1, Y2 to X1, X2 ∧ X3 respectively. Then it is routine to derive the
following equations:

P
(
T(X, Y; s) ≤ t

)
= P

(
X1 ∨ Y1 ≤ t, (X2 ∨ Y2) ∧ X3) ≤ t

)
= P

(
X1 ∨ Y1 ≤ t, X3 ≤ t

)+ P
(
X1 ∨ Y1 ≤ t, (X2 ∨ Y2) ≤ t)

− P
(
X1 ∨ Y1 ≤ t, X3 ≤ t, (X2 ∨ Y2) ≤ t

)
= P(X1 ≤ t, Y1 ≤ t, X3 ≤ t) + P(X1 ≤ t, Y1 ≤ t, Y2 ≤ t, X2 ≤ t)

− P(X1 ≤ t, X2 ≤ t, X3 ≤ t, Y1 ≤ t, Y2 ≤ t), for all t ≥ 0,
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FIGURE 3. The difference P(T(X, Y; s) ≤ t) − P(T(X, Y; r) ≤ t): α ∈ (0, 4), t ∈ (0, 10).

and

P
(
T(X, Y; r) ≤ t

)
= P

(
X1 ∨ Y1 ≤ t, (X2 ∧ X3) ∨ Y2 ≤ t

)
= P

(
X1 ≤ t, Y1 ≤ t, Y2 ≤ t, (X2 ∧ X3) ≤ t

)
= P(X1 ≤ t, X2 ≤ t, Y1 ≤ t, Y2 ≤ t) + P(X1 ≤ t, Y1 ≤ t, X3 ≤ t, Y2 ≤ t)

− P(X1 ≤ t, X2 ≤ t, X3 ≤ t, Y1 ≤ t, Y2 ≤ t), for all t ≥ 0.

Evidently, it holds that

P
(
T(X, Y; s) ≤ t

)− P
(
T(X, Y; r) ≤ t

)
= P(X1 ≤ t, Y1 ≤ t, X3 ≤ t) − P(X1 ≤ t, Y1 ≤ t, X3 ≤ t, Y2 ≤ t)

≥ 0, for all t ≥ 0.

Assume that X1 ∼ E(2), Xi ∼ E(1), Yi ∼ E(1), i = 1, 2, and the vector of lifetimes
(X1, X2, X3, Y1, Y2) is coupled by the Clayton copula with parameter α. Based on the above
two equations, one can obtain closed-form expressions for the two CDFs.

As is seen in Figure 3, the nonnegative difference

P
(
T(X, Y; s) ≤ t

)− P
(
T(X, Y; r) ≤ t

)
confirms that T(X, Y; s) ≤st T(X, Y; r). In addition, as a parallel system with two component
lifetimes X1 and X2 ∧ X3, all active allocation policies for (Y1, Y2) produce the same redundant
systems.

5. On systems with matched active redundancies

Consider component lifetimes X = (X1, · · · , Xn) and matched redundancy lifetimes Y =
(Y1, · · · , Yn). Define the redundant k-out-of-n:F system lifetime as

Tk:n(X, Y) = (
X1 ∨ Y1, · · · · · · , Xn ∨ Yn

)
k, k = 1, · · · , n.
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In this section we consider multivariate mixture models; i.e., (X, Y) admits the CDF

F(x, y) =
∫

· · ·
∫

R2n

n∏
i=1

Fi(xi, θ)Gi(yi, θ )dF�(θ ), (5.1)

where F� is the distribution function of a 2n-dimensional random vector � = (�1, · · · , �2n),
while Fi(xi, θ ) and Gi(yi, θ ) are univariate CDFs. For more on stochastic comparison of
multivariate mixture models, we refer the reader to Belzunce et al. [5] and references therein.

For i = 1, · · · , n, let Xi(θ) = [Xi|� = θ] and Yi(θ ) = [Yi|� = θ ] be absolutely continuous
random variables with CDFs Fi(x, θ ) and Gi(y, θ) and PDFs fi(x, θ) and gi(y, θ ), respectively.
In the present result, we investigate conditions on the CDFs Fi(x, θ ) and Gi(y, θ ), i = 1, · · · , n,
such that the system lifetimes Tk:n(X, Y) and Tk:n(X, τij(Y)) are of usual stochastic order.

Theorem 5.1. Consider the multivariate mixture model of (5.1) for component and matched
redundancy lifetimes (X, Y). For (i,j) such that 1 ≤ i< j ≤ n,

Tk:n(X, Y) ≤st Tk:n(X, τij(Y)), k = 1, · · · , n, (5.2)

whenever Xi(θ) ≤rh Xj(θ) and Yi(θ ) ≤lr Yj(θ ).

Proof. Taking the derivative on both sides of (5.1), we get the PDF of (X, Y) as

f (x, y) =
∫

· · ·
∫

R2n

n∏
i=1

fi(xi, θ)gi(yi, θ)dF�(θ). (5.3)

Without loss of generality, let us set i = 1 and j = 2. Define x ∨ y = (x1 ∨ y1, · · · , xn ∨ yn) for
x = (x1, · · · , xn) and y = (x1, · · · , yn). Then

(x ∨ y)k = (τ12(x), τ12(y))k, (τ12(x), y)k = (x, τ12(y))k, k = 1, · · · , n.

It is easy to verify that for x2, y2 ≥ 0 and any increasing function u,

E[u(Tk:n(X, τ12(Y)))] −E[u(Tk:n(X, Y))]

=
∫

· · ·
∫

R2n−2

∫∫
x1≤x2

[
u((x, τ12(y))k) − u((x, y)k)

][
f (x, y) − f (τ12(x), y)

] n∏
i=1

dxidyi

=
∫

· · ·
∫

R2n−4

∫∫
y1≤y2

∫∫
x1≤x2

[
u((x, τ12(y))k) − u((x, y)k)

][
f (x, y) − f (τ12(x), y)

] n∏
i=1

dxidyi

+
∫

· · ·
∫

R2n−4

∫∫
y1≤y2

∫∫
x1≤x2

[
u((x, y)k) − u((x, τ12(y))k)

][
f (x, τ12(y))

− f (τ12(x), τ12(y))
] n∏

i=1

dxidyi
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=
∫

· · ·
∫

R2n−4

∫∫
y1≤y2

∫∫
x1≤x2

[
u((x, y)k) − u((x, τ12(y))k)

] · [f (x, y) − f (τ12(x), y)

− f (x, τ12(y)) + f (τ12(x), τ12(y))
] n∏

i=1

dxidyi

=
∫

· · ·
∫

R2n−2

∫ y2

0

∫ x2

0

[
u((x, τ12(y))k) − u((x, y)k)

] · [f (x, y) − f (τ12(x), y)

− f (x, τ12(y)) + f (τ12(x), τ12(y))
]
dx1dy1

n∏
i=2

dxidyi. (5.4)

By (5.3), we have, for x2 ≥ 0,∫ x2

0
f (x, y)dx1 =

∫
· · ·

∫
R2n

∫ x2

0

n∏
i=1

fi(xi, θ )gi(yi, θ )dx1dF�(θ )

=
∫

· · ·
∫

R2n

F1(x2, θ)
n∏

i=2

fi(xi, θ )
n∏

i=1

gi(yi, θ )dF�(θ ),

∫ x2

0
f (τ12(x), y)dx1=

∫
· · ·

∫
R2n

F2(x2, θ)f1(x2, θ )
n∏

i=2

fi(xi, θ )
n∏

i=1

gi(yi, θ )dF�(θ ),

∫ x2

0
f (x, τ12(y))dx1

=
∫

· · ·
∫

R2n

F1(x2, θ )g1(y2, θ )g2(y1, θ)
n∏

i=2

fi(xi, θ )
n∏

i=3

gi(yi, θ )dF�(θ ),

∫ x2

0
f (τ12(x), τ12(y))dx1

=
∫

· · ·
∫

R2n

F2(x2, θ )f1(x2, θ )g1(y2, θ)g2(y1, θ )
n∏

i=3

fi(xi, θ )
n∏

i=3

gi(yi, θ )dF�(θ).

Thus, it holds that∫ x2

0
[f (x, y) − f (τ12(x), y) − f (x, τ12(y)) + f (τ12(x), τ12(y))]dx1

=
∫
R2n

[
f2(x2, θ )

F2(x2, θ )
− f1(x2, θ )

F1(x2, θ )

] [
g2(y2, θ )

g1(y2, θ )
− g2(y1, θ )

g1(y1, θ )

]
· F2(x2, θ )F1(x2, θ)g1(y1, θ )g1(y2, θ)

∏
i=3

fi(xi, θ )gi(yi, θ )dF�(θ ). (5.5)

Since X1(θ) ≤rh X2(θ) implies

f2(x2, θ )

F2(x2, θ )
≥ f1(x2, θ )

F1(x2, θ)
,
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and Y1(θ) ≤lr Y2(θ) implies

g2(y2, θ )

g1(y2, θ )
≥ g2(y1, θ )

g1(y1, θ )
, for y1 ≤ y2,

from (5.5) it follows that∫ x2

0
[f (x, y) − f (τ12(x), y) − f (x, τ12(y)) + f (τ12(x), τ12(y))]dx1 ≥ 0.

On the other hand, according to the proof of Theorem 3.4 of You et al. [49], we have that for
y1 ≤ y2, the function

u((x, τ12(y))k) − u((x, y)k)

is nonnegative and decreasing with respect to x1 ∈ (0, x2). Thus, for y1 ≤ y2, the function[
u((x, τ12(y))k) − u((x, y)k)

]
I(x1 ≤ x2)

is nonnegative and decreasing with respect to x1 ∈ (0, x2). Thus, according to Barlow and
Proschan [2, Lemma 7.1(b)], we have, for any x2 ≥ 0,∫ x2

0
[u((x, τ12(y))k) − u((x, y)k)][f (x, y) − f (τ12(x), y) − f (x, τ12(y)) + f (τ12(x), τ12(y))]dx1 ≥ 0.

Consequently, it follows from (5.4) that for any increasing u,

E[u(Tk:n(X, τ12(Y)))] −E[u(Tk:n(X, Y))]

=
∫

· · ·
∫

R2n−2

∫ y2

0

∫ x2

0
[u((x, τ12(y))k) − u((x, y)k)] · [f (x, y) − f (τ12(x), y)

− f (x, τ12(y)) + f (τ12(x), τ12(y))]dx1dy1

n∏
i=2

dxidyi

≥ 0.

This implies Tk:n(X, Y) ≤st Tk:n(X, τij(Y)), exactly as desired in (5.2). �
According to Theorem 5.1, it is better to allocate a redundancy with larger baseline reversed

hazard rate to a component with smaller baseline reversed hazard rate.
Now let us move our focus to the case where (X, Y) are linked by an Archimedean copula

with completely monotone generator ϕ, i.e., (X, Y) has CDF

F(x, y) =E

[
n∏

i=1

H�
i (xi)K

�
i (yi)

]
=
∫ ∞

0

n∏
i=1

Hθ
i (xi)K

θ
i (yi)dF�(θ ), (5.6)

where Hi and Ki are some baseline CDFs, for i = 1, · · · , n, and F�(θ ) is the CDF of the
random frailty � with Laplace transform L�. Since Xi and Yi have marginal CDFs

Fi(x) =
∫ ∞

0
Hθ

i (x)dF�(θ ) =
∫ ∞

0
exp{θ ln Hi(x)}dF�(θ ) =L�

(− ln Hi(x)
)
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and

Gi(y) =
∫ ∞

0
Kθi (y)dF�(θ ) =

∫ ∞

0
exp{θ ln Ki(y)}dF�(θ ) =L�

(− ln Ki(y)
)
,

respectively, for i = 1, 2, · · · , n, from (5.6) it follows that

F(x, y) =L�
(

n∑
i=1

L−1
�

(
Fi(xi)

)+
n∑

i=1

L−1
�

(
Gi(yi)

))
.

Thus, the generator ϕ(x) =L�(x). For more detailed discussion on Archimedean copulas with
completely monotone generator, one may refer to Marshall and Olkin [28], Denuit et al. [13],
Mulero et al. [32], and Pellerey and Zalzadeh [37].

Corresponding to the baseline distributions, let X∗
i ∼ Hi and Y∗

i ∼ Ki be absolutely contin-
uous random variables with PDFs hi(x) and ki(x), and the reversed hazard rates λX∗

i
(x) and

λY∗
i
(x), respectively, i = 1, 2, · · · , n. As a direct consequence of Theorem 5.1, we obtain the

following sufficient conditions on the baseline distribution functions Hi and Ki for i = 1, · · · , n
to ensure that the system lifetimes Tk:n(X, Y) and Tk:n(X, τij(Y)) are of the usual stochastic
order.

Corollary 5.1. Suppose that the lifetimes (X, Y) of system components and matched redundan-
cies are linked by an Archimedean copula with completely monotone generator. Then, for (i,j)
such that 1 ≤ i< j ≤ n,

Tk:n(X, Y) ≤st Tk:n(X, τij(Y)), k = 1, · · · , n, (5.7)

whenever X∗
i ≤rh X∗

j and Y∗
i ≤lr Y∗

j .

Note that the likelihood ratio order implies the reversed hazard rate order. In what follows,
Example 5.1 illustrates that the likelihood ratio order of Corollary 5.1 may be relaxed to the
reversed hazard rate order in some specific contexts.

Example 5.1. Consider the random vector (X1, X2, Y1, Y2) equipped with one Archimedean
copula with generator ϕ and marginal distribution functions

F1(x) = G1(x) = ϕ(− ln H1(x)), F2(x) = G2(x) = ϕ(− ln K2(x)),

where the baseline CDFs are

H1(x) = K1(x) = 1 − e−x, H2(x) = K2(x) = 1 − 1

1 + x2
, for all x ≥ 0.

As is shown in Figure 4, the likelihood ratio

k2(x)

k1(x)
= 2xex

(1 + x2)2

is not increasing on (0,+∞), and this negates Y∗
1 ≤lr Y∗

2 . However, in accordance with You
et al. [49, Example 5.1], both X∗

1 ≤rh X∗
2 and Y∗

1 ≤rh Y∗
2 are valid.

We evaluate the two redundant system survival functions P
(
min(X1 ∨ Y1, X2 ∨ Y2)> x

)
and P

(
min(X1 ∨ Y2, X2 ∨ Y1)> x

)
, respectively, and then plot their difference in Figures 5(a)

and 5(b). It can be observed that

P(min(X1 ∨ Y2, X2 ∨ Y1)> x) ≥ P(min(X1 ∨ Y1, X2 ∨ Y2)> x)

for all x ≥ 0, and this confirms min(X1 ∨ Y1, X2 ∨ Y2) ≤st min(X1 ∨ Y2, X2 ∨ Y1).
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FIGURE 4. The curve of the ratio k2(x)/k1(x) for x ∈ (0, 5).

(a) (b)

FIGURE 5. The difference P(min(X1 ∨ Y2, X2 ∨ Y1)> x) − P(min(X1 ∨ Y1, X2 ∨ Y2)> x).

Motivated by Example 5.1, the next result asserts that the hazard rate orders in Corollary 5.1
can be relaxed to the usual stochastic orders for the series system with two components.

Corollary 5.2. Assume for (X1, X2, Y1, Y2) an Archimedean copula with completely monotone
generator. Then X∗

1 ≤st X∗
2 and Y∗

1 ≤st Y∗
2 imply that

min(X1 ∨ Y1, X2 ∨ Y2) ≤st min(X1 ∨ Y2, X2 ∨ Y1).

Proof. Note that min(X1 ∨ Y1, X2 ∨ Y2) and min(X1 ∨ Y2, X2 ∨ Y1) respectively have SFs

F̄(t) = 1 − P(X1 ≤ t, Y1 ≤ t) − P(X2 ≤ t, Y2 ≤ t) + P(X1 ≤ t, Y1 ≤ t, X2 ≤ t, Y2 ≤ t)

and

Ḡ(t) = 1 − P(X1 ≤ t, Y2 ≤ t) − P(X2 ≤ t, Y1 ≤ t) + P(X1 ≤ t, Y1 ≤ t, X2 ≤ t, Y2 ≤ t),

https://doi.org/10.1017/apr.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.70


Active redundancy allocation to k-out-of-n systems 1111

for all t ≥ 0. From (5.6) it follows that

F̄(t) − Ḡ(t) =
∫ ∞

0
Hθ

1 (t)Kθ2 (t) dF�(θ ) +
∫ ∞

0
Hθ

2 (t)Kθ1 (t) dF�(θ )

−
∫ ∞

0
Hθ

1 (t)Kθ1 (t) dF�(θ ) −
∫ ∞

0
Hθ

2 (t)Kθ2 (t) dF�(θ )

=
∫ ∞

0

(
Hθ

1 (t) − Hθ
2 (t)

)(
Kθ2 (t) − Kθ1 (t)

)
dF�(θ ).

By the assumption that X∗
1 ≤st X∗

2 and Y∗
1 ≤st Y∗

2 , we have

Hθ
1 (t) ≥ Hθ

2 (t) and Kθ1 (t) ≥ Kθ2 (t),

for all t ≥ 0 and θ > 0. This implies that F̄(t) ≤ Ḡ(t) for all t ≥ 0, yielding the desired
result. �

Recall that the random variable Y∗
j is said to age faster than Y∗

i in terms of the reversed
hazard rate if λY∗

j
(t)/λY∗

i
(t) is increasing in t ∈ (0,+∞). For more on relative aging, the reader

may refer to Sengupta and Deshpande [39], Misra and Francis [31], Li and Li [22], and refer-
ences therein. At the end of this section, we present a numerical example suggesting that, in
the conclusion of Theorem 5.1, the usual stochastic order cannot be further upgraded to either
the hazard rate order or the reversed hazard rate order.

Example 5.2. (Gumbel copula.) Assume that � has Laplace transform L�(t) = e−t1/γ for
γ ≥ 1, and that the baseline random variables X∗

1 , X∗
2 , X∗

3 , Y∗
1 , Y∗

2 , and Y∗
3 have exponential

distributions with parameters α1, α2, α3, β1, β2, and β3, respectively. As per (5.6), (X, Y) has
CDF

L(x, y) =L�
(

−
3∑

i=1

ln
(
1 − e−αixi

)−
3∑

i=1

ln
(
1 − e−βiyi

))
, (5.8)

where xi, yi ≥ 0, i = 1, 2, 3. Let γ = 2, α1 = β1 = 1.5, α2 = β2 = 1, α3 = β3 = 0.6. It is easy to
check that X∗

1 ≤rh X∗
2 ≤rh X∗

3 and Y∗
1 ≤rh Y∗

2 ≤rh Y∗
3 .

Since e1.5x − 3e0.5x is increasing in x ≥ 0, it holds that e1.5x − 3e0.5x + 2 ≥ 0 for x ≥ 0.
Hence, by taking the derivative on the ratio of the reversed hazard rates, we get(

λY∗
2
(x)

λY∗
1
(x)

)′
= 2

3

(
e1.5x − 1

ex − 1

)′
= ex

3

e1.5x − 3e0.5x + 2

(ex − 1)2
≥ 0.

This implies that λY∗
2
(x)/λY∗

1
(x) is increasing in x> 0. Similarly, λY∗

3
(x)/λY∗

2
(x) is increasing

in x> 0. Thus, from Shaked and Shanthikumar [41, Theorem 1.C.4.(b)], it follows that Y∗
3 ≥lr

Y∗
2 ≥lr Y∗

1 .
Based on (5.8), we derive CDFs

P(T1:3(X ∨ Y) ≤ t)

= P(min{X1 ∨ Y1, X2 ∨ Y2, X3 ∨ Y3} ≤ t)

=
3∑

i=1

P(Xi ∨ Yi ≤ t) −
∑

1≤i �=j≤3

P(Xi ∨ Yi ≤ t, Xj ∨ Yj ≤ t) + P(Xi ∨ Yi ≤ t, i = 1, 2, 3)

= L(t,∞,∞, t,∞,∞) + L(∞, t,∞,∞, t,∞) + L(∞,∞, t,∞,∞, t) + L(t, t, t, t, t, t)

− L(t, t,∞, t, t,∞) − L(t,∞, t, t,∞, t) − L(∞, t, t,∞, t, t), for t ≥ 0,
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FIGURE 6. The ratios of the SFs and distribution functions with t ∈ (0, 10).

and

P(T1:3(X ∨ τ23(Y)) ≤ t)

= L(t,∞,∞, t,∞,∞) + L(∞, t,∞,∞,∞, t) + L(∞,∞, t,∞, t,∞) + L(t, t, t, t, t, t)

− L(t, t,∞, t,∞, t) − L(t,∞, t, t, t,∞) − L(∞, t, t,∞, t, t), for t ≥ 0.

In Figures 6(a) and 6(b), the ratios

P(T1:3(X ∨ τ23(Y))> t)/P(T1:3(X ∨ Y)> t)

and

P(T1:3(X ∨ τ23(Y)) ≤ t)/P(T1:3(X ∨ Y) ≤ t)

are both observed to be non-monotone in t ∈ (0, 10). As a consequence, neither T1:3(X ∨ Y) ≤hr
T1:3(X ∨ τ23(Y)) nor T1:3(X ∨ Y) ≤rh T1:3(X ∨ τ23(Y)) is true.

6. Concluding remarks

This study deals with redundant k-out-of-n:F systems in the context in which stochastically
ordered component lifetimes and multiple redundancy lifetimes are linked by an Archimedean
copula. We show that (i) allocating more redundancies to weaker components yields a stochas-
tically larger redundant system lifetime, and (ii) balancing the allocation of active redundancies
tends to uniformly maximize the redundant system reliability in the context of homoge-
neous component lifetimes and homogeneous redundancy lifetimes. The novelty of this paper
is to provide a comparison on redundant k-out-of-n:F systems with statistically dependent
component and redundancy lifetimes; these assumptions are more applicable to complicated
real-world engineering systems than the usual assumptions of independence.

The present results essentially extend some relevant work in the recent literature. However,
further research is necessary along these lines, for example, (i) to explore similar comparison
results in the setting in which component and redundancy lifetimes are linked by a generic
copula function, and (ii) to check whether the usual stochastic order on system lifetimes still
holds if the reversed hazard rate order on component lifetimes is replaced by the hazard rate
order in Theorem 3.1. Note that for i.i.d. component and redundancy lifetimes, Ding and Li
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[14] further strengthened the usual stochastic order of Hu and Wang [19, Theorem 3.3] to
the hazard rate order Tk:n(X, Y;s) ≤hr Tk:n(X, Y; r) whenever r ≤m s. Although our attempt to
prove it was unsuccessful, we conjecture that such a generalization can also be achieved for
identically distributed component and redundancy lifetimes linked by an Archimedean copula.
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