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Abstract

We measure the separation of the zeros of the polynomial f(x) = f]"(x — a,), at < a2 < • • • < a«
by S(f) = min,(a,+i — a,-). We establish a bound for the amount by which the ratio S(f — kf)/S(f)
exceeds 1.

1991 Mathematics subject classification (Amer. Math. Soc): 26C10.

1. Introduction

The problem of the location of the zeros of a polynomial of arbitrary degree has a long
history in mathematics. The number of zeros on the real axis may be investigated
by Descartes' rule of signs [3, Part 5, Ch. 1], or in greater detail by means of Sturm
sequences [ 1, Ch 6.3]. In the case of complex zeros, methods for the location of zeros
in specified regions of the plane are studied in [2]. Numerical aspects of the problem
can be found in [1, Ch 6].

In this paper we propose to study the separation (a, — a,) of the zeros of a polynomial
/(x) = Y[" (x — a,). We shall measure the separation both by the minimum separation
<5(/) = min^j \aj — at | and by the maximum or total separation A(/) = max,,, |a; -
a, |. The quantity S ( /) gives us a measure of the closeness of the zeros so that we can
detect when they are near to coincidence.

In the case when the zeros are real and distinct, we showed in [4] that <$(/) is
strictly increased by the differential operator D — kl, that is, that <5(/' — kf) > S(f),
and we shall show in Section 3 of this paper that the same is true for A(/) . In
Section 2 we sharpen the result for 8(f) to give an explicit lower bound for the ratio
8(f — kf)/8(f); in particular, there is a constant cn > 1 such that <5(/') > cn8(f).
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[2] Separation of zeros of polynomials 331

Much more remains to be done in respect of improved constants, extension of the
results to the complex plane and exploitation of possible symmetries among the zeros.

It is a pleasure to acknowledge the contributions of Professor R. E. Scraton for
Theorem 2(i) and for extensive numerical testing.

2. Minimum Separation

We suppose throughout that f(x) = Y\"(x ~ ai) is a polynomial of degree n with
distinct real zeros which we shall assume to be in increasing order: ax < a2 < • • • <
an. The principal result of this section is as follows:

THEOREM 1. For all k e K and all polynomials f of degree n > 2, (n > 3 ifk = 0)

An 1
S(f'-kf)/S(f)>l

(n + 2)2
 n i .

where p = \og(A(n + \)/{n - 1)) = 2.05 . . .

From Rolle's theorem the n — 1 zeros of / ' lie one in each interval (a,, a,-+i); more
generally it is easy to see by considering the graph of / ' / / that for given real k,
the polynomial / ' — kf has one zero, which we shall denote by bf, in each interval
(<z,, a,+i). In addition if k > 0 there is one further zero bn > an, while if k < 0 there
is one further zero b0 < at.

We shall say that the separation of the points a, is almost equal when either
a\,... ,an-\ are equally separated and an (> a«_i) is otherwise unrestricted, or sim-
ilarly when a2, ..., an are equally separated and ax (< a2) is unrestricted. It may
happen that when the points <2, vary, some of them tend to ±oo, in which case the
corresponding terms are omitted from the summations.

Our plan is as follows. Firstly, we fix j and find the configuration of a, 's which
minimises rj = bj+\ — by, this is done in Lemma 1. In this configuration we estimate
the position of bj and find lower estimates for r;, which are stated in Lemma 2. Finally,
in the proof of Theorem 1 we minimise this lower estimate over j .

LEMMA 1. For given j and arbitrary at, subject to a given minimum spacing 8(f),
the minimum value of rj = bj+\ — bj is attained when all at not at infinity are equally
or almost equally spaced.

PROOF OF LEMMA 1. For given j the function rj depends continuously on the values

of a,; this includes the possibility that some a, may tend to ±oo, as already noted.
Since <$(/) is fixed and the results are unaffected by translation, we could assume for
instance that some a, = 0, and ai+1 — S(f), and so all the a, cannot go to ±oo.

https://doi.org/10.1017/S144678870003723X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003723X


332 Peter Walker [3]

Hence for given j we can assume that a\, a2,..., an assume the configuration
which minimises r,, and we have to show that in this configuration all a, not at infinity
are equally or almost equally spaced.

It follows from the equation X^=i l/(fy ~ ai) = k that f° r fixed k e R

dbj 1 ^ ,

da, (bj-a^Sj frT

Note that 0 < 36,/3a, < 1 for all /, j . Hence

dr, 1 1
3a, (bj+l -di)2Sj+1 (bj-ai)2Sj'

and this is > 0 (respectively = 0, < 0) accordingly as

(or=, or

But the ratio Sj+i / Sj is independent of i, while the left side, as a function of /, is strictly
decreasing and < 1 for 1 < / < j , and strictly decreasing and > 1 for j; + 2 < i < n.
Hence for a given j we must have one of the following three cases for the sequence
of signs of drj/dcii, 1 < i < n:

(i) if Sj+i/Sj > 1, the sequence of signs has the form ••• — (?)(+ +
• • • +)(0)( • • • —) where the (?) is in the (j + l)st position, and either the
(0) or the blocks of + or — terms may be absent on the right,

(ii) if Sj+i/Sj = 1, the sequence is (?) + H h with (?) in the
(j + l)st position,

(iii) if Sj+i/Sj < 1, the sequence is (+ + ••• +)(0)( )(?) + + • • • + ,
similarly.

Notice also that if instead of varying a single a,, we move simultaneously a block
of consecutive a,, all having the same sign for drj/daj, then the effect on r; of either
an increase or a decrease will be the same as for a move in the individual terms; this
also holds if one of the signs is zero.

We now consider case (i) in detail and suppose initially that j > 1 so that there
is at least one 3ry/3a, with i < j + I, and all these derivatives must be < 0. Then
all intervals (a,-, ai+1) with / < j must be of length <$(/), since otherwise r, could be
decreased by a simultaneous increase in at,..., a,:. Now look at the signs to the right
of j + 1. These cannot end with a — since if they did, then r, could be decreased
by an increase in an (S(f) being already attained to the left of aj+l). Hence the sign

sequence must be ••• — (?)(+ + ••• +)(0). If there is zero at an we have no
control on the length of (an_u an). Apart from this, all intervals (a,, ai+l) with a + at

https://doi.org/10.1017/S144678870003723X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003723X
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ai+\ must be of length <5(/) since otherwise r, could be decreased by a simultaneous
decrease in ai+x,..., an. This proves equal or almost equal spacing in this case.

hi the case j = 0 the sign sequence is (?)(+ + ••• +)(0)( • ). Now if the
last sign is —, then the last interval (an_i, an) must have length 8(f), otherwise r, is
decreased by an increase in an. Then there can be no preceeding 0 or — signs, since
if there were, then r; could be decreased by a simultaneous increase of all terms with
a 0 or — sign. Hence the only remaining possibilities are either (?) + + ••• + (0),
which we showed above leads to equal or almost equal spacing, or (?) + + •• • -\—,
which we shall show cannot occur. We can assume that n > 4 since equal or almost
equal spacing is automatic if n = 2 or 3. Then 3r;/3a2 > 0, and we know that <$(/)
is already attained on (an-\,an) where n — 1 > 3. Hence if a2 — ay > 8(f) then a
decrease in a2 (only!) will decrease r,. Hence <$(/) is attained also on {ax, a2) and so
as above there can be no — sign at an.

Cases (ii) and (iii) are treated similarly, and Lemma 1 is proved.

NOTE. Numerical examples show that at least three possibilities can occur. For
instance if n = 4 and a, = i, 1 < / < 3, a4 = 4 + t, and k = — 1, then r0 is a
decreasing, and r2 is an increasing function of t, while r\ is firstly increasing and then
decreasing with a maximum near t — 6.

From now on we shall study the case of equal separation in detail. Almost equal
separation will not be considered again until the latter part of the proof of Theorem 1.

Our next objective is to estimate the positions of the points bj. To find these we
write bj = cij + tj for all j > 1; we can simplify by putting S(f) = 1 and at = i for
1 < i < n. Then we have bj = j + tj and we can also put t0 = b0. Then we have the
following estimates for tj and tj+l — tj in the normalised case.

LEMMA 2. Let E(t) = n cot nt and let E~l be the branch of the inverse with values
in the interval (0, 1): E~l(y) = 1/2 - tan"1 (y/'n)/'n. Let hn denote the harmonic
number 1 + 1/2 + • • • + 1/n. Then we have the following estimates for tj:

(i)(a) tj > E~l(k + hn.j - A7-_,) = pj say, for 1 < j < n,
(b) tj < E^(k + hn.j.x - hj) = qj (= pj+l) say, for 0<j<n-l.

(ii) We have tj+x - tj > nj [(n - j)(j + l)(n2 + k12)] where

k' =

k + hn-2-\, for 7 = 0

max (|* + hH-j - V i I . I* + hn-j-2 - hj+iI) - for 1 < j < n - 2
k + 1 - AB_2, for j = / i - l .

Note that (ii) gives us a proof that tj+1 > tj, which is the special case of <5(/' —
8(f) for equal spacing.
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PROOF OF LEMMA 2. (i) We know that tj is defined as a solution of the equation
fj(t) = YXl] l/(t~r) = k. Write £(?) = n cot nt = Vo-(0+*y(0- For sufficiently
large A', *,-(*) can be written

-y

and from the periodicity of E(t) it follows that

t + j - n t + ]

In particular *y (0) = hn^j — hj^\ and *;(1) = /in_y_i —/»/ whenever these are defined.
But £(?,) = k + Vj(tj) and vfy is decreasing on its intervals of continuity. Hence

since fy > 0 for 1 < j < n we have £(/,) < )k + *,-(0), or t} > £ " ' (k + hn_j - hj_\).
Similarly for 0 < j < n — 1 we have tj < 1 and so k + ^ ( 1 ) < E(tj) and

(ii) Note that

Let (pj(t) = YH=\ I/O' + ? ~ 0 . s o that (pj is decreasing on each interval of
continuity, and the above can be written

1 1
p ( ) k 0 ( ) or

n + tJ+i -

which is negative, since tJ+i > tj as already noted. In particular we have |0;

4>j(tj)\ > nl [(n - j)(j + 1)] forO < j < n - 1.
But from the mean value theorem we have fy+1 — f; = (0y(O+i) ~ <l>j(tj))/<l>'j(Q) for

some 0 e (f;, /y+1) and

0 ^ )
so that for 1 < j < n — 2,

tJ+i ~ tj > ^ n
j)(j + 1 } i n f { s i n 2 nO:tj<e< tJ+l

• min {sin2 ntj, sin2 ntj+\}

• min {sin2 npj, sin2 7T(7J+1}.
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Since E(pj) = n cotnpj = k + hn_j — hj-\ it follows that

sin2 npj = ^, and similarly

• 2

sin

Hence

where /t' = max (\k + hn_j — A,-_i|, |£ + /jn_y-_2 — fy+il), as required, if 1 < y <
/ i - 2 .

When j = n - 1 we have |0j(0)| = J2"Zo l/(® + ' ) 2 which is positive and
decreasing on (0, oo). Hence since tn > 6 > rn_i > /?n_i > 0 we have

\4>j(t*-i)\ < \<t>j(Pn-i)\ < sin2{npn.x)/7t2 = \/(n2 + (k + 1 - /jn_2)
2)

as required. The case j = 0 is similar, and the proof of Lemma 2 is complete.

Before we can go on to the proof of Theorem 1, we need the following technicality.

LEMMA 3. Let G(t) = t{\ - t)[n2 + [k + log(( l - t)/1)}2], for t e (0, 1), and

G(0) = G(l) = 0.
Then G(t) < (n2 + (\k\ + c)2)/4 where c = log((;r + 1)/(TT - 1)).

PROOF OF LEMMA 3. Suppose that k > 0 without loss of generality. Then G(t)
is continuous and non-negative on [0, 1] and G(t) > G(l — t) for 0 < t < 1/2, so
that in looking for a maximum we need consider only the interval [0, 1/2]. We have
G'(t) = 0 when

t l - t 7l2+02\ l - t

where 0 = k + log((l - 0 / 0 , or 1 - 2t = 20/(n2 + <92). But 2^/(TT2 + 02) < 1/TT,

so we must have 1/2 > t > t0 = (1 - l/n)/2.
Hence we can get an upper bound for G (0 by maximising t (1 — t) at t = 1/2, and by

maximising 7T2+#2 at? = ?0, which gives G(?) < (7T2+(£+log((7r + l)/(7r —1)))2)/4
as required.

PROOF OF THEOREM 1. The proof is in two parts. In the first we assume equal
separation and use Lemmas 2 and 3 to obtain the result. In the second we consider
what modifications are needed to deal with the case of almost equal separation.
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We can suppose that k > 0 since the result is the same for k and —it. We have to
minimise over j the various estimates for tj+l — tj which appear in Lemma 2. More
precisely we have to find upper bounds for

/ i0) = (« - j)U + D(TT2 + (k + hH-j-2 ~ hj+i)
2) for 0 < j < n - 2, and

Mj) = (" - J)U + !)(^2 + (* + K-j ~ hj-tf) for 1 < j < n - 1.

We consider /i firstly and deduce the results for f2. We use repeatedly the ele-
mentary inequalities

n . m+l , , m+\

which are valid for all integers m > n > 0.
In dealing with /i we first consider the values of j for which k + hn-j-2 ~ hj+i > 0,

and we bound this above by

n - j - l n-j-l
k + log 5— or k + log

j+l J+2
accordingly as j + 1 < n — j — 2 or not. But

(n - j)(j + 1) | n2 + Ik + log / 3 2

by Lemma 3 with t = (j + 3/2)/(n + 3/2); similarly

(« - j)(j + 1) U 2 +(k + log " T ^ " 1 ^ J < (n + 2)2(TT2 + (ife + c)2)/4

by Lemma 3 with t = (j + 2)/(« + 2).
Forvaluesofy with^+/in_y_2—Ay+i < 0 (which certainly requires y + 1 > n-j—2)

we have \k+hn_j_2-hj+i\ < k+hj+l-hn_j^2 < k+\og [(j + \) / \n- j - \)],
and so

3 \ 2>

/iO') < in - j)ij + 1) \n2 + j *: + log r-?-T
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= (n-j)(j + l)\n2+lk + logJ- ^ + log " J

A: + Iog4 + log
n - j

using Lemma 3 with k + log 4 for k and t = (n — j)/(n + 3/2). The consideration
of f2 is reduced to that of /i by putting n — j — 1 for j and —k for k. This completes
the proof of Theorem 1 in the case of equal separation when d = 8(f) = 1, giving
a slightly stronger result in which the 2/n term is absent in the denominator. For
the general case in which d > 0 is unrestricted, we rescale, replacing S(f — kf) by
<$(/' — kf)/d and k by kd, and the result follows for this case.

To show how the proof must be modified in the case of almost equal separation we
use the following lemma which refers back to the initial situation in which the points
a, are unrestricted.

LEMMA 4. For 1 < j < n write bs = as + ts and bj^ = aj — Uj, so that tx,..., rB_i
and « ! , . . . , MB_! are defined for all k, while tn exists only for k > 0, and U\ only for
k < 0. LetOj = Xlt#j 1/(0/ —Ok), o* = Ylkfr I/O' ~~ k)d = (hj-\ ~ hn-j)/d where
d = S(f), and let Fj(t) = £"=1 \/{t + 0 - i)d) for 0 < t < d, so that Fj is a
continuous decreasing function from (0, d) onto K.

Then (i) tj > /=}-' (* + oj- Oj), and (ii) Uj > d - Fr_\ (k + a* - aj).

Note that if we add the results of (i) and (ii) and use the result that Ff1 > Ff_\
which follows from Lemma 2(i), we obtain tj + Uj > d; that is, we have obtained a
new proof of S(f — kf) > S(f) along completely different lines from the one in [4].

PROOF OF LEMMA 4. The equation £ " l/(x - a , ) = k is satisfied when x = aj +tj,
so

n n

^2 l/('y + aj - ad = k and consequently - dk/dtj = ^ P l/(f; + aj - a,)2.
I I

Hence for 0 < f; < d,

dk
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d

'tj\tj J-dtj\fetj + <J-i)d)'d f . \ . • I - ^ I / . . , , , , w I ' W h i c h § i v e S

k + oj <
Sj-i)d tj + (J

on integration from 0 to tj. But the last equation gives

0 + 0' - i)d) = Fj(tj)

as required for (i); the proof of (ii) is similar.

The proof of Theorem 1 can now be completed quickly. Suppose that in the case
of almost equal separation we have a,• = id for 1 < / < n — 1 and an > nd. Then

1 1 - 1
0 > a — <7, = > .

1 ' (j-n)d jd-an (n-j)d
But in the proof of Lemma 3 the maxima of f\ and f2 are attained when 1 < j: < n/2,
and so we have 0 > a* — CT, > —2/nd. Putting this into (i) and (ii) of Lemma 4
shows that we can use the estimates for the equally spaced configuration (given by the
functions F~') with a value of k which is altered by at most 2/{nd) and this proves
the stated result in full.

Concerning the best value of the ratio in Theorem 1, we can make the following
observations. For the case of equal spacing and S(f) = 1, we define cn{k) = min, r, =
min, (/>,+, - bj) for any k e DK. It follows from 8(f - kf) > S(f) that cn(k) > 1 and
we conjecture that cn (kd) gives the best value of the ratio in Theorem 1; that is that
equal separation always gives the configuration which minimises r;.

Since each bj is a real-analytic function of k, cn(k) is piecewise analytic. Simple
asymptotic calculations show both that ry ~ l+n/(k2j(n—y))forfixedy as& -> +oo
(and a similar result at —oo), and that for k = 0, c«(0) ~ 1 + 4/(n2n) as n -» oo.
This shows that Theorem 1 gives at least the correct orders of magnitude.

However it is certainly not the case that the minimum of r, is always attained for
the same value of j ; it happens even in the smallest interesting cases (n = 4, 5) that
the location of the minimum changes from one branch to another as k varies. Hence
if, as we conjecture, cn (k) is really the best value of the ratio in Theorem 1, then this
cannot be given by a single real-analytic function at all points.

There can be no upper bound of the form S(f - kf) < (constant)<5(/) since
<$(/) may tend to 0 while 8(f — kf) remains bounded away from 0. However for
t ^ O w e have trivially <$(/' — kf) < 8(f) + n/\k\; the following argument shows
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slightly more, namely, that <$(/' - kf)2 < S(f)2 + (n/k)2. A stronger result, that
<$(/' - kf) < <S(/) + O(log«loglogn/|£|) will appear in [5].

Suppose then that k > 0 is given and that j is chosen so that <5(/) = aj+\ — af.
say a.j = 0, dj+i — d = S(f). Then we have 0 = at < bj < d = aj+l < bj+\ and
S(f'-kf)<bj+i-bj.

However when we fix the positions of <ay, o,-+I while allowing j and the other
a, to vary unrestrictedly, then the maximum of bJ+i occurs when y' + 1 = n, while
ai < • • • < an_\ are all close to zero, so that

bj+i <\{(d + n/k) + v V + n/k)2 - 4(« - \)d/k\ .

Similarly the minimum of b} is when j = I and all a2 < • • • < an are close to d, so

that bj > Ud + n/k)- ^/(d + n/k)2 -4d/k\ /2, and we deduce that

S(f -kf)<^ y{d + n/k)2-A{n-\)d/k + J(d + n/k)2 -

Similar estimates occur in the next section of the paper when we consider the total
separation A(/) .

3. Total Separation

For A(/) = an—a\ we have different results for / ' and for / ' — kf, (k ^ 0). The
restriction to polynomials having only real zeros still applies.

Notice that in this section we have to take account of repeated zeros of / , a
possibility that obviously did not occur in Section 2. To handle this we denote the
distinct zeros of / by or,-, 1 < i < m, say where a, is repeated «, times so that
J2" rij = n, and let y3, be the zero of / ' which lies in the interval (a,, ar,+i).

THEOREM 2. (i) For all polynomials of degree n > 3 we have

There is equality on the left if and only iff(x) = x(x — l/2)"~2(x — 1), taking «i = 0,
<xm = 1. There is equality on the right if and only if both a\ and an are repeated zeros
off.
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(ii) Ifk ^Owe have on putting A(/) = d that

d = A(/) < - {y/(d + n/\k\)2-4d/\k\ + y/(d + n/\k\)2 -4(n - \)d/\k\\

< A(/' - */) < l- \(d + n/\k\) + J{d + n/\k\)2-4d/\k\\ .

PROOF, (i) The inequality A(/ ') < A(/) is immediate from Rolle's theorem; we
shall not consider it further.

The other inequality is trivially true when both ĉ  and am are repeated. If only
one of them (say a\) is repeated then A(/ ') = pm_u and as in the proof of Lemma
1 we have 3/3m_i/3a, > 0 for all i, 2 < i < m — 1, and it follows that no such
a, can exist in the minimum configuration. This means that we need only consider
f(x) = xn~x(x - 1) in which case A(/ ') = (n - \)/n which is > J(n-2)/n as
required.

The more interesting case is when neither ai nor am are repeated. Then / has the
m - l

form f(x) = x f] (x — a,)"'(x — 1), which gives
2

f'JX) = 1 | y ^ Hi | 1
f(x) x ~^ x — a, x — 1

which is equal to zero if x = ft and so

a " l ^ c With SJ = -k
1 m " 1 n

i x—\ n,
3a, (ft - a,)2

Consequently 3(y8m-i — )Si)/3a, is > 0 (or = 0 or < 0) according to whether
2 ?

> (or=, or<)——.

But 5m_i/5i is independent of /, while the left side is a strictly increasing function
of i for 2 < i < m — 2. It follows that in the minimum configuration at most one of
these derivatives can equal zero and so / must have the form x(x — a)"~2(x — 1).
In this case we find that /J1>2 = (2a - I + n ± V(2a - 1 + n)2 - 4an)/(2n), so
A(/') = V(2a — 1 4- n)2 — Aan/n which is minimised when a — 1/2 and (i) is
proved.

(ii) We take k > 0 and ai = 0 without loss of generality. Then / ' — kf has one
further zero fim > am , and A( / ' — kf) — flm — ax if ai is repeated, A( / ' — kf) =
f)m — Pi otherwise.

In the first case, since 9)3m/3a, > 0 for all i with 1 < i < m, no such a, can exist in
either a minimum or a maximum configuration. Hence, writing an = am = A(/) = d,
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fim is minimised when f(x) = x"~1(x—d),andmaximisedwhen/(x) = x2(x—d)"~2,
giving

1 ,
{(</ + n/k) + y/(d + n/k)2 - 4(n - \)d/k) < A(/' - kf)

1
(1) < -Ud + n/k) + y/{d + n/k)2 - id/k\

2

when ax is repeated.
The second case in which ax is not repeated is more difficult. The proof can

proceed as in (i) above to the point where there can be at most one variable point a,
0 < a < d = A(/) , so that f(x) = x(x - a)"~r(x - d)r~\ for some r, 1 < r < n.
However the determination of fix and ft requires the explicit calculation of the roots
of a cubic equation, and finding the value of a to give a stationary value of ft — ft
turns out to be impossibly cumbersome.

We fall back on some approximations. The maximum and minimum values of ft
are given respectively when a = d and when a is (arbitrarily close to) zero, with
r = 2 in the latter case. This gives the range of values

\{{d + n/k) + y/(d + n/k)2 - 4(n - \)d/k] <f t

n/k) + y/{d + n/k)2 -

The same configurations give minimum and maximum values of fix '•

0<fix <\

Combining these gives

-{y/(d + n/k)2-4d/k + J{d + n/k)2 - 4(n - \)d/k) < ft - ft = A(/' - kf)
2
(2) < -{(d + n/k) + y/(d + n/k)2-4d/k},

and the result follows on combining (1) and (2).

NOTE. It is easy to check that the expression on the left of (2) is greater than d
and less than the left side of (1), so we have shown in particular that if k / 0 then
A(/ ' — kf) > A(/) as claimed in the introduction.
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