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Four applications of conformal equivalence
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Abstract. Conformal equivalence theorem from complex analysis says that every
Riemannian metric on a compact surface with negative Euler characteristics can be
obtained by multiplying a metric of constant negative curvature by a scalar function.
This fact is used to produce information about the topological and metric entropies
of the geodesic flow associated with a Riemannian metric, geodesic length spectrum,
geodesic and harmonic measures of infinity and Cheeger asymptotic isoperimetric
constant. The method is rather uniform and is based on a comparison of extremals
for variational problems for conformally equivalent metrics.

0. Introduction
Let M be a compact surface with negative Euler characteristic E and let o be a
smooth, say C®, Riemannian metric on M.

Classical regularization theorems from complex analysis (see e.g. [15]) imply the
following fact.

CONFORMAL EQUIVALENCE THEOREM. There exists a scalar positive C™ function p
on M, uniquely defined up to a positive constant, such that the Riemannian metric po
has constant negative curvature.

Two metrics o, o' which differ by a scalar function (i.e. ¢’ =po) determine the
same complex structure on M. We will call such metrics conformally equivalent.
Sometimes they are also called conformal.

The conformal equivalence theorem was used in [8] to obtain estimates for the
entropies (topological and metric with respect to Liouville measure) of the geodesic
flow associated with a Riemannian metric and for the growth rate of the number
of closed geodesics. In this note we show that similar arguments produce some
information about other important characteristics 'of a Riemannian metric on a
surface, namely the geodesic length spectrum, geodesic and harmonic measures at
infinity, and the Cheeger asymptotic isoperimetric constant [3]. To emphasize the
similarity of the arguments in all cases, we begin with a slightly different and more
easily accessible presentation of one of the main results from {8] and then proceed
to new applications of the conformal equivalence theorem.

I would like to point out that I learnt about the Cheeger constant from my Caltech
colleague Michael Anderson. He proved that for an arbitrary metric the Cheeger
constant does not exceed the topological entropy and conjectured that for a metric
of negative curvature it is greater than or equal to the Liouville entropy (see § 5
below). For the surface case theorem 5 gives a much better upper estimate for the
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Cheeger constant than topological entropy. This theorem came as an aftermath of
several discussions with Anderson and should be considered as a joint resulit.

1. Entropy estimates

Throughout this paper we will use the same notations as in [8]. In particular, let
h, be the topological entropy of the geodesic flow ¢ ={¢/} . associated with the
metric o and let k) be the metric entropy with respect to the smooth invariant
measure A, (Liouville measure) on the unit tangent bundle S°M. The total area of
the surface M will be denoted by V,, and the normalized Riemannian measure on
M, which coincides with the projection of A, to M, by u,. Furthermore, let us
choose the function p which comes from the conformal equivalence theorem in
such a way that the total areas of M with respect to o and po are the same.
Equivalently, this means that { p du, =1. We denote the number { p'/> du, by p,
and call it the conformal coefficient of the metric 0. By the Schwartz inequality,
p-=1 and p, =1 if and only if o itself is a metric of constant negative curvature.

For a metric o, of constant negative curvature —K? one has (see [8], (3.21))

hi,=h, =K =(-2wE/V,)". 1)

The following theorem summarizes those of the results of [8] for surfaces, which
are based on the conformal equivalence theorem. We reproduce the complete
formulation, although we will prove here only a part of the result.

THEOREM 1 (see [8], theorems 3.1 and 3.2). For any metric 0 on M
he=p(=27E/ V,)"? (2)

and this inequality is strict unless o is a metric of constant negative curvature.
If, moreover, o is a metric without focal points (see [10]; e.g. if it has non-positive
curvature), then

h:\rspa(_ZWE/ Vn)l/z (3)
and this inequality is also strict Jfor any metric of non-constant curvature.

We will give here a proof only for the non-strict version of (2). The argument
presented below preceded the one given in [8] and is very suggestive in view of
other applications of the conformal equivalence theorem discussed in §§ 2, 3 and
4. The non-strict version of (3) for a metric of negative curvature can be obtained
in a very similar way. Making the last inequality work for metrics without focal
points, as well as showing that the inequalities are strict, requires slightly more
subtle considerations which actually somewhat obscure the main idea, namely
comparing the extremals of a variational problem (in this case, closed geodesics)
for conformally equivalent metrics.

Proof. Take the metric of constant negative curvature o,=po, where as before
V.. = V.. Fix a large number T and consider all closed geodesics for o, of length
=T. The total number P, (t) of such geodesics satisfies the asymptotic formula

lim PolT) =
T h )T exp (Th,,)

1.
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For metrics of constant negative curvature this asymptotic follows from the Selberg
trace formula for variable negative curvature from the work of Margulis [13].

Actually, we do not even need this precise multiplicative asymptotic for P, (T),
but only a weaker exponential asymptotic (see e.g. [1])

log P, (T
lim 28 FalT)

T->o00

h,,.

In addition to that, we use the fact that Liouville measure A, is the unique
measure with maximal entropy for the geodesic flow ¢°. This implies that for a
large T the majority of closed geodesics of length =T are almost uniformly
distributed with respect to A,,. '

More precisely, we claim that for any continuous test function f on S°°M and
for any £ >0, among all closed geodesics of length = T, the proportion of those for
which the average of f along the geodesic is within £ of the space average | go0,, fdA,,
goes to one. For, if we assume the contrary, then there exist a sequence T, >0, a
continuous function f and a number £,> 0 such that there are more than &,P, (T,)
geodesics y of length <T, for which f,> [ oo, fdA,,+ €0 (OT f, <[ goops fdAo, — £0)-
Here f, denotes the average of f along 1.

Consider the first case. Take the average u, of uniform §-measures on all our
geodesics. Then

J fdun>I Sfdrs,+g. (4)
S%oM S7oM

But the argument from [6, § 4] shows that for any weak limit point u of the sequence

Hn

1 P, (T,
h“(¢¢70)2’1'i£23 Og Eo og( ")=hao. (5)

Since by (4) p # A,,, we obtain a contradiction.

Thus let us fix € >0 and assume that T is large enough, so that for at least
(1-¢)P,(T) of all closed geodesics of length < T the averages of the function p~'/?
are within ¢ of the average of that function with respect to A,,. The last average is
equal to p, because

J p d)‘vo=,[ p? dwfj p'?p7"! d,wfj p"? du, = p,.
S°oM M M M

The o-length of any o,-closed geodesic vy is equal to its o,-length multiplied by
the average of the function p~'/? along y. Thus for any of our o,-geodesics the
o-length is going to be less than T(p,+ ¢), while their total number is at least
(1-¢)P,(T).

Each of these geodesics represents a different free homotopy class and each of
those classes contains a closed geodesic with respect to o. This geodesic is the
shortest o-curve in its free homotopy class, so that it is not longer than the o,-closed
geodesic and consequently is shorter than T(p, + ¢).

For an arbitrary metric o let us denote by P,(T) the number of free homotopy
classes whose shortest representatives are no longer than T. Thus we have shown that

Po(T(ps+€))=(1—¢€) P, (T). (6)
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Since closed geodesics from different homotopy classes are 8,-separated, where
8, depends only on the metric, we have from (6)

— log PU(T(p,,+8))>—. log (1-¢)P,(T) -
= =1 =" =(p, + h, .
PEL T TG e 1 Tt )
Since £ can be chosen arbitrarily small,

h,=p; h,,. 0O
An alternative way to find enough closed geodesics, which are almost uniformly
distributed with respect to A,, (or to any given invariant ergodic measure u with
positive entropy), is to use the definition of metric entropy through separated sets
and a closing lemma (see [8], 1.6 and 1.3). This approach yields at least
exp T(h,(¢7)—¢) almost u-uniformly distributed closed geodesics for any metric
o of negative curvature. Then the same variational argument as before allows us to
obtain (3) by switching the roles of o and o, and using (1).
Next we will show that even a simpler version of the argument indicated above
produces another useful result.

2. Geodesic length spectrum and classification of metrics of negative curvature
Let T" be the set of all non-zero free homotopy classes of closed curves on M. For
each yelI let L,(y) be the infimum of lengths of curves representing y or,
equivalently, the length of the shortest closed geodesics representing y. In particular,
if o is a metric of negative curvature, then there is only one closed geodesic
representing vy and, naturally, L,(y) is equal to the length of that closed geodesic.
We will call the function L, :I' >R, the geodesic length spectrum of o.
Two metrics o and o' on M are called strongly isometric if there exists a
diffeomorphism g of M onto itself isotopic to identify and such that g,o=0".
The conformal equivalence theorem allows one to reduce the classification of
metrics up to a strong isometry to two easier problems: one dealing with conformally
equivalent metrics and the other with different metrics of curvature ~1. The space
of such metrics (Teichmiiller space) is finite-dimensional and its structure is well
understood.
Conjecture (see [2], conjecture 3.1). If two metrics of negative curvature on a compact
surface have the same geodesic length spectrum, then the metrics are strongly
isometric.
There is strong evidence in favour of this conjecture which is discussed in [2,
§ 3]. In particular the following result is true [9].

THEOREM A. If metrics o, o' of negative curvature on a compact surface M have the
same length spectrum, then there exists a C* diffeomorphism isotopic to identity
g: S°M > S°'M such that $7'g=gd?.

We will use the reduction mentioned above to show that the conjecture is true
modulo finitely many parameters.

THEOREM 2. Different conformally equivalent metrics of negative curvature on a
compact surface have different geodesic length spectra.
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Proof. Let o, o' be two conformally equivalent metrics of negative curvature so that
o' = po. We can always assume that

. Vo
Vo=V, ie. pdu,=—=1,
M Vo

and consequently
1/2 —
J‘ p/?du,<1  unlessp=1. (7)
M

Geodesic flow ¢7 is ergodic with respect to Liouville measure A,. Fix an orbit
of that flow for which the Birkhoff ergodic theorem applies for all continuous
functions (such an orbit is necessarily dense in S°M) and take a sufficiently long
piece of that orbit which almost comes back. Then, applying the Anosov closing
lemma (see e.g. [8], 1.3), one obtains a closed geodesic which is almost uniformly
distributed with respect to A,. In particular, the average of the function p'/? over
this geodesic is within & of the number f,, p'/? du, and, if ¢ is small enough, that
average is less than one (cf. (7)). Thus the o'-length of that geodesic is less than its
o-length and the o'-closed geodesic in the same free homotopy class y is even
shorter, so that

L, (y)<L,(y). a
Remarks. (1) In the proof of theorem 2 we did not use the fact that ¢’ is also a
metric of negative curvature. However, the choice of o was determined by the
inequality V, = V,.. Thus, if we assume from the beginning that two metrics have
the same area and that only one of them has negative curvature, they will still have
different length spectra.
(2) For metrics of negative curvature the geodesic length spectrum actually
determines the area, but this fact is not needed for our proof.

CoROLLARY. A metric of negative curvature on a compact surface is determined up to
a strong isometry by the geodesic length spectrum and by finitely many extra parameters,
namely Teichmiiller coordinates of its conformal type.

Theorem 2 can be strengthened by replacing in its assumption the geodesic length
spectrum by a certain part of it. Let 8 € H,(M, Z) and let I'; be the part of I' which
consists of free homotopy classes of closed curves homologous to 8. Let us call the
restriction of the geodesic length spectrum to I'; the B-length spectrum for o.

THEOREM 3. For each B € H,(M, Z) different conformally equivalent metrics of negative
curvature on a compact surface have different B-length spectra.

Proof. If one can find an almost uniformly distributed closed geodesic whose
homology class is equal to B, the rest of the proof of theorem 2 works without any
changes. Since the possibility of such a choice is an interesting statement in its own
right, we formulate and prove it separately.

LEMMA. Let o be a metric of negative curvature on a compact surface M, g € H,(M, Z),
fis- - fm be continuous functions on S°M and e > 0. There exists a closed geodesic
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for o whose homology class is equal to B and such that the average of each function
[ over the geodesic is within € of the average Is,M fidrg, i=1,... m

Proof. Let us choose a collection of differential 1-forms w,,...,®, on M whose
cohomology classes form a basis in the first cohomology group H'(M,R). Each
form w; can be considered as a function on the tangent bundle TM. Let us denote
the restriction of that function to the unit tangent bundle S°M by (),. Since for
every ve S°M, Q;(—v)=—-Q,(v) and the ‘flip’ operation which sends v to —v
preserves Liouville measure, we have

I Qi dAo =0.
™M

Thus, by choosing a sufficiently long, almost uniformly distributed closed geodesic
g as in the proof of theorem 2, one can assume that the averages of the functions
Q,,...,8, over g are less than ¢, in absolute value. The constant &, will be chosen

later and will depend only on o, f;,..., f, and &
In addition we can assume that the geodesic g is §-dense, i.e. that it intersects

every 8-ball in S°M. Here 8 will also be specified later and will depend only on
the given data.

The homology group H,(M, Z) is naturally represented as the integer lattice in
H,(M,R) if M is orientable, and as the direct product of that lattice with a cyclic
group of order two if M is non-orientable. Let us define a ‘norm’ for a € H,(M, Z)

as follows:
ol = ¥ f w.-]+A,
i=1 o .

where A=0 if M is orientable or if a belongs to the lattice part of H,(M, Z), and
A =1 otherwise.

Let 1,(a) be the infimum of lengths of closed curves representing «. Obviously

1,(a)<cl|e|, (8)

where c¢ is a constant depending only on o and on the choice of the w, If a #0,
the infimum is always realized by a closed geodesic.

For a geodesic g’ which realizes the minimum of length in a homology class a,
one has

llel] < ¢, length g, )
where ¢, as before depends only on o and on the choice of the w;.

Let us return to our initial almost uniformly distributed closed geodesic g. Let us
denote [g] € H (M, Z) the homology class of g. If by chance [g]= B, the proof is
finished. Otherwise, let « = 8 ~[g] and let us construct a shortest closed geodesic
g’ representing a. By the construction of g it passes within 26 of g’, and by the
shadowing lemma (see e.g. [7, § 2]) one can construct a closed geodesic g” which
follows g very closely, then follows g’ very closely, and whose length is very close
to the sum of the lengths of g and g'. The precise meaning of the words ‘closely’
and ‘close’ in the previous sentence is determined by 8. Obviously

[g"]=[e]l+{g'T=[g]1+B-[g]=8.
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On the other hand, by (8),

length g’ < c(||gl|+ 1B,

and by our choice of g it follows from (9) that [|g'[| < &, length g. Since 8 is fixed
and g can be chosen arbitrarily long, we can also assume that || 8|| < ¢, length g. Thus

length g’ <2ce, length g.

Now, choosing ¢, and § sufficiently small from the beginning, one can guarantee

that the averages of the functions f,, ..., f,, over g" are arbitrarily close to those
for g and consequently are within £ of the integrals
j' fidA,, i=1,...,m (]
S°M

3. Geodesic and harmonic measures at infinity

Let M be the universal cover of the surface M. Any Riemannian metric o on M
has a natural lift to M which we will denote by &. If o is a metric of negative
curvature, then the classes of &-geodesics on 1\71, asymptotic to each other in the
positive direction, determine the circle at infinity which we will denote by M (00).
Since every two o-geodesics which do not converge to each other exponentially in
the positive direction diverge exponentially, the elements of the circle at infinity
can also be described as classes of o-geodesics which stay a bounded distance apart
in the positive direction. This description shows that the circle at infinity for M is
defined canonically for all metrics of negative curvature on M. For, let o, o’ be two
such metrics. For any d-geodesic y there exists exactly one &-geodesic v’ which
stays a bounded distance away from y. Thus the points of the circles at infinity
defined by o and o', which are determined by geodesics asymptotic to y and y’
correspondingly, are naturally identified. The space N =MuM (c0) is provided
with a natural topology which makes it homeomorphic to a closed disc.

The fundamental group Il = 7,(M) acts on M and preserves the lift of any
Riemannian metric from M. This action is extended to an action by homeomorphisms
of N.

The correspondence between - and ¢'-geodesics described above, which associ-
ate y and v/, is obviously [1-equivariant and thus can be projected to M. Furthermore,
one can extend it to a Il-equivariant map G between the unit tangent bundles to
M for 6 and & which agrees with it (see e.g. [4]). The map G may be made smooth
along o-geodesics, but it is not canonically defined and in general it does not
preserve the time parameter for the geodesic flow, i.e. the length parameter along
geodesics. In order for that to be possible, the metrics o and o’ have to have the
same length spectrum. Theorem A (see § 2) shows that it is also sufficient. The
projection of the map G to the unit tangent bundle of M defines a continuous
isotopic to identity orbit equivalence g between the geodesic flows ¢ and ¢°.
Such an orbit equivalence is uniquely defined up to a variable shift along the orbits
of ¢°. In particular, if g is smooth along the orbits of that flow, then for every
¢°-invariant measure u the class of the measure g, u is independent of a particular
choice of g. Since ¢, = g "' ¢7 g is a flow which differs from ¢ by a positive velocity
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change, the measure g, u is equivalent to a ¢ -invariant measure. In particular,
since Liouville measure A, is ergodic with respect to the flow ¢7, the measure g, A,
is equivalent to an ergodic invariant measure for ¢°. Hence it is either equivalent
to A, or is singular with respect to it. In [9] the following result is proved.

THEOREM B. Let o, o’ be two metrics of negative curvature on a compact surface M.
If there exists a continuous absolutely continuous isotopic to identity orbit equivalence
between the geodesic flows ¢° and ¢°, then the metrics o and o' have the same
geodesic length spectrum.

For each point pe M and each £e M(o) there exists exactly one semi-infinite
o-geodesic which starts at p and is asymptotic to £ Let v,(£) e T,,(A';! ) be the unit
tangent vector at p determining the geodesic and, conversely, for ve TP(M ) let
£,(v) e M(©) be the equivlaence class of the geodesic beginning at v.

For any two points p, g€ M the map

Q,,=0v,°:SIM~>S]M
is a C' (but in general not C?) diffeomorphism [5]. Thus a canonical C' structure
is defined on M(c0) as the image of the standard C' structure on S:M under the
map &, forany pe M. In particular, the £,+6, the images of Lebesgue measure 6 on
S;M, determine a class of equivalent measures at the circle at infinity which we
will call the geodesic measure class at infinity.

Another way to produce a canonical measure class at infinity is to consider the
Brownian motoion on M starting at a point p. Almost every path of that motion
converges to a point on M(c0). Thus for a Borel set B< M(00) we can define the
probability that the Brownian path beginning at p converges to a point £ B. This
determines a measure 7, on M(00). For different initial points p, g € M the measures
n, and 7, are equivalent. These measures are called harmonic measures and their
equivalence class the harmonic measure class at infinity.

THEOREM 4. If o is a metric of non-constant negative curvature on M, then geodesic
and harmonic measure classes at infinity are mutually singular.

Proof. The first important observation is that since a Laplacian in dimension two is
conformally invariant, the Brownian motions for conformally equivalent metrics
have the same orbits and differ only by a time change. Hence harmonic measures
for conformally equivalent metrics are the same. For a metric of constant negative
curvature, harmonic and geodesic measure classes coincide. This becomes obvious
if one considers M as the standard Poincaré disc and takes the origin as the point
p- Both the geodesic and the harmonic measures are rotationally invariant and
therefore coincide with Lebesgue measure on the unit circle.

PROPOSITION. Let o, o' be two metrics of negative curvature on M. Then either there
exists a continuous absolutely continuous isotopic to identity orbit equivalence betwen
the geodesic flows ¢ and ¢°’ or the geodesic measure classes for o and o' are mutually
singular.
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This is an almost immediate corollary of the fact that the correspondence between
two transversals along the leaves of the weak-stable foliation is C' and hence is
absolutely continuous.

Let us outline the original proof of theorem 4 which the author found in 1984.
As before let o= po be the metric of constant negative curvature with V, =V,.
Since the harmonic measure class of o coincides with the geodesic measure class
for oy, then, unless the geodesic and harmonic measure classes of o are mutually
singular, one deduces from the proposition, theorem B and theorem A that the
geodesic flows ¢ and ¢“ are conjugate via a diffeomorphism g. This obviously
implies that h, = h,, . Since the image g, A, is an absolutely continuous ¢“-invariant
measure, it must coincide with A, so that hy = h}, . Thus we have h} = h} =h, =h,
and by theorem 1 p, =1, i.e. p=1 and o = 0o,. .

Now we will present a self-contained proof of theorem 4 which does not depend
on theorems A and B and follows very closely the arguments from the proof of
theorem 1 presented in § 1.

Proof. Let g be an orbit equivalence between the geodesic flows ¢ and ¢ “ isotopic
to identity. We assume that the map g is smooth along the orbits of ¢°. As we
already mentioned, the flow ¢, =g '¢7g differs from ¢ by a positive velocity
change, i.e. if n=d¢;°/ dtI'=0 is the vector field generating ¢, then the flow ¢, is
generated by the vector field an, where a is a positive scalar function. We still use
the proposition in order to deduce that either the geodesic and harmonic measure
classes for o are mutually singular or the orbit equivalence g is absolutely continuous.
In the latter case the measure g, A, is absolutely continuous and is invariant with
respect to the flow ¢,. But the measure a")\,,0 is also absolutely continuous -
invariant and ergodic, so that the two measures must be proportional. Now let us
fix a large positive number T and, as in the proof of theorem 1, consider the set Sr
of all closed geodesics for o, of length =T which are almost uniformly distributed
with respect to the measure A,,. As we have shown, those geodesics constitute the
majority among all closed geodesics of length =T, so we can assume that card S;>
3P, (T).

Every geodesic y € Sy after a reparametrization becomes a closed orbit v’ of the
flow ¢,, which is almost uniformly distributed with respect to Liouville measure A,.
Obviously, in making the meaning of ‘almost uniformly distributed’ precise, one
has to use different constants for different cases.

On the other hand, since the map g is isotopic to identity, the o-geodesic g™'y’
belongs to the same free homotopy class as y. Thus, assuming that the average of
the function p~/? over all y € Sy is close to p,,, we deduce as in the proof of theorem
1 that the o-length of g~'y’ is less than (p, +¢) times the o,-length of v, where ¢
is an arbitrarily small number fixed in advance.

Let ur be the average of uniform 8-measures on all geodesics g~'y’ for y€ Sr.
Since every such geodesic is almost uniformly distributed with respect to A,, as
T -0 we obtain wur - A,. Arguing as in (5), we obtain

o logcard Sy . log :Pe(T)

i = lim ~== 2= (p, + ) b,
Tl-?alo (Pa+8)T Tl-uco (Pa+E)T (P 8) o
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Since ¢ can be chosen arbitrarily small, by theorem 1 this is impossible unless p, =1,
i.e. p=1 so that o = g,. O
Remark. Besides the two proofs of theorem 4 presented here, there are two more
known proofs. One of them was found by Ledrappier [11] and is based on some
entropy-like considerations for the Brownian motion and on the conformal
equivalence. The other ([5], corollary 10.5) is a corollary of the rigidity of the
Godbillon-Vey class for weak-stable foliations for surfaces of constant negative
curvature.

4. Estimate of Cheeger isoperimetric constant
As before let M be the universal cover of M and & be the natural lift of the metric
o to M. The asymptotic Cheeger isoperimetric constant C, is defined as the lower
limit of the ratios of the length of a rectifiable closed Jordan curve on M to the
area bounded by the curve as the area goes to infinity. The usual definition of the
isoperimetric constant does not include the assumption that the area goes to infinity.
We include it to avoid a situation of a surface with a large relatively flat piece and
many handles with large curvature.

If one fixes the length of the curve and considers the infimum with that restriction,
it is easy to deduce from the fact that the metric & is a lift of a metric on a compact
surface that the infimum is actually achieved. Then the following rather standard
variational argument shows that any extremal curve has constant geodesic curvature
and the value of that curvature is equal to the ratio in question.

Let T be a closed curve on M of length [ bounding a domain of area V and
provided with the length parameter s. Let N(s) be the unit vector of exterior normal
to I and H(s)= h(s) N(s) be the vector of geodesic curvature, so that h(s) =|H (s)|
is the geodesic curvature of I' at the point s. Furthermore, let E be a vector field
on I which determines a smooth variation of I', i.e. a smooth one-parameter family
of curves I', of length /, bounding the area V,. Then an explicit calculation shows that

d{ | 1 __I
E(_.),zo_ VJ;<H(S)’E(S)>d vz J.F(N(s),E(s)) ds

=lVJr <H(s)——‘l/N(s),E(s)> ds. (10)

If T is an extremal curve of length /, then the integral at the right-hand part of (10)
is equal to zero for every smooth vector field E, so that h(s)=1/V. Thus C, can be
calculated by considering only smooth closed curves of constant geodesic curvature.
In particular, this observation allows us to show that for a metric of constant negative
curvature —K?

C,=K=(-2mE/V,)"?*=h,=h).

THEOREM 5. For an arbitrary metric o on a compact surface
C,=p,(-2mE/V,)">.

Proof. As before let 0, = po be the metric of constant negative curvature such that

V., = V.. Lift o and o, to the metrics & and &, on M. Take a large circle C on M
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with respect to the metric &, as a test curve. The ratio of the J,-length of C to the
Go-area of its interior is close to (—2#wE/ V,)"2.

Let us see what happens to the length and the area when we pass from &, to &.
As before, the o-length of C is equal to its Jy-length times the average of the
function p~'/? over C taken with respect to the &,-length parameter. The last quantity
is close to §,, p~'/? du, which, as we already mentioned, is equal to p,.

The reason for that is that the projection of a circle to M converges to a horocycle
when the radius goes to infinity, and the projection of the normalized arc length
measure to S”M weakly converges to an invariant measure for the horocycle flow.
But the only invariant measure for that flow is Liouville measure.

In order to understand how the area changes, let us introduce the following
coordinates inside the disc D bounded by the circle C. Let r be the g,-arc length
parameter along radial geodesics, and s be the oy-arc length parameter along the
concentric circles. Let /(r) be the oy-length of the circle of radius r. Since the area
element in (r, s) coordinates is simply ds dr, the oy-area of the disc D of radius R

is equal to
R i(r) R
A0=J. J dsdr=J I(r) dr (11)
0

0 0

and the o-area is equal to

R I(r)
A =J J (s, r) dsdr, (12)
0 0

where § is the lift of p to M. '

Since the length I(r) grows exponentially with r, the dominant contribution to
both expressions (11) and (12) comes from the integration between R/2 and R. But
for a large R and for every r: R/2=r= R the projection of any &,-circle of radius
r is already almost uniformly distributed with respect to A, (see above). Thus for

R/2=r=R

I(r)
J p (s, r)ds—1(r) J’ p~ du.,

0 M

is small but
V.
ldu, =—==1,
Jp "L (13 Vao

so that the ratio A/ A, is close to one.
Thus the ratio of the o-length of C and the o-area of D is close to p,(—27E/ V,)"?
and the Cheeger constant, being the lower limit of all such ratios, should be less

than or equal to that quantity. O

5. Comparison of various measures of deviation from constant negative curvature

Several important numerical invariants of a Riemannian metric o can be interpreted
as measuring the deviation of o from metrics of constant negative curvature. These
characteristics come from three different sources: geometry, complex analysis and
dynamics. It is natural to consider normalized quantities which do not change when
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a metric is multiplied by a scalar constant. We will mention five such characteristics.
Some of them make sense only for metrics of negative curvature, others for arbitrary
metrics.

(1) The most straightforward geometric characteristic for a metric of non-positive
curvature with the curvature function —K?(x), x € M, is the normalized average of
the square root of the absolute value of the curvature

wor J K (x) du,(x) j K (x) du.(x)
k‘),V= M _JIM

1/2 —2wE/ V. 1/2
(| K@ duwn)™ CEY
M
(2) Another geometric characteristic is the normalized Cheeger constant
cN def C,

"~ (=2@E/V,)"*
Unlike the previous one, it makes sense for an arbitrary metric.

(3) The natural measure of deviation associated with conformal structure is the
conformal coefficient p,, which is also defined for an arbitrary metric.

(4) The normalized topology entropy

N d_e_f ha hcr

7 h,, (~-2mE/V,)"?
is a natural dynamical characteristic defined for an arbitrary metric.

(5) For metrics without focal points one can also consider the normalized Liouville
entropy
pnirhe R
i by, (—2wE/V,)'?

If o is a metric of constant negative curvature, all five quantities are equal to
one. For all other metrics the following inequalities hold:

kY <htN<p,<1<hl

Vv (13)
cy

Each inequality holds whenever both quantities are defined.

All these inequalities except for the one on the far left have been discussed in
the present paper. The remaining one is due to Manning [12] and Sarnak [14] and
is obtained by studying the Riccati equation and using the Pesin entropy formula.

The only two remaining open questions are the relationships between the C) on
one side and the k) and h)™ on the other. Positive solution of the following
conjecture would transform (13) into a linearly ordered chain of inequalities.

Conjecture (M. Anderson). For any metric of negative curvature on a compact
manifold

hr=cC,.
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In a somewhat different direction, let us mention that theorem 4 can be sharpened
in the following way. Let H, be the Hausdorff dimension of harmonic measures
with respect to the C'-structure defined by the maps &,. Then for every metric
o of non-constant negative curvature H, <1. Thus the number H, measures how
singular the harmonic measures are with respect to the geodesic ones. Relations
between H, and the five quantities mentioned above are not clear at this point.

Let us conclude this discussion with a remark on two inequalities on the left of

(13). The conformal coefficient p, is estimated from below through the area and
the injectivity radius ([8], theorem 3.4). Having this in mind, let us consider two
examples:
(1) A metric of non-positive curvature with area one and injectivity radius bounded
away from zero, which is flat or almost flat everywhere, except for a small neighbour-
hood of a finite set of points: for such a metric k.’ is obviously very small. A study
of the Riccati equation and the ergodicity of the geodesic flow shows that the metric
entropy with respect to Liouville measure is also very small. Thus kY <h2N« p,
because p, is bounded away from zero.

(2) All properties of the metric remain the same except for the distribution of the
negative curvature. It is concentrated near a curve; e.g. we can consider two flat
tori with a round hole of fixed size in each connected by a very narrow ‘collar’ of
negative curvature. In this case k. is still very small. However, ), is bounded away
from zero so that we have k) <« kN <p,.
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