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Abstract

It is known that for decreasing hazard rate (DHR) service times the foreground–
background discipline (FB) minimizes the mean delay in the M/G/1 queue among all
work-conserving and nonanticipating service disciplines. It is believed that a similar
result is valid for increasing mean residual lifetime (IMRL) service times. However, on
the one hand, we point out a flaw in an earlier proof of the latter result and construct a
counter-example that demonstrates that FB is not necessarily optimal within class IMRL.
On the other hand, we prove that the mean delay for FB is smaller than that of the
processor-sharing discipline within class IMRL, giving a weaker version of an earlier
hypothesis.
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1. Introduction

Consider an M/G/1 queue with arrival rate λ, mean service time E[S], and load

ρ = λ E[S] < 1.

Jobs are served according to a work-conserving and nonanticipating service (scheduling)
discipline π . A discipline is work conserving if it does not idle when there are jobs waiting,
and nonanticipating if the remaining service times of jobs are not known by the server. Let
� denote the family of such service disciplines. For example, the well-known disciplines
FCFS (first-come–first-served) and PS (processor-sharing) belong to this family, while SRPT
(shortest remaining processing time) does not. Let F(x) = P{S ≤ x}, x ≥ 0, denote the
cumulative service time distribution function of any job. Define F̄ (x) = 1−F(x), and assume
that F̄ (x) > 0 for all x.

If the service time distribution has density f (x), the hazard rate, h(x), is defined by

h(x) = f (x)

F̄ (x)
= f (x)∫ ∞

x
f (y) dy

.

A service time distribution belongs to class DHR (decreasing hazard rate) if h(x) is decreasing
for all x, i.e. h(x) ≥ h(y) whenever x ≤ y.
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524 S. AALTO AND U. AYESTA

Yashkov [7] has shown that within the class DHR the mean delay is minimized by the
foreground–background discipline (FB), which gives priority to the job with the least attained
service. In fact, Righter and Shanthikumar [4] have proved that FB minimizes not only the
mean delay and the mean queue length, but even the queue length in the stochastic sense. FB
is also known as FBPS (feedback processor-sharing), LAST (least attained service time), and
LAS (least attained service).

For all x, define

H(x) = F̄ (x)∫ ∞
x

F̄ (y) dy
. (1.1)

A service time distribution belongs to class IMRL (increasing mean residual lifetime) if H(x)

is decreasing for all x, i.e. H(x) ≥ H(y) whenever x ≤ y. This is due to the fact that

E[S − x | S > x] =
∫ ∞
x

F̄ (y) dy

F̄ (x)
= 1

H(x)
. (1.2)

It is known that IMRL is a weaker condition than DHR. In other words, DHR ⊂ IMRL.
Righter et al. [5, Theorem 3.14] stated that FB minimizes the mean delay even within class
IMRL. (Unfortunately, there is a misprint in the abstract of [5] stating just the opposite. The
correct form is given in [5, Theorem 3.14].)

A still more general class consists of those service time distributions for which C2[S] ≥ 1,
where C2[S] denotes the squared coefficient of variation of the service time distribution, written
in terms of the variance of the service time distribution, D2[S], as C2[S] = D2[S]/ E[S]2.
Wierman et al. [6, Example 1] demonstrated, by constructing a counter-example, that FB
is not optimal within this class. In particular, they disproved the hypothesis of Coffman and
Denning [2, pp. 188–189] that the mean delay for FB would be smaller than that of PS whenever
C2[S] > 1. The distribution given in their counter-example, while having a greater squared
coefficient of variation than 1, does not belong to class IMRL. (Unfortunately, there is a misprint
in [6, Example 1]. The corrected version reads as follows: P{S = 1} = 4

5 + ε and P{S = 6} =
1
5 − ε. Then C2[S] > 1 for any ε, 0 < ε < 1

10 .)
In this paper we prove that, in contradiction with [5, Theorem 3.14], FB does not minimize

the mean delay within class IMRL. More specifically, we first identify a flaw in the proof
of [5, Theorem 3.14] that cannot be overcome. Then we choose a service time distribution
that belongs to IMRL but not to DHR, and construct a discipline for which the mean delay is
smaller than that of FB. However, we prove that the mean delay for FB is smaller than that of
PS within class IMRL, giving a weaker version of the hypothesis of Coffman and Denning [2,
pp. 188–189].

The rest of the paper is organized as follows. First, in Section 2, we recall an essential point
from [5], which is a relationship between the mean delay and the so-called level-x workload.
Then, in Section 3, we consider the sample paths of the level-x workload process and prove
that FB is not pathwise optimal. In Section 4, we prove that FB is also not optimal with respect
to the mean level-x workload, but still outperforms PS. In Section 5, we finally construct the
counter-example demonstrating that FB does not minimize the mean delay within class IMRL.

2. Relationship between mean delay and level-x workload

Consider a single-server queueing system starting empty at time t = 0 and obeying a service
discipline π ∈ �. We assume that jobs arrive one at a time. They are indexed by i = 1, 2, . . . ,
according to their arrival order.

https://doi.org/10.1239/jap/1152413739 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413739


On the nonoptimality of FB within class IMRL 525

Let Ai denote the arrival epoch of job i and Si its service time. In addition, let Xπ
i (t) denote

the attained service of job i at time t . Then let A(t) and N π (t) respectively denote the set of
jobs that have arrived by time t and those still in the system at time t :

A(t) = {i : Ai ≤ t}, N π (t) = {i ∈ A(t) : Xπ
i (t) < Si}.

For any x > 0, let N π
x (t) denote the set of those jobs in the system whose attained service is

less than x:
N π

x (t) = {i ∈ A(t) : Xπ
i (t) < min{x, Si}}.

Furthermore, let A(t) = |A(t)|, Nπ(t) = |N π (t)|, and Nπ
x (t) = |N π

x (t)|, where the modulus
of a set denotes its cardinality.

For any x ≥ 0, let V π
x (t) denote the workload in the system at time t contributed by those

jobs with attained service less than x, which for brevity we call the level-x workload:

V π
x (t) =

∑
i∈N π

x (t)

(Si − Xπ
i (t)). (2.1)

Note that in the limit x → ∞ the level-x workload equals the ordinary workload of this system,
i.e. the sum of remaining service times of all jobs, which is the same for all work-conserving
disciplines.

To obtain another expression for the level-x workload, let Rπ
x (t) denote the total rate at

which service is provided to the jobs with attained service less than x at time t . Whenever there
are such jobs, the level-x workload decreases continuously with this rate. However, it may
also decrease discontinuously: whenever the attained service of a job reaches the truncation
threshold x, such that the job is no longer a member of N π

x (t), the level-x workload decreases
by a step that equals the remaining service time of that job. Thus, we have

V π
x (t) =

∑
i∈A(t)

Si −
∫ t

0
Rπ

x (u) du −
∑

i∈A(t)\N π
x (t)

(Si − min{x, Si}). (2.2)

Consider the M/G/1 queue with ρ < 1. Let N̄π denote the steady-state mean number of jobs
in the system and V̄ π

x the steady-state mean level-x workload. Righter et al. [5, Lemma 3.12]
showed that, for any π ∈ �,

N̄π =
∫ ∞

0−
H(x) dV̄ π

x , (2.3)

where H(x) is as given in (1.1). In fact, Righter et al. [5] defined the level-x workload as the
sum of the remaining service times of those jobs in the system whose attained service is less
than or equal to a given truncation threshold x. However, since H(x) is continuous from the
right, (2.3) is valid also with our definition.

Assume, then, that the function H(x) is monotone, meaning that the service time distribution
belongs to either IMRL or DMRL (decreasing mean residual lifetime). In this case the mean
number of jobs in two systems with disciplines π, π ′ ∈ �, respectively, may be compared as
follows:

N̄π − N̄π ′ = −
∫ ∞

0
(V̄ π

x − V̄ π ′
x ) dH(x). (2.4)

This equation follows from (2.3) after partial integration, and can be found from the proof of [5,
Theorem 3.14]. Therefore, if V̄ π

x ≤ V̄ π ′
x for all x and the service time distribution belongs to

class IMRL, and 1/H(x) and −H(x) are thus increasing, then N̄π ≤ N̄π ′
.
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Let T̄ π denote the mean delay of a job. By applying Little’s result, i.e. N̄π = λT̄ π , we
finally obtain the following relationship between the mean delay and level-x workload.

Proposition 2.1. Let π, π ′ ∈ �. Assume that the service time distribution belongs to class
IMRL. If V̄ π

x ≤ V̄ π ′
x for all x, then T̄ π ≤ T̄ π ′

.

Righter et al. [5] used this result, which is valid as stated, to show that FB minimizes the
mean delay within class IMRL. The problem lies in their Lemma 3.5, where they stated that
FB is optimal with respect to the level-x workload even for each sample path. However, in
Proposition 3.2, below, we show that this is not the case.

3. Sample path results for the level-x workload

Consider disciplines π ∈ � such that priority is given to jobs with attained service time less
than some threshold x > 0, and assume that FCFS is used for all such jobs. Let FCFSx denote
the family of such disciplines.

First we show that these disciplines are at least as good as FB with respect to the level-x
workload.

Proposition 3.1. Let x > 0 and π∗ ∈ FCFSx . Then, for any t ≥ 0, V π∗
x (t) ≤ V FB

x (t).

Proof. Disciplines π∗ and FB both give full priority to the jobs with attained service less
than x. Thus, Rπ∗

x (t) = RFB
x (t) for all t ≥ 0 and, consequently,∫ t

0
Rπ∗

x (u) du =
∫ t

0
RFB

x (u) du.

It follows that the second term in (2.2), as well as the first, is the same for both disciplines.
Let us consider the third term in (2.2). Note first that, for any π ∈ �,∑

i∈A(t)\N π
x (t)

(Si − min{x, Si}) =
∑

i∈Ax(t)\N π
x (t)

(Si − min{x, Si}),

where
Ax(t) = {i ∈ A(t) : Si > x}.

In the FB system the jobs with Si > x reach the attained service level x in batches. In the
corresponding π∗ system, where the discipline is FCFS below this level, the same jobs reach
level x one by one, in order, in such a way that the job that arrived last among those with service
time greater than x reaches this level not later than the whole batch in the FB system. This is
due to the work conservation principle. Thus,

Ax(t) \ N FB
x (t) ⊂ Ax(t) \ N π∗

x (t),

which implies that∑
i∈Ax(t)\N FB

x (t)

(Si − min{x, Si}) ≤
∑

i∈Ax(t)\N π∗
x (t)

(Si − min{x, Si}).

Thus, from (2.2), V π∗
x (t) ≤ V FB

x (t).

Now we show that FCFSx disciplines are strictly better than FB with respect to the level-x
workload.
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Figure 1: The level-x workload, V π
x (t), as a function of time for FB (solid) and π∗ (dashed), with x = 2.

Proposition 3.2. Let x > 0 and π∗ ∈ FCFSx . There exist a sample path and a t ≥ 0 such that
V π∗

x (t) < V FB
x (t).

Proof. Assume that A1 = 0, S1 = 3x/2, A2 = x/2, S2 = x/2, and A3 = 3x. FB serves
job one in the intervals [0, x/2) and [x, 2x) and job two in the interval [x/2, x), whereas π∗
serves job one in the intervals [0, x) and [3x/2, 2x) and job two in the interval [x, 3x/2). As a
result,

V π∗
x (5x/4) = x/4 < 3x/4 = V FB

x (5x/4).

In fact, V π∗
x (t) < V FB

x (t) for all t ∈ (x, 3x/2), as can be seen from Figure 1, where we have
chosen x = 2.

Remark 3.1. We note that Proposition 3.2 contradicts [5, Lemma 3.5], which states that FB is
pathwise optimal with respect to the level-x workload. This is essentially due to the fact that
Righter et al. [5] confused the level-x workload, V π

x (t), with the variable

Uπ
x (t) =

∑
i∈N π

x (t)

(min{Si, x} − Xπ
i (t)),

which we call truncated level-x workload, thus causing the remaining truncated service times
to be summed, instead of the ordinary remaining service times as in (2.1). It is true that FB
is pathwise optimal with respect to the truncated level-x workload [1, Proposition 5], but not,
as Proposition 3.2 reveals, with respect to the level-x workload. The confusion in [5] can be
explained as follows. As given in [1, Equation (16)], we have

Uπ
x (t) =

∑
i∈A(t)

Si −
∫ t

0
Rπ

x (u) du.

This corresponds to [5, Equation (3.1)]. Thus, according to (2.2), Righter et al. [5] omitted the
downward steps in the sample paths of the level-x workload process, V π

x (t).

Remark 3.2. Strictly speaking, if the level-x workload were defined as in [5], i.e. as the sum
of the remaining service times of those jobs in the system whose attained service is less than or
equal to the given truncation threshold x, then the disciplines π∗ and FB considered in the proof
of Proposition 3.2 would have the same level-x workload for all t . However, in that case, a
slightly modified discipline, π∗ ∈ FCFSx+ε, would serve as a counter-example for sufficiently
small ε > 0.
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4. Mean value results for the level-x workload

Righter et al. [5] applied their Lemma 3.5 to prove that, for all π ∈ � and x > 0,

V̄ FB
x ≤ V̄ π

x , (4.1)

which would be a condition sufficient (but not necessary) for the optimality of FB with respect
to the mean delay, according to Proposition 2.1. However, as shown above, their Lemma 3.5 is
not valid.

In this section we show that (4.1) is not valid either. We start, in Section 4.1, with some
preliminary results related to a modified queue wherein the service times are replaced by
their truncated versions. In Section 4.2, we derive some fundamental formulae for the mean
level-x workload and give the mean level-x workload formulae for FB, PS, and FCFSx .
Finally, in Section 4.3, we show that FB is not optimal with respect to the mean level-x workload,
although it still outperforms PS.

4.1. Truncated service times

Let x ≥ 0 and consider a modified M/G/1 queue in which the original service times, S, are
replaced by their truncated versions, S ∧ x = min{S, x}. It is easy to see that

E[S ∧ x] =
∫ x

0
F̄ (y) dy, E[(S ∧ x)2] = 2

∫ x

0
yF̄ (y) dy. (4.2)

Furthermore, let
ρx = λ E[(S ∧ x)]

denote the truncated load. The mean workload for a work-conserving M/G/1 queue with
truncated service times is, by the Pollaczek–Khinchin formula (cf. [3, Equation (4.26)]),

W̄x = λ E[(S ∧ x)2]
2(1 − ρx)

. (4.3)

By letting x → ∞, we recover the ordinary Pollaczek–Khinchin formula,

W̄∞ = λ E[S2]
2(1 − ρ)

.

Regarding the derivative, it is easy to verify that

d

dx
W̄x = λ

W̄x + x

1 − ρx

F̄ (x). (4.4)

4.2. Mean level-x workload

Once more consider the original M/G/1 queue with service times S and load

ρ = λ E[S] = λ

∫ ∞

0
F̄ (x) dx.

Note that ρ > ρx for all x > 0, since we have assumed that F̄ (x) > 0 for all x.
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Recall that V̄ π
x is the steady-state mean level-x workload. In addition, let N̄π

x denote the
steady-state mean number of those jobs in the system whose attained service is less than x.
Since π is work conserving and nonanticipating, we have (cf. [5, Equation (3.13)])

V̄ π
x =

∫ x−

0−
E[S − y | S > y] dN̄π

y . (4.5)

As was noted earlier, in Remark 3.1, the level-x workload, V π
x , differs from the truncated level-x

workload, Uπ
x . For a work-conserving and nonanticipating discipline π ∈ �, the steady-state

mean truncated level-x workload, Ūπ
x , reads as follows:

Ūπ
x =

∫ x−

0−
E[(S ∧ x) − y | S > y] dN̄π

y .

Note further that the limit V̄ π∞ = Ūπ∞ = W̄∞ is the same for all π ∈ �.
Let T̄ π (x) denote the conditional mean delay of a job with service time x. We note that

T̄ π (x) is increasing and continuous from the left, i.e. T̄ π (x−) = T̄ π (x) ≤ T̄ π (x+). It is also
known [3, Equation (4.11)] that

dN̄π
y = λF̄ (y) dT̄ π (y).

Thus, by (4.5) and (1.2),

V̄ π
x

(4.5)= λ

∫ x−

0−
E[S − y | S > y]F̄ (y) dT̄ π (y)

(1.2)= λ

∫ x−

0−

∫ ∞

y

F̄ (t) dt dT̄ π (y)

= λ

∫ x

0
T̄ π (y)F̄ (y) dy + λT̄ π (x)

∫ ∞

x

F̄ (y) dy

= λ

∫ x

0
T̄ π (y)F̄ (y) dy + T̄ π (x)(ρ − ρx). (4.6)

Note that V̄ π
x is increasing and continuous from the left, i.e. V̄ π

x− = V̄ π
x ≤ V̄ π

x+ .
Since, by [3, Equation (4.60)],

Ūπ
x = λ

∫ x

0
T̄ π (y)F̄ (y) dy, (4.7)

the mean level-x workload can also be given as follows:

V̄ π
x = Ūπ

x + T̄ π (x)(ρ − ρx).

Furthermore, by (1.2),
ρ − ρx = λF̄ (x) E[S − x | S > x],

implying that
V̄ π

x − Ūπ
x = λF̄ (x)T̄ π (x) E[S − x | S > x],

the factors of which have the following intuitive interpretations: by Little’s result, λF̄ (x)T̄ π (x)

refers to the mean number of customers with service time longer than x and attained service at
most x, and E[S − x | S > x] is the expectation of the truncated part of their service times.
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For FB, by [3, Equation (4.27)] we have

T̄ FB(x) = W̄x + x

1 − ρx

.

Thus, by (4.4),

λT̄ FB(x)F̄ (x) = d

dx
W̄x,

implying, by (4.6), that

V̄ FB
x = W̄x + W̄x + x

1 − ρx

(ρ − ρx) = W̄x

(
1 + ρ − ρx

1 − ρx

)
+ x

ρ − ρx

1 − ρx

. (4.8)

Now consider PS. By [3, Equation (4.17)],

T̄ PS(x) = x

1 − ρ
.

Thus, by (4.6), (4.2), and (4.3),

V̄ PS
x = W̄x

1 − ρx

1 − ρ
+ x

ρ − ρx

1 − ρ
. (4.9)

Finally, consider any π ∈ FCFSx . By [3, Equation (4.35)], for all y ≤ x we have

T̄ π (y) = W̄x + y.

Thus, by (4.6),
V̄ π

y = W̄xρ + W̄y(1 − ρy) + y(ρ − ρy)

for all y ≤ x. In particular,

V̄ π
x = W̄x(1 + ρ − ρx) + x(ρ − ρx). (4.10)

In the sequel we will also need the following equality, which is valid for any π ∈ FCFSx :

Ūπ
x = ŪFB

x = W̄x. (4.11)

This can easily be verified using (4.7) and the conditional mean delay formulae given above.
In fact, this property follows from the pathwise local optimality of these policies with respect
to the truncated level-x workload; see [1, Section 3.1].

4.3. Comparison with FB

Now we are ready to show that FB is not optimal with respect to the mean level-x workload.
Proposition 3.1 implies that any π∗ ∈ FCFSx is at least as good as FB. Below we show that
such policies are strictly better than FB with respect to the mean level-x workload.

Proposition 4.1. Consider any service time distribution and let x > 0 and π∗ ∈ FCFSx . Then
V̄ π∗

x < V̄ FB
x .

Proof. By (4.8) and (4.10),

V̄ FB
x − V̄ π∗

x = (W̄x + x)(ρ − ρx)ρx

1 − ρx

> 0,

since 0 < ρx < ρ < 1.
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Figure 2: The mean level-x workload, V̄ π
x , as a function of the truncation threshold, x, for FB (solid)

and FCFS + FB(1) (dashed).

As a numerical example, consider the exponential service time distribution with rate para-
meter equal to 1, F̄ (x) = e−x , and E[S] = 1. Let λ = 1

2 , implying that we have a stable system
with load ρ = λ E[S] = 1

2 < 1. Let FCFS+FB(x) ∈ FCFSx refer to the discipline that applies
FB to all the jobs with attained service time greater than or equal to x. Then

V̄ FB
1 = 0.514, V̄

FCFS + FB(1)
1 = 0.413.

This result is illustrated in Figure 2, where we have depicted the mean level-x workload V̄ π
x as

a function of the truncation threshold x for disciplines FB and FCFS + FB(1).
Finally we show that, while not being optimal, FB still outperforms PS with respect to the

mean level-x workload.

Proposition 4.2. Consider any service time distribution and let x > 0. Then V̄ FB
x < V̄ PS

x .

Proof. By (4.8) and (4.9),

V̄ PS
x − V̄ FB

x = (W̄x + x)(ρ − ρx)
2

(1 − ρ)(1 − ρx)
> 0,

since ρx < ρ < 1.

As an immediate consequence of Propositions 4.1 and 4.2, for any service time distribution,
for x > 0, and for π∗ ∈ FCFSx , we have V̄ π∗

x < V̄ PS
x .

5. Mean delay results

In this section we justify our principal claim that FB does not necessarily minimize the mean
delay within class IMRL, in contradiction with [5, Theorem 3.14]. However, we show that FB
still outperforms PS with respect to the mean delay within class IMRL, which can be considered
a generalization of [6, Theorem 1].

Theorem 5.1. There exist a service time distribution belonging to class IMRL and a π ∈ �

such that
T̄ π < T̄ FB.

Proof: Step 1. First we must find a distribution that belongs to IMRL but not to DHR.
A candidate (for any c > 1) is

F̄ (x) =
{

c−x, 0 ≤ x ≤ c,

x−c, x > c.
(5.1)
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Figure 3: Hazard rate for the service time distribution defined in (5.1), with c = 2.

We thus first have an exponential section and then a Pareto-type tail. The corresponding density
function is

f (x) =
{

c−x ln c, 0 ≤ x ≤ c,

cx−c−1, x > c,
(5.2)

and the hazard rate is

h(x) =
{

ln c, 0 ≤ x ≤ c,

cx−1, x > c.

It is easy to see that F(x) belongs to DHR if and only if h(c−) ≥ h(c+), which is equivalent
to the requirement that c ≥ e. In Figure 3 we have depicted the function h(x) for c = 2.

The mean residual lifetime function is as follows:

1

H(x)
=

⎧⎪⎪⎨
⎪⎪⎩

1

ln c
+

(
c

c − 1
− 1

ln c

)
cx−c, 0 ≤ x ≤ c,

x

c − 1
, x > c.

(5.3)

Since, for all c > 1,
c

c − 1
− 1

ln c
> 0,

we deduce from (5.3) that F(x) belongs to IMRL for any c > 1. In Figure 4 we have depicted
the function 1/H(x) for c = 2. To summarize, F(x) belongs to IMRL but not to DHR if and
only if

1 < c < e ≈ 2.718 28.

Step 2. Recall from the previous section that FCFS + FB(x) gives priority to jobs with
attained service time less than x, and that FCFS is used for all such jobs, while FB is applied to
the remaining jobs with attained service time greater than or equal to x. It is known that FCFS
is optimal within class IHR (increasing hazard rate), while FB is optimal within class DHR.
Thus, for the distribution defined in (5.1) with 1 < c < e, the hazard rate of which is first
increasing and then decreasing, it is reasonable to consider disciplines of type FCFS + FB(x).

Let us compare FB and FCFS + FB(c + ε) with ε ≥ 0. The conditional mean delays read
as follows:

T̄ FB(x) = W̄x + x

1 − ρx

, x ≥ 0, (5.4)
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Figure 4: Mean residual lifetime for the service time distribution defined in (5.1), with c = 2.

and

T̄ FCFS + FB(c+ε)(x) =
{

W̄c+ε + x, 0 ≤ x ≤ c + ε,

T̄ FB(x), x > c + ε.
(5.5)

We first consider the FCFS + FB(c) discipline with ε = 0 and show that

T̄ FCFS + FB(c) = T̄ FB. (5.6)

By (5.4) and (5.5),

T̄ FCFS + FB(c) − T̄ FB =
∫ c

0
(T̄ FCFS + FB(c)(x) − T̄ FB(x))f (x) dx.

Since, by (5.2), f (x) = F̄ (x) ln c for any x ≤ c, we obtain

T̄ FCFS + FB(c) − T̄ FB = ln c

∫ c

0
(T̄ FCFS + FB(c)(x) − T̄ FB(x))F̄ (x) dx,

implying, by (4.7) and (4.11), that

T̄ FCFS + FB(c) − T̄ FB = ln c

λ
(ŪFCFS + FB(c)

c − ŪFB
c ) = 0.

Thus, if we can now prove that

d

dε
T̄ FCFS + FB(c+ε)

∣∣∣∣
ε=0+

< 0,

then it follows from (5.6) that there exists a δ > 0 such that, for any ε, 0 < ε < δ,

T̄ FCFS + FB(c+ε) < T̄ FB,

revealing the nonoptimality of FB for this distribution.
By (5.4) and (5.5),

T̄ FCFS + FB(c+ε) =
∫ c+ε

0
(W̄c+ε + x)f (x) dx +

∫ ∞

c+ε

W̄x + x

1 − ρx

f (x) dx.
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Thus, by (4.4), we obtain the desired result as follows:

d

dε
T̄ FCFS + FB(c+ε) =

(
d

dε
W̄c+ε

)
F(c + ε) + (W̄c+ε + c + ε)f (c + ε)

− W̄c+ε + c + ε

1 − ρc+ε

f (c + ε)

(4.4)= λ
W̄c+ε + c + ε

1 − ρc+ε

F̄ (c + ε)F (c + ε) − W̄c+ε + c + ε

1 − ρc+ε

f (c + ε)ρc+ε

= λ
W̄c+ε + c + ε

1 − ρc+ε

(
(c + ε)−c(1 − (c + ε)−c) − c(c + ε)−c−1 ρc+ε

λ

)

→ λ
W̄c + c

1 − ρc

(
c−c(1 − c−c) − c−c ρc

λ

)
as ε → 0+.

Since
ρc

λ
= E[S ∧ c] (4.2)=

∫ c

0
F̄ (x) dx

(5.1)=
∫ c

0
c−x dx = 1

ln c
(1 − c−c),

we finally obtain

d

dε
T̄ FCFS + FB(c+ε)

∣∣∣∣
ε=0+

= λ
W̄c + c

1 − ρc

c−c(1 − c−c)

(
1 − 1

ln c

)
< 0,

where the inequality follows from the fact that 1/ ln c > 1 for all c, 1 < c < e.

As numerical examples, we have computed the following results:

• c = 2.0, λ = 0.5, ρ = 0.791, ε = 1.0 : T̄ FB = 5.901, T̄ FCFS + FB(c+ε) = 5.811,

• c = 2.1, λ = 0.5, ρ = 0.733, ε = 0.7 : T̄ FB = 4.640, T̄ FCFS + FB(c+ε) = 4.584,

• c = 2.5, λ = 0.5, ρ = 0.575, ε = 0.2 : T̄ FB = 2.561, T̄ FCFS + FB(c+ε) = 2.558.

Thus, in all these cases FCFS + FB(c + ε) is found to be better than FB with respect to the
mean delay.

Theorem 5.2. Assume that the service time distribution belongs to class IMRL. Then
T̄ FB ≤ T̄ PS.

Proof. This follows immediately from Propositions 2.1 and 4.2.
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