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Star-Shapedness and K-Orbits in
Complex Semisimple Lie Algebras

Wai-Shun Cheung and Tin-Yau Tam

Abstract. Given a complex semisimple Lie algebra g = f + it (f is a compact real form of g), let
m: g — b be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra
b := t + it, where t is a maximal abelian subalgebra of f. Given x € g, we consider 7(Ad(K)x), where
K is the analytic subgroup G corresponding to f, and show that it is star-shaped. The result extends
a result of Tsing. We also consider the generalized numerical range f(Ad(K)x), where f is a linear
functional on g. We establish the star-shapedness of f(Ad(K)x) for simple Lie algebras of type B.

1 Introduction

Let gl,,(€C) denote the Lie algebra of all n x n complex matrices. Let A € gl,(C).
Consider the set
W(A) := {diag(UAU ') : U € U(n)},

where U(n) denotes the unitary group. It is the image of the projection of the orbit
O(A) := {UAU ' : U € U(n)}

onto the set of diagonal matrices. One may replace U(n) by SU(#n) in the definition
of W(A) and O(A). If A € C,x,, is Hermitian with eigenvalues A := (\,...,\,) €
IR", then the Schur-Horn theorem (7, 14] [13, pp. 218-220] asserts that W(A) =
conv S, A\, where conv S, \ is the convex hull of the orbit of A under the action of the
symmetric group S,,. For general A € Cyx,, W(A) is not convex [1,2]. Nonconvexity
naturally prompted the question whether certain weaker geometric results are at least
true. The following interesting result is due to Tsing [17].

Theorem 1.1 (Tsing [17]) Let A € Cyxn. Then W(A) is star-shaped with respect to
the star center %(trA)(l, S X

The above results can be reduced to the case trA = 0, ie., the (noncompact)
simple Lie algebra sl,(C) [6, pp. 186-187]. We may write A = A + %In, where
A=A— %In has zero trace. Then

W(A) :W(A)+%(1,...,1).

Taking the diagonal part of A € sl,(C) amounts to the orthogonal projection

m: sl,(C) — b,

Received by the editors March 1, 2008.
Published electronically August 26, 2010.
AMS subject classification: 22E10, 17B20.

44

https://doi.org/10.4153/CMB-2010-097-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-097-7

Star-Shapedness and K-Orbits in Complex Semisimple Lie Algebras 45

where §) C s[,,(C) denotes the set of diagonal matrices in s[,,(C). Notice that

(L.1) sl,(C) = b+ > CE;
i#]

is an orthogonal sum of h and ), £ CE;; (E;; € s1,(C) denotes the matrix with 1 at
the (i, j) position and zero elsewhere) with respect to the nondegenerate symmetric
bilinear form B(X,Y) = tr XY or the inner product (X,Y) = tr X*Y. We will see
that the orthogonal sum (L.I)) will be replaced by the root space decomposition and
the bilinear form will be replaced by the Killing form when we consider (noncom-
pact) complex semisimple Lie algebras g. The point is that we still have orthogonal
projection m when we consider g.

After introducing some preliminary material in Section 2, we will extend Tsing’s
result in the context of semisimple Lie algebras in Section 3. Theorem[3.1lis the main
result of the section and it answers a conjecture of Tam [15] ([16, Conjecture 2.11])
affirmatively.

For A,C € gl,(C), the C-numerical range of A [9, pp. 77-88] is defined to be the
following subset of C:

Wc(A) :={tr CU*AU : U € U(n)}.

Since gl,(C) and its dual are isomorphic via the inner product (X,Y) = tr X*Y on
gl,,(C), all linear functionals are of the form

(1.2) fe(-) =t C(+)
for some C € gl,(C). So W¢(A) is the image fc(O(A)) and vice versa. The following
result asserts that W (A) is star-shaped.

Theorem 1.2 (Cheung and Tsing [4]) IfC € gl,(C), Wc(A) is star-shaped with
respect to (tr A)(tr C)/n.

Let V* denote the dual space of the linear space V. The main idea of the proof of
Cheung and Tsing [4] is to show that

S(4) := {B € gl,,(C) : f(O(B)) T f(O(A)) forall f € gl, ()"}

is star-shaped with respect to %I .
The study of W¢(A) can be reduced to A, C € sl,(C); that is, A and C have zero
trace, since

fo(A) = fe(A) + (rC)(tr A) /n,
where A = A — %In andC =C — %In, so that

fc(O(A)) = f(O(A)) + (trC)(tr A) /n.

The notion of C-numerical range is extended in the context of (noncompact)
complex semisimple Lie algebra g [5]. In Section 4, namely in Theorem[4.8] we show
that if g is of type B or D, then the star-shapedness result is valid. It provides more
support for a conjecture of Tam [15] (see [16, Conjecture 2.10]).
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2 Preliminaries

Let g be a (noncompact) complex semisimple Lie algebra and let € be a compact real
form of g [6, p. 181]. Let G be a connected complex Lie group with Lie algebra g. It
has a finite center [12, p. 375] so that K (the analytic group of £) is compact [6, p. 253].
As a real K-module, g is just the direct sum of two copies of the adjoint module £ of
K: g = £+t ie., Cartan decomposition of g [6, p. 185]. Denote by g* the dual space
of g. Given x € g, consider the orbit of x under the adjoint action of K

K-x:={Ad(k)x: k € K}.

We will write k - x for Ad(k)x. The orbit K - x depends on Adg K, which is the analytic
subgroup of the adjoint group [6, p. 126] Int(g) C Aut(g) corresponding to ad g(¢).
Thus K - x is independent of the choice of G. Let t be a maximal abelian subalgebra
of £. The complexification ) := t + it (direct sum) is a Cartan subalgebra of g [6,
p. 162]. Letg = h + > A @, (direct sum) be the root space decomposition of g
with respect to b [6, p. 162], where A denotes the set of all roots. Denote by B( -, -)
the Killing form of g [6, p. 131]. Notice that B(g,,g83) = 0 [6, p. 166] whenever
a+ 3 #0(g, =h) so that

g=b+> (g, +09..)

aEA*

is an orthogonal sum with respect to the Killing form. Thus we have the orthogo-
nal projection 7: g — b under B(-, -). For x € g, we consider (K - x), i.e., the
projection of K - x onto ). Whenx € ¢, K - x C €so that (K -x) C t.

Let 0 be the Cartan involution of g if g is viewed as a real Lie algebra, i.e, 0: g — g
such thatx+ y +— x — y ifx € £and y € it. In other words, £ is the +1 eigenspace of
0 and it is the —1 eigenspace of 0.

3 Projection of K-Orbit onto Cartan Subalgebra

The main result in this section is Theorem 3.1} conjectured by Tam [15] (see [16,
Conjecture 2.11]).

Theorem 3.1 Let g be a complex semisimple Lie algebra and let w: g — b be the
orthogonal projection onto the Cartan subalgebra by with respect to the Killing form of g.
Ifx € g, then m(K - x) C b is star-shaped with star center 0.

When x € ¢, the projection m(K - x) C tis indeed equal to conv Wx, where
x¢ € K-xNtand W is the Weyl group, i.e., W = N(T)/T, aresult due to Kostant [11].
It extends the Schur—Horn result.

The following lemma enables us to pick any model of g to work with in order to
show the star-shapedness of 7(K - x), x € g.

Lemma 3.2 Supposeg = t+itand g’ = t'+it’ (Cartan decompositions) are isomor-
phic complex semisimple Lie algebras. Let t and t' be maximal abelian subalgebras of ¢
and €', respectively. Seth := t+itand b’ :=t' +it’. Letm: g — bandn': g’ — b’
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be the orthogonal projections with respect to the Killing forms of g and g’ respectively. If
X € g, then there is an isomorphism 1: g — g’ such that 1)(t) = t' and

/(K" (x)) = P(n(K - x)),
where K and K’ are the analytic groups corresponding to € and &' respectively.

Proof Notice that £ and £’ are compact real forms of g and g’. For any isomorphism
v:g— g, g =~ +iy(8) is a Cartan decomposition for g’ and v(£) is compact.
Hence there is ¢ € Int(g’) so that o(y(€)) = &' [6, p. 183]. Clearly o(y(t)) is a
maximal abelian subalgebra of £’. The maximal abelian subalgebras of the compact
¢’ are conjugate via Ad(k’) for some k' € K’ [6, p. 248]. So we have an isomorphism

Y:=Adk)oooy:g—g

such that 1(t) = t’. Notice that 1(£) = ¢/, since o(y(£)) = ¢’ and Ad(k’) € Aut(¥’).
Clearly 1)(h) = b’. Since 1: g — g’ is an isomorphism, ad (¢)(X)) = 1y oad X o 9p ™!
for all X € g so that the Killing forms [6, p. 131] B(-, -) of gand B/(-, -) of g’ are
related by B(x, y) = B’ (¢(x), 4 (y)) forall x, y € g. So ’L/}(hl) = h’l. Thus

(3.1) Yom=mn"01.

Since K - x is independent of the choice of G (the analytic group of g), we may assume
that G is simply connected [18, p. 101]. To the isomorphism ¢: g — g’ there exists a
unique isomorphism ¢: G — G’ (G’ is the analytic group of g’) such that dyp, = v
(18, p. 101]. Since 1 () = ¢, we have ¢(K) = K’. Now forallt € R,k € K,x € g
using [6, Lemma 1.12, p. 110] and [6, p. 127]

AR M) () o) ()~ = AR
Taking derivative yields ¢ (Ad(k)x) = Ad(p(k))1(x), so that
(3.2) Y(K - x) =K' - (x).
By (1) and (32)
m'(K"-p(x)) = 7' (Y(K - %)) = (w(K - x)). u
By Lemma[3.2] Theorem [I.I]can be stated as follows.

Theorem 3.3 Theorem[B.1lis true for simple g of type A.

A connected Lie group is called almost simple [3, p. 355] if its Lie algebra is simple,
and the quotient of a direct product of Lie groups by a discrete central subgroup is
called an almost direct product. Corresponding to the Cartan involution §: g — g,
there is [6, p. 253] an involutive analytic automorphism ©: G — G (called the global
Cartan involution [12, p. 305] and many authors write 6 for ©) such that d©, = 6.
A subgroup S C G is said to be §-stable if S is stable under ©.

The following lemma enables us to deduce Theorem 3.1l from its validity for sim-
ple Lie algebras of type A.
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Lemma 3.4 (Dokovi¢ and Tam [5]) Let H C G be the analytic subgroup correspond-
ing to . There exists a closed connected 0-stable complex semisimple Lie subgroup S of
G containing H and S is an almost direct product of 6-stable almost simple subgroups S;

(i=1,...,m)of type A.

Proof of Theorem[3.1] Let S = S;S, - - - S;, be as in Lemma[3.4] The Lie algebra s of
S is a direct sum of its simple ideals s;, where s; is the Lie algebra of S;, i = 1,...,m
[10, p. 22]. Since Cartan subalgebras of the semisimple g are precisely the nilpotent
subalgebra that equals its normalizer in g [10, p. 80] and h C s C g, b is a Cartan
subalgebra of 5. Likewise h; = s; N b is a Cartan subalgebra of s; and h = Y. b;
(direct sum). Denote by q the sum of the root spaces g,, that are not contained in s.
Theng = s® q,q = 5+, and q is S-stable, i.e., q is stable under the adjoint action
of S (as the Killing form is invariant under the adjoint action of S [6, p. 131]). The
subgroup K; := K N §; is a maximal compact subgroup of S;. Denote by 7;: 5, — b;
the orthogonal projection, i =1,...,m.

Each x € g can be decomposed uniquely as x = >."" | x; + x’, where x; € s; and
x’ € q. Since each §; is of type A, Theorem[3.3]implies that for each 0 < A < 1, there
exists k; € K; € K N S such that

Ami(x;) = mi(ki - x;) € m(K; - x7).

Setk := kiky - - -k, € KN S. Since q is S-stable, we have k - x” € . So
(k- x) = W(Eki % +k~x’) - w(Zk,- ~xi> = S ik - xi) = Am(x).
i=1 i=1 i=1

Hence An(x) € w(K - x). [ |

Example 3.5 Let g = 50,(C) (n > 2),K = SO(n), b = S_1) CBsi1.51 — Faioi1)
[6, pp. 187-189]. So the projection 7: g — b is given by

0 an 0 a3y 0 azm_mm)
A) = fas) @ P 2= hely
) (—alz 0 ) (—%4 0 ) (—azL;Jl,zu’J 0

and may be identified with
m(A) = ((112, azgy - -, angJ—l,ngj) .

Then the set {7T(OAO') : O € SO(n)} is star-shaped with respect to 0 € Cl3] by
Theorem[3.11

The following is a matrix approach to Example 3.5l Notice that s053(C) 2 sl,(C)
and 504(C) = 50,(C) +50,(C) [6, p. 465]. So a star-shapedness result holds for s05(C)
and 504(C) by Theorem[3.3]and Lemma[3.2l Hence for each A € s04(C),

7(SO(4) - A) = {m(OAO") : O € SO(4)}

is star-shaped with respect to 0 € C2.
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We now identify h with Cl3) naturally. Suppose that n > 5and A € s0,(C). If
(x12, X34, - - - 7x2LgJ—1,2LgJ) € w(SO(n)-A), we want to show that foreach0 < A < 1,

/\(.‘)612,9C347 . ,szgj,LzL%J) € 71'(50(11) -A) .
We may assume that
(%12, X34, -+, X n) 122 )) = (12,834, - ., dp 1) 12 1))
Now consider A[2i — 1,2i | 2j — 1, 2], which denotes the 4 X 4 submatrix of A lying
in rows and columns indexed by 2i — 1,2i,2j — 1,27 (1 < 2i < 2j < nifniseven,
and 1 <2i <2j < nifnisodd). Let 0 < & < 1. For any two admissible i < j, there
exists O € SO(n) with

O[2i —1,2i | 2j — 1,2j] € SO4), OQi—1,2i|2j—1,2j) =I,_s,

where O(2i — 1,2i | 2j — 1,2j) denotes the (n — 4) X (n — 4) submatrix of O
complementary to O[2i — 1,2i|2j — 1, 2j], so that

(@12, -, €100y €@2j 12y -5 By 2|12 2]) = T(OAOD")
€ w(SO(n) - A).

By choosing such a matrix O € SO(#n) for every admissible pairi < j and multiplying
these matrices we get a matrix O € SO(n) such that

ngJ_l (alz, asg, ... ,ElngJ_LngJ) = W(OAOt) S 7'('(80(71) . A) .
Soforeach0 < A\ < 1,set £ such that§LgJ ~! = \. Hence w(SO(n)-A) is star-shaped.
Example 3.6 Let [6, pp. 189-190]

g=1sp,(C):={X= ())2 _X;q) : X1, X5, X5 € gl,(C), Xz, X5 symmetric},

and £ = sp(n), i.e,
K = Sp(n) := Sp,(C) NU(2n) = {g = (g %E) L A,B € gl,(O)} NU@n).
By [6, p. 189] we may take
b = {diag(x1, ..., %y, —X1,. .., —Xy) : X1,...,%, € C}.
So 7: g — b is simply taking diagonal part. By Theorem[3.1] given A € sp,(C), the

set
7(Sp(n) - A) = {m(UAU ") : U € Sp(n)}

is star-shaped with respect to 0 € §.
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The following is a matrix approach to Example Since s,(C) = sp,(C) [6,
p. 465], a star-shapedness result is true for n = 1 case. By considering the 2 x 2
submatrix A[i,n+1i] € sp,(C) of A,i = 1,...,n, whereU € Sp(n) andU[i,n+i] €
Sp(1)and U(i,n+1i) = L,,_», foreach0 < XA < 1,

(X1y ooy Ay e Xy = X1y ey, —AXG, .., —Xy) € T(SP(n) - A)
if (x1,... %, —X1,...,—%,) € 7(Sp(n) - A). So
Ay, ooy Xy —X1, ...y —Xy) € T(Sp(n) - A)
as i runs through 1,..., n.

4 Linear Functional on K-Orbit

In [5, 15] the notion of C-numerical range is extended to (noncompact) complex
semisimple Lie algebras g. Let g* denote the dual of g. For any f € g*, x € g,
consider the range f(K - x). When g = sl,,(C) with K = SU(#n), the range f(K - x) is
reduced to fc(O(A)), where fc is given in (L.2).

Motivated by the approach of Cheung and Tsing in [4], we introduce the set

Sx):={z€g: f(K-2) C f(K-x)} Cg.
Obviously S(x) is K-invariant and
K -x C S(x) C convK - x C conv S(x)

so that
convK - x = convS(x).

For x, y € g, we write x < y if x € S(y), or equivalently f(x) € f(K - y) for all
f € g* [5]. The relation < defines a partial order on g and extends the partial order
of Cheung and Tsing [4] for g. The partial order depends on the choice of K and is
strongly K-invariant in the sense that x < y implies thata-x < b- y fora,b € K,
and so it induces a partial order on the orbit space g/K [5].

In general K - x # S(x), for example, g = s(,(C), K = SU(2),

a b+ic
= (b_ic a ) €su2), ab,ceR.
Then

z z +iz
K~x—{< ' 2 3>:21,22,2361R{2,zf+z§+z§—a2+b2+cz},
Zy — 1Z3 —21

which is viewed as the sphere in R? centered at the origin and of radius r = (a? + b* +
)2, but S(x) = convK - x is the ball that is clearly the convex hull of the sphere.

The following proposition enables us to work with S(x) if we want show that
f(K - x) is star-shaped for all x € gand f € g*, namely Conjecture[d.2]
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Proposition 4.1 Let g be a complex semisimple Lie algebra. If x € g, then S(x) is
star-shaped with respect to the zero matrix 0 if and only if f(K - x) is star-shaped with
respect to the origin in C for all f € g*.

Proof Notice that f(K - x) = f(S(x)) by the definition of S(x), since x € S(x) for
f € g*. So the star-shapedness of S(x) implies the star-shapedness of f(K - x).

Conversely, suppose that f(K - x) is star-shaped with respect to 0 for all f € g*.
If y € S(x), thenforall0 < a <1,

f(K-ay) = af(K-y) C af(K-x) C f(K ). n

The following is a possible extension of Theorem[L.2l

Conjecture 4.2 (Tam [15]) Forx € gand f € g*, the set f(K - x) is star-shaped with
respect to the origin, or equivalently, for x € gandt € [0, 1], tx < x holds.

It is known ([4, 5]) that if the simple components of g are of type A, D, Eg, or E7,
then Conjecture[2lis valid (see [16, Conjecture 2.10]). So, among the four classical
complex simple Lie algebras, the unknown cases are types B and C. We will prove
that the conjecture is true for type B. Indeed our approach works for type D as well.

The following lemma allows us to work with any model of g, similar to Lemma[3.2

Lemma 4.3 Suppose g = ¢+ it and g’ = ¢’ + it' (Cartan decompositions) are
isomorphic complex semisimple Lie algebras. If x, y € g, then there is an isomorphism
Wi g — g’ such that(€) = ¢’ and

By (K" - 9p(x),9(y)) = By(K - x, y).

Proof Asin Lemma[2lwe have (32), i.e.,, (K - x) = K’ - 1)(x). Since ad (¢)(x)) =
1 oadx o™t
B'((x), () = Blx,y), xy€g

is the Killing form of g’. Moreover, 6’ = v o § o 1)~!. Thus
(4.1) By (1h(x),9(y)) = —=B'((x), 0" 0 9h(y)) = —B(x, 0y) = By(x, y).
By (3.2) and (£.1),
By (K" - 9(x),9(»)) = By ((K - x),9(y)) = By(K - x, ). u
By Lemma[4.3] in order to prove Conjecture[£.2] for simple complex Lie algebra g
of type B or D, we can choose 50,(C), the algebra of n x n complex skew symmetric
matrices as the model and set K = SO(#n). Given A, C € 50,(C), in the forthcoming

discussion define

O(A) := {0'AO: O € SO(n)}
f(0(A)) = {trCO'AO : O € SO(m)},
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and we want to show that it is star-shaped with respect to the origin. When n = 2,
fc(O(A)) is a singleton set, that is, if

0 a 0 ¢
A= (%) e= (% 0):

then fc(O(A)) = {—2ac}. Notice that s0;(C) = s[,(C), s04(C) = s[,(C) + s,(C)
and the corresponding fc(O(A)) are star-shaped with respect to 0 by Lemma [43]
and Theorem So it suffices to consider the simple Lie algebra so,(C), n > 5.
Nevertheless we will consider n > 3.

The tool we use is an analog of S(A) of Cheung and Tsing:

Ssom (A) := {B € 50,(C) : fc(O(B)) C fc(O(A)) for all C € 50,(C)}.

We remark that Sgo(,)(A) is invariant under special orthogonal similarity, that is,
B € Sso(m)(A) if and only if O'BO € Sgo(n)(A) for each O € SO(n).
The following lemma can be readily verified.

Lemma 4.4 Let XY € s0,(C) (n > 3) be in the partitioned forms

0 X12 X13 0 Y12 Y13
X =\ —xn 0 X, Y=|-ye 0 Yy,
—Xis X Xs =Y, -V Y

where x13, ¥12 € C, X33, Y33 € 50,,(C). Let

cos —sinf 0
Ry(0) := | sinf  cosf 0
0 0 I,_,

Then

trXth(Q)YRz(H) = —2x12y12 + tI'X33Y33 — 2cos0 tr(Xi3Y13 +X£3Y23)
+2sin 6 tr(X§3Y13 — X53Y23)
€ fx(O(Y)),

the locus of which, when 6 runs from 0 to 2, is an ellipse centered at —2x1, y12+tr X33Y33
with length of major axis determined by tr(Xi3Y13 + X33 Y23) and tr(X3; Y13 — X{53Y23).

Moreover, if X13, Xp3, Y13, Y3 are real matrices, then the ellipse is degenerate (a point
or a line segment).

Remark 4.5 1f the row vectors Y3 and Y3 are all multiplied by a scalar 0 < ¢ <
1, the resulting ellipse, in particular the point tr XY (¢) (see the notation B(e) in
Lemma A7l with k = 1 and ¢ = 2), lies within the relative interior of the original
ellipse.
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Lemma 4.6 Let X € 50,(C) (n > 3)and 1 < k < ¢ < n. Then there exists
O € SO(n) such that the entries of O'XO on the k-th and (-th rows and columns are
real, except (O'XO)yy and (O'XO) .

Proof Without loss of generality one may assume that k = 1 and ¢ = 2. Since
X' = —X, we can write X = X +iX; for real skew symmetric matrices X;, X,. By the
well-known theorem [8, p. 107] on the normal form of real skew-symmetric matrices
under orthogonal similarity, we find an O € SO(n) such that

0 0 x
0'X,0 = (—X1 ’8) ®- @ (-xm xLOzJ) ® (0),

where the last 1 x 1 zero block is present if n is odd, and x;, . . . ,X1z) € R. So 0'X0O
has the desired form. ]

Lemma 4.7 Suppose B = (b;;) € Ssomy(A). Let1 <k <€ <n0<e<1,and
B(e) = (bij(€)) be defined by

bi-(6) €bij, ifexactly oneofi, j equals k or £,
ijl€) = .
! bij, otherwise,

that is, B(e) € 50,(C) is obtained from B by multiplying its entries on the k-th and the
{-th rows and columns by €, except for its (k, 0)-th and (£, k)-th entries. Then B(e) €
Sso(n)(A).

Proof We assume without loss of generality that k = 1 and ¢ = 2. Suppose B =
(bij) € Ssom(A). Then, by definition, for all U,V € SO(n), C € s0,(C),and 0 € R,

(4.2) &(U,V,0) :=tr U'CURS(0)V'BVR,(0)
€ fc(O(B)) C fc(O(A)),
where R,(0) is given in Lemmal[4.4]

Now choose U € SO(n) arbitrarily. Partition B, C € s0,(C) into the block form of
Lemmal£4] that is, according to the partition {1}, {2}, {3,...,n}. Write Band C in
the form X +iX5, where X, X; are real skew symmetric matrices. By Lemmal4.@there
exist Uy, V, € SO(n) such that U{CU, and V|BV, have real (1, 3) and (2, 3) blocks

((3,1) and (3, 2) blocks as well). Since SO(#n) is path connected, we can choose two
continuous functions U(-), V(-): [0, 1] — SO(#n), such that

Hence U(1))CU(1) and V(1)'BV (1) have real (1, 3) and (2, 3) blocks. By Lemmal[4.4]
and ([4.2), for each t € [0, 1],

(4.3) E(t) == {&(U@),V(1),0): 0 € [0,27]} C fc(O(B)) C fc(O(A))
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is an ellipse. Since both U(¢) and V' (¢) are continuous, E(0) deforms continuously to
E(1) as f runs from 0 to 1. By Lemma[4.3] the ellipse E(1) degenerates into a point
or a line segment. Let { € C be any point in the interior of E(0). If { € E(1), then
¢ € fc(O(B)) C fc(O(A)) by @3). If ¢ ¢ E(1), then ¢ must be swept across by some
ellipse E(t), when E(0) deforms to the degenerated ellipse E(1) as t runs from 0 to 1,
i.e., ¢ € E(t). Hence E(0) and its interior are contained in fc(O(B)) C fc(O(A)).

By Remark the point tr U'CUB(e) € fc(O(B(€))) is in the interior of the
ellipse E(0) and hence is contained in fo(O(A)). As this is true for any U € SO(n), we
conclude that fo(O(B(¢))) C fc(O(A)) for all C € s0,(C), i.e., B(e) € Ssom)(A). M

The n = 2m case, i.e., type D, of the following theorem is known [5].

Theorem 4.8 If g is a simple complex Lie algebra of type B or D, and f € g*, then
f(K - x) C Cis star-shaped with respect to the origin. Equivalently, S(x) is star-shaped
with respect to 0 € g. Hence, if n > 3 and A, C € s0,(C), then

(i)  the set Sso(n)(A) is star-shaped with respect to the zero matrix;
(ii) theset fc (O(A)) C C is star-shaped with respect to the origin.

Proof The equivalence follows from Proposition £l By Lemma 4.3 we can choose
any model to work with so that it suffices to show the first statement.
(i) Suppose B = (b;j) € Ssom)(A) and o € [0,1]. Let € € [0,1] be such that

n—1

€"~! = a. Applying Lemma[.7]repeatedly on B, with
(k7 6) - (172)’ (]‘7 3)7 M (]" n), (2’ 3)7 (274)7 e (27 n)’ (374)? MR (n - ]" n)7

we obtain aB € Sgo(m(A) so that Sgo(,)(A) is star-shaped with respect to the zero
matrix. [ ]

Corollary 4.9 Letn > 3. Forany A,C € so0,(C), the sets

Ve(A) = {trCO'AO : O € O(n)},
Vi (A):={trCO'AO: O € O(n) \ SO(n)},

are star-shaped with respect to the origin. Equivalently, the sets

So(A) := {B € 50,(C) : Vc(B) C V¢(A) forallC € s0,(C)},
S(A) == {B € 50,(C) : V5 (B) C V5 (A) forall C € 50,(C)}

are star-shaped with respect to the zero matrix.

Proof Suppose n > 3. Note that Vc(A) = fc(O(A)) UV (A) and
Ve Q) = fe((m1 D Li—)A(=1 © I,—1)).

So the results follow from Theorem [4.8 [ |
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When n = 2, V¢(A) = {£2ac} and V; (A) = {2ac}, where

=% ) e=(%0)

Finally we remark that Conjecture can be reduced to the simple cases. To
summarize, the known cases are simple Lie algebras of type A [4], B (Theorem [£.8]),
D, Eg, and E; [5]; the unknown simple Lie algebras are of type C, G, Fy, and Eg.
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