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1. The Formal Language

An inexact generalization like 'ravens are black’ will be symbolized as a propositional
function with free variables thus: 'Rx = Bx.' The antecedent 'Rx' and consequent 'Bx' -
will themselves be called absolute formulas, while the result of writing the non-boolean
connective '=' between them is conditional. Absolute formulas are arbitrary first-order
formulas and include the exact generalization '(x)(Rx — Bx)' and sentences with indivi-
dual constants like 'Rc & Be.' On the other hand the non-boolean conditional '=' can only
occur as the main connective in a formula. We shall also need to consider formulas with
more than one free variable such as 'xHy = xTy,' which might express 'if x is the husband
of y then x is taller than y.' Though it is inessential, it will simplify things to work in 'n-
languages' with a finite number of individual constants cy, ..., ¢y, which are interpreted as
denoting the elements of the domains of the 'n-models’ to be described below.

2. Degrees of Truth

Sentences like '(x)(Rx -> Bx)' and 'Rec & Bc' are defined to be true or false in a model
M in the standard way, but the degree of truth of a conditional formula like Rx = Bx'in M
is defined to be the proportion of values of "x' that satisfy 'Bx' in M out of all of those that
satisfy 'Rx," and the degree of truth of 'xHy = xTy' is the proportion of values of 'x' and
'y' simultaneously that satisfy 'xTy' out of those that satisfy 'xHy.' These will be written
Tr(Rx = Bx) and Tr(xHy = xTy), and Tr((x)(Rx — Bx)) is stipulated to equal to 1 or 0
according as '(x)(Rx —» Bx)' is true or false in M. It is easily seen that on this definition
Tr(Rx = Bx) is not necessarily equal to Tr(-Bx = -Rx)). The definition of Tr must be
generalized in the case of infinite models, where proportions are not defined. Previous
papers (Adams 1974, 1986, Carlstrom 1975, and Adams and Carlstrom 1979) describe
generalizations and investigate the logic of this semantics, which is closely related to work
of Douglas Hoover (1978, 1982). I will side-step the problem.here by confining attention
to n-models whose domains can be assumed to be just {1, 2, ..., n}. Assuming this, the
degree of truth of an absolute formula ¢(x) with free variable 'x' is the mean of the truth
values of its 'n-model instances’ ¢(cj) that result when 'x' is replaced by 'ci' in ¢(x).

The crucial fact about the degree-of-truth measures jﬁst described is that they are
independent and symmetric probability functions. Thus, Tr satisfies the Kolmogorov
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axioms for absolute formulas, and it is a conditional probability function in application to
conditional ones. For instance, we can write Tr(Rx = Bx) = Tr(Bx/Rx) =

Tr(Rx & Bx)/Tr(Rx) (if Tr(Rx) = O we arbitrarily stipulate that Tr(Rx = Bx) = 1). Tris
independent in the sense that if ¢ and y are absolute and have no free variables in common
then Tr(p&y) = Tr(p)xTr(y), and it is symmetric in the sense that if ¢ and v are alphabetic
variants of one another then Tr(p) = Tr(y). Note that this is essentially exchangeability at
the level of variables, as against exchangeability at the level of individual constants. The
former is logically valid because alphabetic variants express the same propositions, while
the latter is factual if it is valid at all.

3. Probabilities

The fact that degree-of-truth functions satisfy the probability axioms led both
Lukasiewicz (1913) and Hoover to regard them as 'real probabilities.” However, the
independence of these functions would not allow us to account for confirmation in terms of
them, and we need to consider a more general concept of probability to do that. We can
utilize Hoover's (1982, Theorem 6.3) version of de Finetti's theorem for this, which states
that any symmetric probability function on a language is a mixture of independent and
symmetric probability functions on the language; i.e., it is a mixture of degree-of-truth
functions (Hoover excludes classical quantifiers from his languages, but that is inessential
in the finite cases we are considering). I will confine attention to mixtures of degree-of-
truth functions in n-models. Given this and the fact that the degree of truth of an absolute
formula @(x) with free variable 'x' is the mean of the degrees of truth of its n-model
instances ¢(c;), we get the following dual representation of the probability of ¢(x):

N n
M Prle)= T PrMjxTrae) = L3 Prig(e)
F i=1

where Pr(g) is the probability of ¢, Pr(¢(ci)) is that of its n-model instance ¢(c;), Pr(Mj) is
the 'weight' of n-model M, Try; is the degree-of-truth function for M;, and we assume
that there are N of these models.” The probability of an absolute formula is equal toits
expected degree of truth in n-models, and to the mean of the probabilities of its n-model
instances. The first clause tells us that our concept of probability is a generalization of the
ordinary concept of probability applying to sentences, whose probabilitics equal their
expectations of being true. We will assume that any distribution n-model probabilities
Pr(My), ..., Pr(MN) is possible. That we do not assume exchangeability at the level of
individual constants means that we do not assume that isomorphic n-models are
equiprobable or that n-model instances are, which is one of the differences between our
present approach to confirmation and those of Carnap (1950), Hintikka (1966), and many
others. Note, though, that (1) implies that when the n-model instances are equiprobable
they are equal in probability to the inexact generalizations of which they are instances, and
in a sense inexact generalizations can be looked upon as 'average instance propositions'
from the probabilistic point of view.

Another important property of probabilities leads in the direction of confirmation. Let
¢ be any absolute formula, and let n be any formula formed from conjunctions and
disjunctions of alphabetic variants of ¢, having no free variables in common with each
other or with ¢. Then it follows from Tchebycheff's Inequality (Hardy, Littlewood, and
Polya 1952, Theorem 43) that:

() Pr(e/n) 2 Pr(g).

For example, ¢ might be 'Bx' and n might be '(By v (Bz & Bw)," in which case (2)
implies that Pr(Bx/By v (Bz & Bw)) 2 Pr(Bx). It is important to stress that we cannot omit
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the qualification that the alphabetic variants forming n cannot have free variables in
common with each other or with ¢. For instance, neither Pr(xTy/yTx) 2 Pr(xTy) nor
Pr(xTy/zTw & wTz) 2 Pr(xTy) is valid in general. Also, free variables cannot be replaced
by individual constants in the inequality. For instance, while necessarily Pr(Bx/By)
2Pr(Bx), it can happen that Pr(Bx/Bc;) < Pr(Bx) for particular c; (note that this cannot
happen with the exact generalization '(x)Bx'; that is because it logically entails Bc; while
the inexact generalization does not). This is important as regards confirmation, since
evidence confirming a generalization typically has the form of particular data or instances
and not of other generalizations. We can, however, relate conditional probabilities like
P(Bx/By) to 'average' particular instance conditional probabilities as follows.

Let ¢, y, and n(y) be absolute formulas such that 'y’ does not occur in ¢ or y. Then it
follows from (1) that:

n

I Pr(y & n(ci))Prioly & n(c))
(3) Pr(phy & n(y)) = £l

n

i§l Pr(y & n(cj))

This tells us that Pr(e/y & n(y)) is a weighted average of the 'n-model instance
probabilities' Pr(p/y & n(cj)). One particular case is that in which ¢ is 'Bx,' n(y) is 'By’
and y is a vacuous tautology, where (3) reduces to:

n
. Z Pr(Bey)Pr(Bx/Bcy)
(3a) Pr(Bx/By)= =1

n
Z Pr(Bcyp
i=l .

Assuming the equiprobability of n-model instances it would follow that Pr(Bx/By) =
Pr(Bx/Bc;) and therefore by (2) that Pr(Bx/Bc;) 2 Pr(Bx), which would make it appear that
instances of absolute inexact generalizations 'weakly confirm' them. Not assuming
instance equiprobability, we can only say that this must hold ‘on the average,’ though it can
fail in particular cases. But we are interested primarily in the confirmation of conditional
generalizations, and we will now see that not only may particular instance disconfirm them
but all of them may do so. We will focus primarily on 'ravens are black,’ symbolized as
‘Rx = Bx," and we note the following special case of (3) which is relevant:

n
Z Pr(Rx & Rcj & Bej)Pr(Bx/Rx & Rcj & Bcey)

(3b) Pr(Bx/Rx & Ry & By) = =2 _ -

S Pr(Rx & Re; & Bej)

i=1

Pr(Bx/Rx & Ry & By) is therefore a weighted average of n-model instance probabilities
Pr(Bx/Rx & Rc;j & Bcj). The latter relate to Bayesian confirmation of 'Rx = Bx.'

4. Confirming 'Ravens are Black'

Let us say that evidence weakly confirms ‘Rx = Bx' if the probability attaching to it
after n is learned is at least as great as it was before. We will focus on that, and assume
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that evidence must be expressed by sentences. We will also assume that the posterior
probability of an absolute formula ¢ after leaming n is given by the conditional probability
Pr(¢/n) (Bayesian confirmation, cf. Rosenkrantz 1977, Chapter 2), and if this is so and
Pr(Rx = Bx) = Pr(Bx/Rx) = Pr(Rx & Bx)/Pr(Rx), it follows that the posterior probability
of 'Rx =» BX' after learning n must equal Pr(Bx/Rx &n). Therefore we may say that n
weakly confirms ‘Rx = Bx' if Pr(Bx/Rx & n) 2 Pr(Bx/Rx). 1 will focus on positive
instances which are data to the effect that particular ravens are black, and I will make the
default assumption that they can be expressed by formulas of the form Rcj & Be;. This is
questionable in view of the fact the constants c; should properly symbolize names, but
establishing that a raven is black is not usually to establish that some named raven is black.
This matter deserves more attention that it has yet been given, but it cannot be pursued here

(note the cryptic remarks about instances being symbolized by 'new constants,' in Camap
1950, p. 572).

Now I want to show that not only can individual positive instances disconfirm
'Rx = Bx/, but all of them can. This can be seen intuitively. Suppose there were only two
possible worlds, in the first of which 1% of all things were ravens and all of them were
black, and in the second of which everything was a raven but only half of them were black.
Suppose also that a priori it was 99% probable that we were in the first world. Then the
discovery that any particular cj was a black raven would lower the expected degree of truth
of 'ravens are black' by making it much more likely that we were in the second world, in
which only 50% of ravens are black; i.e., in this situation Pr(Bx/Rx & Rc;j & Bcj) would
be less than Pr(Bx/Rx) for all ¢;.

Given our default assumption that positive instances of the form Rc;j & Bc;j are
representative of positive instances of ‘ravens are black' in general, it would seem that there
is no logical guarantee that each positive instance will not disconfirm it. This should not be
surprising in the light of Goodman's grue (Goodman 1955; this will be returned to briefly
below), and it suggests that if we are to explain the intuitions that underlie commonly
accepted inductive principles (cf. Russell 1912) we must appeal to Goodmanesque
hypotheses about lawlikeness or natural kinds, or to related 'a priori synthetic' assumptions
about prior probabilities. I believe there is something right in this, but I want to end this
part of the discussion by pointing out a kind of assumption which I suspect is commonly
-make in practice, but which has usually been overlooked in theory.

We noted earlier that Pr(Bx/Rx & Ry & By) is a weighted average of the probabilities
Pr(Bx/Rx & Rcj & Bcj), all of which are less than Pr(Bx/Rx) in our anomalous example;
hence Pr(Bx/Rx & Ry & By) < Pr(Bx/Rx) must have been the case in that example.
Conversely, if we could describe special circumstances in which the inequality

4) Pr(Bx/Rx & Ry & By) 2 Pr(Bx/Rx)

held it would follow that 'on the average' Pr(Bx/Rx & Rcj & Bc;) 2 Pr(Bx/Rx) in those
circumstances; i.e., on the average positive instances of 'Rx = Bx' would have to weakly
confirm it in those circumstances. The following pair of conditions would guarantee this:
(5) Pr(Bx/Rx & Ry & By) = Pr(Bx/Rx & Ry)

(6) Pr(Bx/Rx & Ry) = Pr(Bx/Rx).

Clearly (6) fails in the anomalous example, and in fact it must fail in any circumstances in
which (4) does. That is because (5) must hold under all circumstances, since it follows
from a trivial generalization of (2).

But consider what (6) means. By (3) again, Pr(Bx/Rx & Ry) is an average posterior
probability of Rx=> Bx' given data of the form Rc;, which on our default assumption is the
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average posterior probability of ‘ravens are black’ just given information to the effect that
something is a raven, In the anomalous example this sort of information did lower the
probability of 'ravens are black' by making it probable that we were in a world where a low
proportion of ravens were black, but I would hazard that in normal circumstances in which
conditional generalizations are tested the mere discovery that something was an instance of
the generalization, without determining whether it was positive or negative, would not
affect the generalization's probability. In other words, I hazard that while (6) may fail in
anomalous circumstances, it holds in normal ones. I will call this the principle of the
Independence of Pure Instancehood (IPI), and where it holds (4) must hold as well; i.e.,
when IPI holds positive instances of generalizations must weakly confirm them on the
average.

I will conclude with very brief comments on applications, primarily stressing
generalizations.

5. The Paradoxes and Other Applications

Let us begin with Hempel's Paradox (Hempel 1945), and focus on the confirmation of
'ravens are black' by sentences of the form 'Rc & Bc,' and by ones of the form
“Bc & -Rc' which would be positive instances of the contrapositive generalization 'non-
black things are not ravens.' If the two generalizations were equivalent they should be
equally confirmed (the "Equivalence Principle'), and if positive instances always confirmed
then both instances should confirm both generalizations (Nicod's Principle). Standard
Bayesian resolutions of this paradox reject or qualify Nicod's Principle (Suppes 1966,
Rosenkrantz 1977) but accept the Equivalence Principle. My approach implicitly calls that
into question also, by representing the generalizations involved as inexact rather than exact
(they could also be regarded as inequivalent exact generalizations, for instance if they had
Aristotelian existential import, but I will ignore that). However, it is more significant that
IPI implies that the confirmation of 'Rx = Bx' by instances of form -Bcj & -Rcj' is not
only not always positive, it is necessarily non-positive on the average. That is because
Pr(Bx/Rx) = Pr(Bx/Rx & -Ry) by IPI, and Pr(Bx/Rx & -Ry) 2 Pr(Bx/Rx & -By & -Ry)
by a non-trivial generalization of (2), hence Pr(Bx/Rx) = Pr(Bx/Rx & -By & -Ry). But
the latter is the average posterior probability of 'Rx = Bx' given instances of form
-Bc; & -Rgj'.

Turning to the Goodman Paradox (Goodman 1955, pp. 74-5), consider 'emeralds are
grue' interpreted as generalizing both over emeralds and over times at which they might be
grue, where 'grue’ is defined in the familiar way. This double generalization is
appropriately symbolized as an open formula in a two-sorted logic, to which degrees of
truth, probabilities, and the confirmation formulas given in the earlier sections all generalize
directly. I will not go into details, but I would suggest that as things are, and unlike
‘emeralds are green,' IPI would be unlikely to apply to ‘emeralds are grue.' The reason is
simple. As things are, persons would be likely to accept 'emeralds are grue' only if they
thought that emeralds wouldn't exist after the time t at which greenness and grueness split
apart. Assuming this, finding an emerald of whatever color shortly before t would
disconfirm ‘emeralds are grue' by making it likely that emeralds would exist after time t.
This is in the spirit of Goodman's own solution to the paradox since it stresses the way
certain kinds of evidence influence our beliefs as things are, rather than how 'in logic' they
should influence them. . Obviously, as in Goodman's approach, the probabilistic approach
requires much more detailed study which cannot be entered into here. I will end by briefly
citing applications involving two other sorts of generalizations.

One is to multiple-variable generalizations such as transitivity laws of the form 'if xRy
and yRz then xRz' (e.g., 'if x can beat y and y can beat z then x can beat z'). These are
expressible in the present formalism, and one interesting study has to do with relations
between different expressions of seefningly the same generalization, such as between
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'‘(xRy & yRz) = xRz' and '(3y)(xRy & yRz) = xRz." It is easily seen that these are not
necessarily equivalent in either degree of truth or probability, and the investigation of the
factual conditions in which they are equal, at least approximately, leads to 'density’
assumptions whose role in the theory of inexact ordering relations (Adams and Carlstrom
1979) is in some ways analogous to that of IPL

The other application is to inference by analogy, as discussed in Carnap (1950 pp.
569-70). Here instead of generalization with respect to individuals it is with respect to
predicates, and the natural approach is via second-order logic. There is no difficulty in
carrying this out, provided that predicates are restricted in somewhat the way individuals
were restricted in the n-ldnguages considered here. Analogues of laws (1) - (3) can be
derived straightforwardly, and plausible analogues of non-logical principles like IPI can be
formulated. The special difficulty that arises in this case is to describe positive instances.
The reader can get some idea of the problem by considering first-order absolute
generalizations of the form 'Rx <-> Bx' and regarding 'R' and B' as names of individuals
and 'x' as ranging over their predicates. We would normally regard formulas of the form
‘Rej & Bej' or “Rcej & -Bcj' as positive instances of this, but in fact they to not stand to it
as positive instances of 'Rx = Bx' stand to that formula. This is related to the fact that
Hempel's Consequence Principle (cf., Carnap 1950, p. 471) fails. The special
circumstances in which it holds is a further subject for investigation.
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