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Thermoelectric (TE) materials can enable direct conversion between thermal and electrical energies and 

can impact waster heat recovery [1]. The conversion efficiency is determined by dimensionless figure of 

merit, ZT = S
2
σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the total thermal 

conductivity, and T is the absolute temperature. PbTe, a simple cubic rock-salt structure, has been studied 

for decades due to their promising band structure and high thermoelectric performance. Moreover, due to 

the simple crystal structure, faceted nano-precipitates can be easily constructed via supersaturated 

doping/alloying. Such highly strained nanostructure can greatly enhance phonon scattering and suppress 

the lattice thermal conductivity [2]. Here we have systematically characterized nanostructures in PbTe 

based materials, which lead to significantly enhanced thermoelectric properties [3]. 

Figure 1(a) shows a typical annular bright field (ABF) STEM image of Pb0.98Ga0.02Te-5%GeTe, where 

a significant amount of faceted second phase ranging from ~20 to 150 nm with brighter contrast is seen 

inside of the grain of the PbTe matrix. Moreover, numerous dislocations are located around the 

precipitates. From the energy dispersive spectroscopy (EDS) mapping (Figure 1(b)) of a selected area in 

(a), the precipitates are rich in Ga and deficient in Pb. 

To reveal more crystallographic information and orientation relationship between the precipitates and 

matrix, conventional and high-resolution TEM analyses were also applied. Figure 1(c) shows a middle-

magnification TEM image of one such precipitate embedded in the matrix. Translational Moiré fringes 

are present due to lattice misfit between the two phases. According to the zoomed-in view of a part of the 

interface in Figure 1(d), the lattice fringes between the two phases are coherent (endotaxy). The 

corresponding selected area electron diffraction (SAED) is shown in Figure 1(e), where the bright 

diffraction spots belong to the rock-salt PbTe phase along the [111] direction. 6 satellite spots are observed 

around every bright spot, with the brightest ones originating from Ga2Te3 along [111] zone axis. The 

presence of all other weaker satellite spots as well as the translational Morié fringes come from double 

diffraction. 

As a result, the nanoscale Ga2Te3 precipitates, dislocations and point defects leads to intensified phonon 

scattering and significant suppressed lattice thermal conductivity of 1.13 Wm
−1

K
−1

, nearly 34% reduction 

compared to that of Pb0.98Ga0.02Te (1.72 Wm
−1

K
−1

) at 300 K [3, 4]. 
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Figure 1. S/TEM analyses of Pb0.98Ga0.02Te-5%GeTe. (a) Annular bright field STEM image. Decent 

amount of precipitates (indicated by yellow arrows) with brighter contrast are embedded in the PbTe 

matrix. The size of the precipitates is ~20-60 nm. (b) Zoom-in view of (a) along with EDS mapping. The 

precipitates are Ga-rich and Pb-deficient. (c) Typical TEM image of one precipitate embedded in the 

matrix. (d) Zoomed-in high-resolution TEM image of boxed area in (c), revealing a coherent phase 

boundary. (e) Corresponding selected area electron diffraction pattern (SAED) of (c) along the [111] 

direction of the PbTe matrix. The bright spots (labeled in red) belong to the PbTe phase, while the brightest 

satellite spots (labeled in yellow) were indexed to the Ga2Te3 phase (space group: F ͞43m) along the [111] 

direction. Other satellite spots are generated due to double diffraction. [3] 
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