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A one-dimensional electrostatic filtered Vlasov—Poisson simulation study is discussed.
The transition from persisting to arrested Landau damping that is produced by
increasing the strength of a sinusoidal perturbation on a background Vlasov—Poisson
equilibrium is explored. Emphasis is placed on observed features of the electron
phase-space distribution when the perturbation strength is near the transition value.
A single ubiquitous waveform is found perturbing the space-averaged phase-space
distribution at almost any time in all of the simulations; the sole exception is the
saturation stage that can occur at the end of the arrested damping scenario. This
waveform contains relatively strong, very narrow structures in velocity bracketing
+v.s — the velocities at which electrons must move to traverse the dominant field
mode wavelength in one of its oscillation periods — and propagating with v
respectively. Local streams of electrons are found in these structures crossing the
resonant velocities from low speed to high speed during Landau damping and from
high speed to low speed during Landau growth. At the arrest time, when the field
strength is briefly constant, these streams vanish. It is conjectured that the expected
transfer of energy between electrons and field during Landau growth or damping has
been visualized for the first time. No evidence is found in the phase-space distribution
to support recent well-established discoveries of a second-order phase transition in the
electric field evolution. While trapping is known to play a role for larger perturbation
strengths, it is shown that trapping plays no role at any time in any of the simulations
near the transition perturbation strength.
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1. Introduction

Some 70 years ago, Landau (1946) discovered that a relatively weak electrostatic
perturbation on a uniform, one-dimensional, collision-free plasma in thermal
equilibrium will damp away exponentially to zero with increasing time despite the
collisionless nature of the plasma. This phenomenon has been the subject of a great
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deal of research since then and it remains of considerable interest today (Van Kampen
1955; Case 1959; Brodin 1997a,b; Ng, Bhattacharjee & Skiff 1999, 2004; Galeotti &
Califano 2005; Valentini et al. 2005; Califano, Galeotti & Mangeney 2006; De Marco,
Carbone & Veltri 2006; Black et al. 2013). Recently, attention has been drawn to the
transition that can occur, as the strength of the perturbation is increased, from this
Landau damping scenario to what is sometimes called the ‘O’Neil scenario’ (O’Neil
1965; Lancellotti & Dorning 1998a; Brunetti, Califano & Pegoraro 2000; Ivanov,
Cairns & Robinson 2004). In the O’Neil scenario, the damping is arrested and a
non-zero asymptotic wave amplitude follows. The O’Neil treatment, however, invokes
electron trapping in a strong electrostatic field; it is a strong perturbation approach
that may be appropriate well above the transition perturbation strength but it is not
appropriate for a study of the transition itself. Above, but near the transition strength
Ivanov & Cairns (2006) have shown that evolution to a non-zero asymptotic wave
amplitude is possible in the absence of trapping. In light of their results, plus the
results that we will discuss below in which trapping does not play a role, we prefer
to label the transition a transition from persisting Landau damping to arrested Landau
damping with trapping possibly but not necessarily involved in the second case.

Simulations of the arrested Landau damping scenario often end in a quasi-steady
non-zero saturated state that suggests the possibility of a non-zero asymptotic state
(e.g. see Demeio & Zweifel 1990; Manfredi 1997; Brunetti et al. 2000; Xu & Sheng
2012; Rupp, Lopez & Araneda 2015, and this paper). Of course, such simulations
can never prove the asymptotic behaviour of the plasma. Isichenko (1997) has
argued that a generic perturbation on a stable Vlasov plasma generally will decay
algebraically (') and that the decay will not be stopped by trapping. In addition,
Ivanov et al. (2004) have provided results from a simulation right at the transition
perturbation strength that exhibited algebraic decay, although at a markedly different
rate (13202001 Lancellotti & Dorning (1998a,b), however, have proved the existence
of a critical initial perturbation amplitude at which asymptotic damping is prevented
and the perturbation wave amplitude asymptotes to a constant non-zero value. In this
final state, the electric field contains a finite set of propagating wave modes, each of
which satisfies the Vlasov dispersion relation. For a special two-wave case in which
the asymptotic electric field is given by A(x, 1) = a sin(x — Vest) + a SIN(x + Vyes?)
with +v.s being the resonant velocities corresponding to two dominant roots of
this dispersion relation, Lancellotti and Dorning were able to show that the wave
amplitude a is a linear function of the difference between nearby perturbation
amplitudes and the critical amplitude when the difference is small. Brunetti et al.
(2000), using a sequence of Vlasov simulations with varying perturbation amplitudes
above the critical value, were able to both confirm this linear dependence and to
use it to extrapolate back to find the critical value. It is important to note that
while the discussion of Lancellotti and Dorning generally invokes O’Neil trapping
to describe the strong perturbation domain above the transition neighbourhood, they
state that their theory for that domain ‘also includes all exact undamped traveling
wave Bernstein—Greene—Kruskal solutions ... and their generalizations. .. .

Studies of the transition from persisting to arrested Landau damping often invoke
a simple sinusoidal perturbation of strength ¢ on a spatially uniform, equilibrium,
thermal phase-space distribution. If k,, is the wavenumber of the perturbation and vy,
is the thermal velocity of the equilibrium distribution, then it has been shown (Xu &
Sheng 2012) that the transition from persisting to arrested damping only exists in the
limited range 0.2 < vk, < 0.7; outside of that range, a critical initial perturbation
strength ¢* does not exist. When the transition does exist, and if the perturbation
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strength is just above the critical value, then a characteristic pattern unfolds in the
temporal evolution of the electric field magnitude. First, the field damps (the damping
phase), initially at the linear Landau rate but then slower. Eventually, the damping
is arrested (the arrest time) and reverses, leading to a growth phase that continues
until a saturation stage is reached. If the time at which the damping is arrested is
labelled #; and the field strength at that time is Ej, and if the time at which saturation
is reached is labelled #, with E, for the field strength at that time, then it has been
found that 7, t,, E; and E, are all power-law functions of ¢ —¢* (Ivanov et al. 2004;
Ivanov & Cairns 2006; Rupp et al. 2015) thus showing that &* is a critical point in
a second-order phase transition.

The initial goal for the study that we discuss in this paper was to numerically
investigate the behaviour of the electron phase-space distribution for small |¢ — &*|
using a simulation set-up that has already been shown to exhibit a second-order phase
transition, as discussed in the preceding paragraph. Accordingly, we have reproduced
the one-electron-component simulation set-up of Rupp er al. (2015) using the filtered
Vlasov simulation technique (Klimas 1983a, 1987), which can yield more details of
the phase-space distribution than have been generally available. We report on the
results of three one-dimensional (1-D) electrostatic simulations that closely bracket
the critical ¢* (the ‘“Transition Study’, §4) plus a fourth with ¢ somewhat above &*
(the ‘Case Study’, §3) to provide a reference point in order to better understand the
Transition Study simulations. All four simulations have been carried out to = 10000
in units of ' with fixed proton backgrounds. The Case Study simulation has been
reproduced with mobile protons (true mass ratio) to confirm the accuracy of the
fixed proton simulations (see appendix A). We show, in some detail, that there is
no evidence in the electron phase-space distribution supporting the existence of the
second-order phase transition that has been well established in the electric field
evolution (Ivanov et al. 2004; Ivanov & Cairns 2006; Rupp et al. 2015).

In addition, we find that there is a characteristic phase-space waveform perturbing
the space-averaged distribution, consisting of relatively strong, very narrow — in
velocity — structures bracketing v, — the velocities at which electrons must move
to traverse the dominant field mode wavelength in one of its oscillation periods — and
propagating with +uv.s respectively, plus weaker coupled waves within £v.;. With
the exception of some small, but very important differences, this single ubiquitous
waveform can be found at almost any time in all of our simulations. This includes
very early in the initial damping phase that appears in all of our simulations, at the
arrest time if it occurs, and during the growth phase if it occurs. The only exception
is during the saturation phase of the simulation if it occurs. The distortion of this
waveform in the saturation phase will be discussed.

Landau damping or growth has often been described in terms of electrons being
accelerated or decelerated in the neighbourhoods of +wv,, and removing or returning
energy, respectively, to the electric field (Dawson 1961). We present images of the
very narrow phase space structures at Fv,s; showing electron streams that propagate
across the resonant velocities from low to high speed during damping, from high to
low speed during growth, and not at all at arrest. We interpret these streams as direct
images of the interchange of energy between electrons and electric field that has been
postulated previously. We believe that this is the first time that this mechanism has
been observed in this detail.

Lesur, Diamond & Kosuga (2014), in a simulation study of current-driven
ion-acoustic waves in a two-species, one-dimensional, collisionless electron—ion
plasma, have discovered a new kind of phase-space structure that emerges from
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hole—plasma or hole-hole interactions. These are electron streams, which they call
jets, with an extent in velocity of the order of the electron thermal velocity. They are
formed by interacting holes and are, therefore, related to the formation and dynamics
of holes. While of considerable interest, these jets are unrelated to the electron
streams found in this study of Landau damping. Phase-space holes, or vortices, do
not appear in our simulations.

Ivanov & Cairns (2006) have argued that arrest and saturation are not produced by
trapping in cases with initial perturbation strength above but near the critical strength.
They have also shown that the saturation mechanism can be turbulence. In agreement
with Ivanov and Cairns, we have found no evidence of trapping at any time in any
of our simulations, all of which are initiated in the neighbourhood of the critical
perturbation strength. However, we do not find turbulence in the saturation phase
that develops in the Case Study simulation. Saturation in that simulation involves a
mechanism that gives the appearance of trapping but, we argue in § 3.4, trapping is
clearly an incorrect interpretation.

This paper is organized as follows: in §2 we introduce the reader to the filtered
Vlasov simulation technique and demonstrate its utility. In addition, we define the
dimensionless variables used in our simulations and express the Rupp et al. (2015)
initial state in terms of those variables. In § 3 we discuss our Case Study simulation
which, as we show, exhibits all of the damping, arrest, growth and saturation phases.
This simulation becomes a rich source of information for interpreting the results of
the Transition Study simulations, discussed in §4. One of the simulations discussed
in §4 exhibits a damping phase, arrest and then essentially no further evolution in
the electric field strength. We conclude that the initial perturbation strength used
for this simulation must be quite close to the transition value and that the apparent
steady field strength with increasing time is in good agreement with the prediction
due to Lancellotti & Dorning (1998a) of a constant non-zero asymptotic field strength
at the transition perturbation strength. In appendix A we discuss some results from
a simulation that is identical to the Case Study simulation except that the protons
(true mass ratio) are mobile. We show that, even for the long simulations discussed
in this paper, the mobility of the protons has almost no measurable effect on the
plasma evolution. Finally, in appendix B we provide a broad-brush view of the
filtered Vlasov—Poisson simulation code and collect and summarize the relevant run
parameters.

2. Simulation set-up
2.1. Filtered Viasov—Poisson system

We simulate solutions of the one-dimensional filtered Vlasov—Poisson system (Klimas

1987)
of  of of 3%f
—f+vl—E(x, z)lz—vg /
ot 0x ov 0xov @1
oE o - '
:l—/ dvf(x, v, 1)
ox oo

in which the filtered electron phase-space distribution f is related to f, the solution of
(2.1) when vy =0, through the convolution integral relationship

fx, v, 1) = / N dv' @ (v —v)f(x, V', 1) (2.2)

[e¢]
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in which the filter function @ is given by

(D(v) = 41 67(1/2)(1)/”0)2‘ (23)
Vo/ 2T

Periodic simulations are carried out on a spatial interval (—L, < x < L;). For the
dimensionless system (2.1), time is measured in units of wl;l with w,. the electron

plasma frequency, length is measured in units of L;, speed is measured in units of
vin(Li/Ap) in which vy, is the thermal speed and Ap = (vw/w,.) is the Debye length.

With these choices, the dimensionless distribution function f is measured in units of
(Lza)pe)*l, the dimensionless electric field is measured in units of 4mngL,, in which ng
is the density of the stationary background ion distribution; the dimensionless density
of the background ion distribution is 1.

The convolution (2.2) is analogous to observing the electron plasma with a detector
whose response is a perfect Gaussian; it does not affect the evolution of f at all;
it introduces no intrinsic error in the evolution of the Vlasov—Poisson system. Since
the density and flux moments of f and f are identical, the electric (more generally,
electromagnetic) field is unaffected by the value of v,. Nevertheless, the use of the
filtered Vlasov—Poisson system has been shown to overcome the well-known problem
of filamentation on the phase-space distribution (Klimas 1987; Klimas & Farrell 1994;
Einkemmer & Ostermann 2014).

In this study of Landau damping and growth, the evolution of the phase-space
distribution is similar to that of free streaming in that filamentation develops over the
entire distribution and evolves uniformly to an ever finer velocity scale with increasing
time. When this scale reaches, and inevitably goes below v, the filamentation is
removed from the filtered phase-space distribution and any underlying signal is
revealed. We use this behaviour to our advantage by repeating each simulation using
several vy values. A larger vy reveals the underlying information sooner, albeit in
a velocity broadened and smoother form, while a smaller v, reveals the underlying
information later with better velocity resolution.

Figure 1 provides an example of this technique. Panels (a,b) of the figure show
the electron phase-space distribution with its spatial average removed at a single early
time (1=700) during Landau damping from two versions of the Case Study simulation
discussed in § 3 in which only the values of v, differ. Panel (a) corresponds to a very
small vy = 0.000637 value that, at this early time, is effectively vy = 0. Essentially,
no filtering has occurred and the distribution is dominated by filamentation. Panel (b)
shows the phase-space distribution minus spatial average at the same time, obtained
using a larger vy = 0.00318 value. In this case, the filamentation is gone and an
underlying waveform emerges. This waveform will be examined in detail in this paper.
We will show that this single waveform populates the phase-space distribution over
most of the persisting/arrested Landau damping scenario.

Supplementary Movies 1 and 2 are available at https://doi.org/10.1017/
S002237781700054X and demonstrate how this difference between filtered and
unfiltered phase-space distributions develops in time. For this demonstration we have
used an unusually wide filter width vy =0.0398 to reveal the underlying waveform at
a very early time. At the end of Movie 2 it is clear that the waveform has emerged
by t=31 but a close examination of the movie makes it possible to see the waveform
embedded within the decaying filamentation as early as 7= 10.

In discretized Eulerian Vlasov simulation codes the natural filamentation evolution
to finer and finer scales in velocity may allow the filamentation to reach the resolution
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FIGURE 1. Perturbation to space-averaged phase-space distribution at identical times
during early linear Landau damping for (a) vy = 0.000637, (b) vy = 0.00318.

of the velocity grid and, consequently, to the onset of the recurrence phenomenon — in
Landau damping simulations a sudden jump in the electric field strength back to close
to its initial value (e.g. see figure 4 of Pezzi, Camporeale & Valentini (2016)) and an
approximate reformation of the initial phase-space distribution — after which the true
plasma evolution is lost. Various methods have been proposed for overcoming this
problem (e.g. see Einkemmer & Ostermann 2014). Of particular relevance to the work
under discussion here is the approach taken by Black er al. (2013) in a simulation
study of the theoretical results of Ng et al. (1999, 2004).

Ng et al. studied a modification of the Vlasov—Poisson system in which a
representation of electron collisions due to Lenard & Bernstein (1958) was added.
They constructed a complete, orthogonal, discrete set of well-behaved eigenfunctions
that form the basis for solutions of this weakly collisional Vlasov-Poisson system.
They further showed that the most slowly damped member of this set approaches the
most slowly damped (collisionless) Landau mode (Landau 1946) as the collision rate
approaches zero. Thus, after a sufficient delay, weakly collisional Landau damping
can be expected to accurately represent the collisionless Landau mode damping. Black
et al. showed that this most slowly damped weakly collisional eigenmode does not
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support filamentation. Thus, as the weakly collisional solution evolves filamentation
fades away and, if this is before the time at which recurrence would have occurred,
then recurrence is avoided.

Pezzi et al. (2016), however, have shown that the weakly collisional Vlasov—Poisson
system using the Lenard & Bernstein (1958) collision operator is not generally a
suitable substitute for the collisionless system. They found that to reproduce the
behaviour of the collisionless system during the early linear phases of Landau
damping and the bump-on-tail instability, specific collision rates are necessary. For
the cases that they studied, they found that the collision rates that are necessary to
prevent recurrence lead to significant alterations of the phase-space structures that
form in the collisionless system later in the nonlinear phases of the simulations.

It is important to note before going on that in the Vlasov—Poisson simulation code
that has been used for this study there is no recurrence phenomenon. While this
might be expected as a consequence of the filamentation suppression provided by
the filtering technique discussed above, we find no recurrence even in simulations
in which vy = 0; i.e. even in simulations in which the filtering has been turned off.
The exact reason for this fortunate result is currently under investigation and will be
presented in the future.

It has been shown that the filtered Vlasov—Poisson system (2.1) can be efficiently
integrated numerically in a transformed state (Klimas & Farrell 1994). In this
approach, the entire system (2.1) is Fourier transformed with respect to both position,
x, and velocity, v, and in addition the splitting scheme due to Cheng & Knorr (1976)
is employed. In fact, Figua et al. (2000) have argued that it is only in the doubly
Fourier transformed space that the filtered system can be numerically integrated
stably. We are unaware, at this time, of any contradiction to their argument and have
proceeded with the transformed approach. Since we intend solutions that are periodic
in position, the Fourier transformation with respect to position is innate. Care must be
taken, however, to implement the transformation with respect to velocity. We assume
Gaussian-like decay of the phase-space distribution with large and increasing speed.
The maximum simulated speed must be many thermal speeds so that the distribution
and all of its derivatives with respect to speed can be approximated by zeroes. In that
case, the maximum speed can be considered the position at which the distribution
is periodic in velocity. This argument is complicated, however, by the fact that there
is no velocity grid in the transformed simulation scheme and, thus, the meaning of
a maximum speed is indirect. If u is the Fourier variable conjugate to v, then the
simulation is carried out on a grid in u. A maximum speed is implied by the grid
spacing in w through V., =1/Au. The grid spacing must be chosen small enough
to ensure Vi, /vy > 1. For all of the simulations discussed in this paper, this ratio
is initially ~25 and, due to the small perturbation amplitudes imposed on the initial
states, it never varies significantly.

It is an intrinsic property of the Fourier transformed Vlasov—Poisson system that
total (integrated over the entire phase space) electron number density is conserved
exactly. All of the simulations that are discussed in this paper are initialized with
zero total electron momentum. For all of these simulations we find that the total
momentum remains at zero to within numerical accuracy (*~10~'7) over the entirety
of the simulations. Moments that are of higher order than the electron flux, however,
are not invariant to the filtering process (2.2). For example, if the distribution f were
exactly a thermal distribution with thermal speed vy, then the filtered distribution
would also be a thermal distribution but with an effective thermal speed given by

1 2
Verr = £/ V2 + 02 = vy (1 +5 <“°) ) (2.4)

Uth
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FIGURE 2. From initial stages of Case Study simulation, evolution of normalized (a) total
energy and (b) entropy.

the approximate expression valid in the case in which vy/vg, < 1. For the simulations
discussed in this paper, in which the velocity distributions are always very close
to thermal, this ratio ranges from vy/vy, = 0.00156 (highest resolution runs) to
vo/vem = 0.00795 (Movie 1 and Movie 2); the effective thermal speed is always
very close to the actual thermal speed. However, we do not expect in principle
that quantities such as total energy or entropy, when computed using the filtered
distribution f, should be exactly conserved. Figure 2 provides indications of the degree
to which these quantities are not conserved in the Case Study simulation discussed
below; the results are typical of all of the simulations to be discussed. Both quantities
have been normalized by their respective initial values. The simulation continues to
t=10000 but the plots have been truncated in time to show the variations that occur
during early times. The asymptotic values that the total energy and entropy take on
in the figure remain unchanged, in fact, for the remainder of the simulation.

Further details of the transformed simulation scheme can be found in Klimas &
Farrell (1994). See appendix B for more information on the simulation set-up used to
obtain the results discussed in this paper.

2.2. Initial state

On a spatial interval (0 < x < L), Rupp et al. (2015) simulated solutions of the
unfiltered (vo = 0) system (2.1) with initial state (here, expressed in dimensional
form)

S, v, 1=0) =fo(v)[1 + & cos(k,x)]

1 1/v)\’ (2.5)
So(v) = mexp [—2 <Um> ] )

with L=2m/k,, and ck,,/w, =1. Using 2L, =L and the dimensionless set-up described
above, (2.5) can be written

1
fx,v,1=0)= (JTUC> Fe_(l/Z)(“(C/”“‘))Z”Z[I + & cos Tux]. (2.6)
th T

We reproduce the simulations of Rupp et al. (2015) by setting vy, /c=0.4, as they did.
It should be noted that this choice leads to Ap =0.127 in these dimensionless units.
The phase shift introduced by going from (0 <x <L) to (—L; <x <L) is irrelevant
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FIGURE 3. Evolution in time of all field mode magnitudes in the Case Study (¢ =0.0089)
simulation.

in these periodic solutions. Spatial Fourier modes will be denoted by the index m. In
these dimensionless units, the m =1 mode has wavelength 2; i.e. in dimensional units,
the wavelength of the m =1 mode is 2L, = L. The neighbourhood of the transition
from persisting to arrested Landau damping is explored by varying the value of ¢.

3. Case study

In §4, we discuss three simulations that span the persisting to arrested critical
transition, which we find is at ¢ >~ 0.0085. In this section, we present a detailed
discussion of the several phases of a single ‘Case Study’ simulation at ¢ = 0.0089,
just above the transition region.

3.1. Overview

Figure 3 shows the time evolution of all field mode magnitudes for this simulation.
The modes are ordered in the figure by amplitude. At any particular time, the strongest
mode (green) is the m =1 mode with wavelength equal to 2 (2L;). The next mode
down (blue) is the m =2 mode with wavelength 1, and so on. There are four phases of
interest in the field evolution: (i) the damping phase, starting very near the beginning
of the simulation and lasting until approximately ¢ = 1000. (ii) The arrest phase at
approximately ¢ = 1500. (iii) The growth phase from approximately ¢ = 2000 to t =
5500. (iv) The saturation phase, starting at approximately ¢ = 6000.

Figure 4 shows the electric field at approximately #=3000, during the growth phase,
and at approximately # = 6200, during the saturation phase. At the earlier time the m=
1 mode is strongly dominant and, thus, the field is a simple sine wave. An excellent
fit to the field evolution at this earlier time is given by

E(t) = Eye”" sin mx cos 2t = Ege?’[sin TT(x — Vyest) + SIn TT(X + Vres?) ], (3.1
with log,, Ey = —7.61084, §£2 = 1.2722 in units of w,, y = 0.0005 and with the

resonant speed v.s = £2/m = 0.4050 being the speed at which electrons must move
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FIGURE 4. Electric field at approximately #=3000 (red, left ordinate) during growth phase
and at approximately # = 6200 (blue, right ordinate) during saturation phase from Case
Study (¢ =0.0089) simulation.

to traverse the m =1 mode wavelength in one of its oscillation periods. Similar fits
are available for the three transition study simulations that will be discussed in §4,
each with its own value for y.

For the purpose of understanding whether or not evidence of trapping is found in
any of these simulations, it is important to note that we find the total electric field
never propagates spatially, it simply oscillates temporally, as shown by the first term
in (3.1). This is true for all simulations discussed in this paper, including the saturation
phase of the Case Study (¢ = 0.0089) under discussion in this section in which the
simple sinusoidal shape can be somewhat distorted, as shown in figure 4, but the wave
still does not propagate spatially. Nevertheless, as shown by the second term in (3.1)
the total field can be written as the sum of two modes propagating at fv,.,. This form,
with y =0, is in agreement with the two-wave asymptotic field example discussed
by Lancellotti & Dorning (1998a). One of the Transition Study simulations discussed
in §4 exhibits y >~ 0 for large times and, thus, is a good example of the two-wave
example of Lancellotti and Dorning.

3.2. Phase-space distribution

Figures 5 and 6 provide alternate views of the & = 0.0089 electron phase-space
distribution at t =3000 with, in both figures, the space-averaged distribution removed.
A very small filter width vy =0.000637 has been used to obtain this result. Figure 5
can be compared to figure 1(a), which was taken from the same simulation with
the same filter width at a much earlier time. It can be seen that at the later time of
figure 5 the filamentation velocity scale has evolved downward to below the filter
width and the wave structure perturbing the space-averaged distribution has been
revealed.

The waveforms shown in figures 5 and 6 and figure 1(b) are actually the same
waveform seen first in the damping phase of the simulation and later in the growth
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FIGURE 5. Phase-space distribution with space-averaged distribution removed at ¢ = 3000
with v, =0.000637.

FIGURE 6. Phase-space distribution with space-averaged distribution removed at = 3000
with v, =0.000637.

phase. It consists of narrow structures at the resonant velocities v, = £(£2/m), in
which 2 is the oscillation frequency of the electric field, plus weaker waves between
the resonant velocities. These weaker waves appear more prominent in figure 1
because they are shown relative to the peaked resonance waves, which have been
smoothed and lowered by the broad filter used to obtain those early time results.
Further, the weaker interior waves are coupled to the waves at the resonant velocities,
which are propagating at the resonant velocities in opposite directions. Thus, the
stretched out appearance of the interior waves in figure 5 arises at one time while
the non-stretched-out appearance in figure 1 arises at another.

In the following §3.3, the structure of the narrow resonance waves at the
resonant velocities will be examined in detail with emphasis on three selected times,
t = 700 during the damping phase, t = 1500 at the arrest time and ¢ = 3000
during the growth phase. Supplementary Movies 3, 4 and 5 are available at
https://doi.org/10.1017/S002237781700054X and show the evolution in time of
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FIGURE 7. Detail from figure 5 showing the negative velocity resonant wave structure
perturbing the space-averaged phase-space distribution.

the global phase-space distributions minus space-averaged component, as shown in
figures 5 and 6, at these selected times. An important conclusion that can be reached
by comparing these movies is that there appears to be no discernible difference in
the waveforms associated with the different phases of the simulation. In the following
section we show that there are, in fact, significant differences but they lie within
the narrow resonance wave structures and are not discernible in the global images.
The waveforms shown in these movies pervade all phases of all of the simulations
discussed in this paper except for the saturation phase of this Case Study simulation.

3.3. Resonance wave structure

Figure 7 shows the details, at the high velocity resolution of figure 5, of one of
the resonance wave structures, in this case at the negative velocity resonance (Vs =
—0.405). We have observed this structure, with small but important variations that
are discussed below, throughout all phases of this ¢ = 0.0098 simulation except the
saturation phase, as well as throughout the simulations spanning the transition from
damping to growth to be discussed below in §4. At any fixed velocity, the structure
amounts to a simple m =1 wave. Crossing the resonant velocity generally leads to a
sharp reversal in sign. The several components of the structure propagate together and
remain in fixed relative positions. This structure is ubiquitous in these simulations.

Figure 8 shows the resonance wave structure in somewhat lower velocity resolution
(vo = 0.00318) at three times; (a) at approximately ¢ = 700 during the damping
phase, (b) at arrest at approximately ¢ = 1500 and (c¢) during the growth phase at
approximately ¢ = 3000. In each case, the time has been adjusted slightly to reach
a maximum in the electric field strength at the oscillation phase shown in red in
figure 4; i.e. with the force on the electrons due to the field outward from x=0, to
the left on the left and to the right on the right. The forces peak at x = £0.5 while
the particle concentrations at x =0 and x = 41 are at the minima in this force field.
In each case, these patterns propagate from right to left at the relevant resonance
speed while they persist over multiple oscillation periods in the electric field.
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FIGURE 8. Resonant wave structure from the &£ =0.0098 simulation at three times.
(a) Damping phase, t="700. (b) At reversal, t =1500. (¢) Growth phase ¢ = 3000.

In figure 8(a), we note the presence of a positive perturbation bridging the gap
between the larger positive island in the centre of the figure at lower speed and the
partially visible positive island at higher speed at the left side of the figure. This
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perturbation represents a stream of electrons at the position of an electric field strength
maximum at this time; these electrons are being accelerated out of the lower speed
island and into the higher speed island during the Landau damping phase. Similarly, in
panel (c) we note the presence of a positive perturbation bridging the gap between the
positive island at the right edge of the figure at higher speed and the central positive
island at lower speed. (Figure 7 provides a higher resolution view of this perturbation
at a different phase in the electric field oscillation.) This electron stream also lies at
the position of an electric field strength maximum at this time; the electrons are being
decelerated out of the higher speed island and into the lower speed island during the
Landau growth phase. Notably, panel (), obtained during the arrest phase when the
transfer of energy between electrons and field has paused, contains no evidence of the
electron streams seen in (a,b). We interpret these streams as evidence of the expected
(Dawson 1961) transfers of energy between electrons and electric field during Landau
damping or growth. During the Landau damping phase the electrons gain energy at
the expense of the field and during the Landau growth phase the electrons lose energy
to the field.

We emphasize that the patterns exhibited in figure 8 persist and propagate at the
resonant velocity essentially unchanged over many electric field oscillation periods
and, thus, through many m =1 wavelengths. There is no evidence of trapping during
the damping, arrest, or growth phases in this simulation for the case of ¢ just above
its transition value.

3.4. Saturation phase

As this simulation passes through the saturation phase, the resonance wave on the
space-averaged phase-space distribution alters considerably for the first time. Figure 9
shows this alteration during a time interval covering just the first peak in electric field
strength shown in figure 3; i.e. from #=35000 to 6700. By fitting the total electric field
evolution through the growth phase, we have determined that its oscillation frequency
§£2 = 1.2722, leading to the resonant speed v.s = 0.405. Figure 9 shows the results
seen by an observer moving with the negative resonant velocity so that at the several
times shown the position of the wave structure appears relatively stationary.

Panel (a), at +=5000, shows the resonance wave as the simulation approaches the
saturation phase. The wave structure shown in this panel can be compared to that
shown in figure 7 at t =3000 to see that, as the saturation phase is approached, the
electron stream from high to low speed is weakened; the transfer of energy from
particles to field weakens as the saturation phase is approached. At t= 6200 in panel
(b), the stream has vanished and the electrons represented by the positive excess at
approximately x = 0.1 have bunched together. The magnitude of this positive excess
has strengthened considerably, producing a relatively strong local density perturbation,
leading with a positive contribution and trailing with a negative contribution. Shortly
thereafter, at = 6500 in panel (c), the local positive density perturbation has moved
to a lower speed and is falling behind the higher speed negative perturbation. At this
time, a new negative perturbation at the lower speed has formed. Finally, at t=6700 in
panel (d), the positive density perturbation has rotated about the negative perturbation
and is about to join the positive region in back of it. This sequence occurs during
the first peak in the electric field strength shown in figure 3. A similar but less well
defined sequence takes place during the second field strength peak shown in that
figure. Although not shown, this simulation has been extended to =20000. We find
the field strength fluctuating as in the saturation phase shown in figure 3 with no
evident long-term trend.
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FIGURE 9. Resonance wave structure on the space-averaged phase-space distribution at
negative velocity in the simulation saturation phase. (a) t=5000. (b) t=6200. (¢) t=6500.
(d) t=16700.

While the rotation of positive excess about the negative perturbation region shown
in figure 9 may give the impression of a trapping phenomenon, this is clearly not the
correct interpretation. Approximately 340 electric field oscillation periods have elapsed
during the sequence shown in the figure and, simultaneously, the waveform shown
has propagated that number of m = 1 wavelengths in the field; i.e. that number of
simulation ‘boxes’. The perturbation waveform does not represent electrons trapped in
an electric field potential. In addition, we note that the stability of the perturbation’s
position in the panels of figure 9 is a strong confirmation of its v, = §2/m propagation
speed.

4. Transition study

In this section we focus on the properties of the waveform superposed on the space-
averaged electron phase-space distribution as & is varied from below to above its
transition value. Three simulations are studied, corresponding to ¢ = 0.0084, 0.0085
and 0.0086. For ease of discussion, we will call these the ‘Sub-Transition’, ‘Transition’
and ‘Super-Transition’ simulations, respectively.

4.1. Field magnitudes

Figure 10 shows the evolution with time of the electric field mode magnitudes for
these three cases. Panel (a) shows for the Super-Transition simulation the familiar
initial damping phase, the arrest phase, and then the growth phase, which continues
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FIGURE 10. Electric field mode magnitudes for (a) super-transition (& =0.0086),
(b) transition (¢ =0.0085) and (c¢) sub-transition (¢ =0.0084) simulations.

at the end of the simulation. The Transition simulation, shown in panel (b), continues
on with essentially no consequent growth or decay following the initial damping
phase. The Sub-Transition simulation, shown in panel (c), exhibits a shift from the
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initial faster damping to the later slower damping, which continues at the end of the
simulation. An extension of this simulation (not shown) to =20000 shows continuing
unchanged damping and an additional simulation (not shown) with & =0.0042 shows
the expected faster damping down to the digital noise level at approximately 10~'8
with no further evolution after that. No evidence for other than persisting damping
has been found in any sub-transition simulation.

During the initial damping phase, all three simulations exhibit perturbations to their
space-averaged phase-space distributions that are similar to that shown in figure 1(b).
Because the m =1 electric field mode is very dominant in all three simulations, they
all exhibit a simple sinusoidal electric field as shown in figure 4 for all times. For all
three cases, the field does not propagate spatially but does oscillate sinusoidally with
time. Figures 5 and 6 are representative of the global waveform found on the space-
averaged phase-space distribution in all three simulations. It appears that this single
waveform can be found superposed on the space-averaged phase-space distribution of
any of the simulations discussed in this paper at any time except during the saturation
phase, when it exists.

4.2. Resonance wave structure

Figure 11 shows the negative velocity resonance waveforms superposed on the space-
averaged phase-space distributions for the Super-Transition (a), Transition (b) and Sub-
Transition (c¢) simulations at times very near the ends of the simulations at ¢ = 10000.
For such large times, it is possible to use a very narrow filamentation filter width vy =
0.000637 to obtain high velocity resolution. Even so, it is possible that the waveforms
shown in the figure are not fully resolved.

Figure 11(a) is from the Super-Transition simulation growth phase, which continues
to the end of the simulation. The figure reveals an electron stream from high to low
speed that, as discussed above, we suggest is a signature of the transfer of energy
from the electrons to the electric field during this growth phase. Panel (c¢) is from
the Sub-Transition simulation late damping phase near the end of the simulation. This
figure reveals a stream from low to high speed that we suggest is a signature of the
transfer of energy from the electric field to the electrons during this damping phase.
Consistent with this interpretation, panel (b) from the Transition simulation shows
no stream and, thus, no energy transfer while the electric field magnitude remains
essentially stationary (see figure 10b).

The similarity of the perturbation waveforms shown in figure 11 from the three
Transition Study simulations to those shown in figure 8 (albeit at lower velocity
resolution and with the order from top to bottom reversed) from the damping, arrest
and growth phases of the Case Study simulation is striking. Each of the waveforms
found in the individual Transition Study simulations can be found in the phases of
the Case Study simulation. The waveforms of the Transition Study simulations are
not unique to the individual simulations of that study.

5. Conclusions

We have discussed a filtered Vlasov—Poisson simulation study of the transition from
persisting to arrested Landau damping that is produced by varying the parameter ¢ in
the initial state (2.6). The objective of the study was to find evidence of a second-order
phase transition in the electron phase-space distribution at the ¢ transition value to
complement the well-established evidence of such a phase transition found earlier in
the electric field evolution (Ivanov et al. 2004; Ivanov, Vladimirov & Robinson 2005;
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FIGURE 11. Negative velocity resonance waveforms superposed on the space-averaged
phase-space distributions of the (a) super-transition (¢ = 0.0086), (b) transition (¢ =
0.0085) and (c¢) sub-transition (¢ =0.0084) simulations.
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Rupp et al. 2015). To that end, a single Case Study simulation with ¢ somewhat
above the transition neighbourhood has been carried out to provide a reference
point to help our further examination of three additional transition simulations that
have been run with & bracketing and near to the transition value. The Case Study
simulation exhibited four phases in its evolution, an initial damping phase, an arrest
phase during which the electric field strength remained approximately constant for a
large number of oscillation periods, then a growth phase and finally a saturation phase.
The transition simulations also exhibited the initial damping phase but then evolved
into either growth (Super-Transition simulation), approximate stationarity (Transition
simulation) or damping (Sub-Transition simulation), where they all remained. An
important feature of our study is our comparison of the final states of the transition
simulations to the relevant phases of the Case Study simulation.

Our use of the filtered Vlasov—Poisson system (2.1) allowed us to examine the
phase-space probability distribution in a novel manner. Since the filamentation evolves
to finer velocity scales as time increases, filters of different widths become effective in
removing the filamentation at different times. We took advantage of this behaviour by
running each simulation several times using different filter widths. Runs using a wide
filter removed the filamentation earlier but revealed a velocity-broadened result, runs
with a narrower filter removed the filamentation later with better velocity resolution,
and runs with a very narrow filter removed the filamentation much later with excellent
velocity resolution. In this way, we have found a universal underlying waveform that
is normally hidden under the dominant filamentation; it perturbs the space-averaged
phase-space distribution during all but the saturation phase, arising as early as =10
(see Movie 2) during the Landau damping phase. This waveform is dominated by very
narrow structures straddling the resonant velocities where the electrons traverse the
dominant electric field wavelength in exactly its oscillation period. Using our higher
resolution simulation results, we have been able to resolve these structures to provide
images of the expected transfer of energy between electrons and electric field during
the damping and growth phases and have shown that no such transfer occurs during
an arrest or stationary phase.

A central point of this paper is that we see the ubiquitous phase-space waveform
at almost any time in any of our simulations. We do have reasons for confidence
in this result. The first is that the filtered code has been applied successfully many
times to the standard tests of 1-D electrostatic Vlasov—Poisson codes that are in
the literature (Klimas 1987; Klimas & Farrell 1994) and it has also been applied
successfully to explain space plasma physics observations (Klimas 1983b; Fitzenreiter,
Klimas & Scudder 1984; Klimas & Fitzenreiter 1988; Fitzenreiter, Scudder & Klimas
1990; Klimas 1990; Fitzenreiter et al. 1996). Further, the filtered simulations behave
exactly as expected theoretically, with the field independent of v, and with the
evolution of the phase-space distribution unchanged by the choice of vy except for
its velocity resolution. However, we cannot prove that our results are not a product
of the particular filter function (2.3) that we have used; although other filters have
been proposed (Klimas 1987), we have used only one. An independent study might
confirm the appearance of the ubiquitous phase-space waveform but it is difficult
to propose an alternate collisionless Vlasov—Poisson simulation technique that might
succeed. While Pezzi et al. (2016) were able to show that the approach due to Black
et al. (2013) is not viable for removing filamentation and, then recurrence, from the
long-time evolution of linear Landau damping solutions, the work of Black et al
may still be of particular relevance here. One must wonder, what is the relationship
of the phase-space waveform that we have found pervading almost all phases of
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our collisionless Landau damping simulations to the most slowly damped weakly
collisional eigenmode that Black er al. have found emerges later in their linear
Landau damping simulation? A comparison of figure 4 of Black et al. to figure 5 of
this paper suggests a close relationship. The theoretical analyses of Ng et al. (1999,
2004) suggests that there should be a close relationship. With further study, can
the apparent close relationship between our ubiquitous waveform and the eigenmode
shown by Black et al. in their figure 4 be developed into the independent study that
we lack?

In the absence of the Case Study simulation, we might have argued that the change
in structure of the peaked resonance waves from one exhibiting energy flow from
field to electrons during the sub-transition simulation, to one showing no energy
flow during the transition simulation, and finally to one showing energy flow from
electrons to field during the super-transition simulation could represent a phase
transition in the electron phase-space distribution. However, each of these forms of
the peaked resonance waves occur in the single Case Study simulation during its
damping, arrest or growth phases. We cannot argue that these structural changes
are due solely to changes in & in the transition simulations when we find the same
changes in a single simulation at one ¢ value. Accordingly, we conclude from our
simulation study that there is no evidence in the electron phase-space distribution in
support of a second-order phase transition in the plasma even though the evidence
for the transition is strong in the electric field evolution. We have no explanation for
this apparent contradiction at present.

We have found that the saturation phase in the Case Study simulation is the
only time in all of our simulations during which the underlying universal waveform
is altered significantly. A trapping-like sequence occurs in which the phase-space
density of the resonance structure is bunched, the bunched density peak rotates about
a density minimum residing at the resonant velocity, and then it joins the higher
density region just in back of the minimum. However, this sequence extends over
hundreds of electric field oscillation periods while the modified resonance structure
traverses the same number of wavelengths in the dominant electric field mode. This
is a resonance process that does not involve trapping. In fact, we have found no
evidence for trapping at any stage of any of the simulations under discussion here.
It is interesting that the O’Neil trapping time (O’Neil 1965) for the Case Study
simulation is #;,, = 66.6 and for the Super Transition simulation is #,, = 68.1, both
of which are far earlier than the arrest times for those simulations, which are at
approximately ¢ = 1500 and t = 3500 respectively. We note that Ivanov & Cairns
(2006), in their discussion of a simulation near but clearly above the transition
(threshold) perturbation amplitude, have argued that trapping does not play a role in
either the establishment of the arrest phase or of the saturation phase. However, they
also report that saturation, in their simulation, is due to the generation of phase-space
turbulence. No evidence of turbulence has been found at any stage of our simulations.

From the results shown in the panels of figure 10, we can conclude that the
transition value for the perturbation strength is ¢* >~ (0.0085. At that value, the field
evolution shown in figure 10(b) is compatible with the two-wave case of Lancellotti
& Dorning (1998a). As discussed in § 3.1, the field evolution can be expressed as the
sum of two sin waves propagating at the opposing resonant velocities. Further, for
as far as our simulation goes, the almost constant amplitude of the dominant field
mode is consistent with the constant non-zero asymptotic field strength predicted by
Lancellotti and Dorning. We note that our estimate for &* is quite consistent with
the value ¢* = 0.00845 found by Ivanov et al. (2004). However, right at that initial
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perturbation strength their simulation showed the field strength decaying algebraically,
in contradiction to Lancellotti and Dorning. We have not been able to reproduce that
result.

A final caution: as noted in §2.2, the Debye length for all of our simulations
is Ap = 0.127, measured in the dimensionless units defined in that section. The
panels of figure 9, exhibiting features of the negative velocity resonance wave during
the saturation phase of the Case Study simulation, show spatial structures that are
somewhat larger but still comparable in size to this length. In this situation, might
unshielded two-particle correlations produce significant contributions to the right-hand
side of the Vlasov equation (Krall & Trivelpiece 1986) in these spatial structures?
For the parameter set that has been used in this study (§ 2.2), is the evolution into the
saturation phase actually a passage into a regime in which the Vlasov approximation
is no longer valid? At present, we are attempting to answer these difficult questions.
If we are successful, we will report our results in the future.
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Appendix A

Since the simulations discussed in this paper extend to t = 10000, it is important
to consider the effects that mobile protons might have on our conclusions. Using
a version of the filtered Vlasov—Poisson simulation code in which the protons are
mobile, we have integrated the system

of.  of of. 3.
FTR PR T % Ix0v
3, o, fp 2 3%y Al
o TV T aE(x, t) = 08 o (A1)
aE 00 _ 0 _
— =/ dvf,(x, v, 1) — / dvf.(x, v, )
0x —00 —00

in which f, is the filtered electron phase-space distribution, fp is the filtered proton
phase-space distribution, and « is the inverse of the true mass ratio.

Figure 12 shows the evolution of the field mode amplitudes over the same time
interval for a reproduction of the Case Study simulation, but with mobile protons
(true mass ratio) in this case. This figure can be compared to figure 3, which shows
the evolution for the original Case Study simulation. The ordering of the field modes
is identical to that for figure 3. It can be seen that the initial damping phase is
modified somewhat but following that phase the field mode magnitudes evolve almost
identically to those of the original simulation. This conclusion holds even down to the
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FIGURE 12. Evolution in time of all field mode magnitudes in the Case Study
(¢ =0.0089) simulation with, in this case, mobile protons.

very low amplitude, higher mode number modes. Examining the resonance waveforms
at the very ends of the two simulations, we find almost identical results except for a
phase shift in position of approximately 1/2 (L;/2) (not shown). We conclude that the
stationary proton simulations are sufficiently accurate representations of the mobile
proton plasma for the purposes of this study.

Appendix B

We have integrated the system of equations given by (29a,b) in Klimas & Farrell
(1994) to obtain the results presented in this paper. Our approach is based on the
splitting scheme due to Cheng & Knorr (1976) which they showed is a second-order
method. The general initial value solution of (29a) is given by (31) of the same paper,
which is used to build the ‘x-shift’ portion of the splitting scheme code. As explained
in Klimas and Farrell, the ‘v-shift’ is carried out by undoing the position Fourier
transform, applying an electric field strength-dependent phase shift as shown by (32)
and (33) of Klimas and Farrell, and then transforming back to the doubly Fourier
transformed space. The dependent variables, K,,(u, ) and K,,(i, ) (change of notation
for clarity; v — u, T — 1) are the position and velocity Fourier transforms of f(x, v, 1)
and f(x, v, t) respectively. They are related through

K, 1) = @ (1] 110) K (2, 1) BD

in which the transformed filter is given by
D (/o) = e—(1/2)(ﬂ/uo)2‘ (B2)
The variable w is the Fourier variable conjugate to v and m is the spatial Fourier
mode number. The filter width in this space is given by o= 1/mvy. The integration

is carried out on a discretized grid in u > 0 for a finite number of spatial modes.
For all of the simulations presented in this paper, At = Au = 0.1. Very few spatial
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modes were excited in any of the simulations; e.g. see the extreme example, figure 12
in appendix A. A fixed number of spatial modes, m.x = 32 (32 wavelengths), was
used for all simulations. The only parameters that were changed from simulation to
simulation were vy, as discussed in the text, and the size of the grid in w. For each
choice of vy, and therefore g, the grid in u was truncated at a value ., such that
the filter @ (f4max/ o) A 107'° or smaller. This choice ensured that information did not
spill off the grid at the boundary. No other changes were made.
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