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A SUFFICIENT CONDITION FOR NEVANLINNA

PARAMETRIZATION AND

AN EXTENSION OF HEINS THEOREM

SECHIKO TAKAHASHI

Abstract. An extended interpolation problem on a Riemann surface is for-
mulated in terms of local rings and ideals. A sufficient condition for Nevan-
linna parametrization is obtained. By means of this, Heins theorem on Pick-
Nevanlinna interpolation in doubly connected domains is generalized to ex-
tended interpolation.

§1. Introduction

In order to consider extended interpolation problems on Riemann sur-

faces and to make simple the expressions concerning transformations, we

wish at first to give a formulation of extended interpolation problems in

terms of local rings and ideals.

Let X be a Riemann surface, i.e. a connected 1-dimensional complex

manifold. For each x ∈ X, Ox denotes the ring of germs of holomorphic

functions at x. Consider for each x ∈ X a nonzero ideal Ix of Ox and

an element cx of the quotient ring Ox/Ix. The collection (I, c), where

I = (Ix)x∈X and c = (cx)x∈X , will be called extended interpolation problem

on X. Let B denote the set of all holomorphic functions f on X such that

|f | ≤ 1 on X. Our problem is to find a function f ∈ B which satisfies the

condition

fx + Ix = cx (∀x ∈ X) ,(1.1)

where fx is the germ at x represented by f and fx + Ix is the coset of fx

modulo Ix. Such a function will be called solution in B of the problem

(I, c). Let

E = { f ∈ B : f satisfies (1.1) }

denote the set of solutions in B of the problem (I, c). Some remarks will be

added in §2.

Received July 14, 1997.
Revised January 20, 1998.

87

https://doi.org/10.1017/S0027763000006905 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006905


88 S. TAKAHASHI

In §4, we suppose that X is biholomorphically equivalent to the open

unit disc D = {z ∈ C : |z| < 1} and that E has at least two elements.

We showed in [14] that, under these hypotheses, there exists a Nevanlinna

parametrization π of E , which is by definition a bijection π : B −→ E such

that we have for any g ∈ B

π(g) =
Pg + Q

Rg + S
with Rg + S 6≡ 0 (not equal to the constant zero) ,

where P,Q,R, and S are holomorphic functions on X, independent of

g. The quadruple (P,Q,R, S) is said to represent π. In §4, under those

hypotheses, we give a sufficient condition for a quadruple of the form

(P,Q,R, 1), where P,Q, and R are holomorphic on X, to represent a Nevan-

linna parametrization of E .

In §5, supposing X is as above, one considers an analytic automorphism

T of X and a Möbius transformation U of the closed unit disc D = {z ∈
C : |z| ≤ 1}. In the case of classical Pick-Nevanlinna interpolation, where

Ix is equal to the unique maximal ideal m � of Ox or to the whole ring Ox,

Heins showed in [5] that, under the consistency conditions, imposed on I

and c, and the assumption E 6= ∅, there exists a solution f ∈ E such that

f ◦ T = U ◦ f . We generalize Heins theorem to our extended interpolation,

based essentially on Heins’ method. But, we use the result obtained in

§4, which would make the proof transparent. The result of Heins on the

classical interpolation in annuli in [5] is also generalized.

§2. Preliminaries

As in §1, consider an extended interpolation problem (I, c) on a Rie-

mann surface X. Let B and E be as in §1 and consider the set σ = {x ∈

X : Ix 6= Ox}.

We would like to give some remarks on the above formulation. If Ix =

Ox then Ox/Ix and hence cx reduce to zeros, so that there is no requirements

at x. Suppose x ∈ σ. Then, as {0} 6= Ix 6= Ox, there is a unique positive

integer nx such that Ix = m

���
� , where m � is the maximal ideal of the local

ring Ox. Associating to x a local coordinate z such that z(x) = 0, we obtain

cx = (c0 + c1z + · · · + cnx−1 znx−1 )x + Ix ,

where the nx and the constants c0, c1, · · · , cnx−1 are uniquely determined by

cx and z. To give an extended interpolation problem (I, c) is thus to give
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for each x ∈ σ a positive integer nx, a local coordinate z at x, and first nx

Taylor coefficients c0, c1, · · · , cnx−1 with respect to z.

For an arbitrary I = (Ix)x∈X and for any f ∈ B, setting cx = fx + Ix

for each x ∈ X, we have an extended interpolation problem (I, c), which

admits at least f as a solution in B. In this case, σ may be arbitrary.

However, the case where σ is nonempty and has no limit points in X,

i.e. σ is a discrete closed set of X, is of prime importance. For example,

when E has at least two elements, σ has no limit points in X. In such a

case, I =
⋃

x∈X Ix may be regarded as a coherent analytic subsheaf of the

structure sheaf O =
⋃

x∈X Ox of X, c as an element of the cohomology

group H0(X, O/I), and f ∈ E as an element of H0(X, O) ∩ B which is

mapped to c by the canonical homomorphism H0(X, O) −→ H0(X, O/I).

Let X, Y be Riemann surfaces and let ϕ : X −→ Y be a holomorphic

mapping. For each x ∈ X, setting y = ϕ(x), we have the canonical ring

homomorphism ϕ∗

x : Oy −→ Ox defined by

ϕ∗

x(gy) = (g ◦ ϕ)x ,

where g is a holomorphic function at y on Y . Moreover, when an ideal Ix

of Ox and an ideal Iy of Oy are given in such a way that ϕ∗

x(Iy) ⊂ Ix,

we have a canonical ring homomorphism Oy/Iy −→ Ox/Ix, which will be

denoted by the same symbol ϕ∗

x.

In §5, we shall be concerned with a Möbius transformation of functions,

so that we wish here to introduce a notation and to make some remarks.

Consider a linear transformation U of the Riemann sphere :

U(w) =
pw + q

rw + s
(p, q, r, s ∈ C ; ps − qr 6= 0) .

Let x ∈ X and let Ix be an ideal of Ox such that {0} 6= Ix 6= Ox. For an

element cx ∈ Ox/Ix, whenever rcx + s is a unit of the ring Ox/Ix, we can

define Ux(cx) ∈ Ox/Ix by

Ux(cx) =
p cx + q

r cx + s
,

where p, q, r, and s are regarded as elements of Ox/Ix represented by con-

stant functions. If f is a holomorphic function in a neighborhood of x and

if cx = fx + Ix, then one sees immediately that rcx + s is a unit if and only

if rf(x) + s 6= 0 and that, if so, we have

Ux(cx) =

(
pf + q

rf + s

)

x

+ Ix .
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We would like to point out that, if U is a Möbius transformation, i.e.

U(D) = D, and if we have cx = fx + Ix for some holomorphic function

f in a neighborhood of x with |f(x)| ≤ 1, then we have |r| < |s| and hence

rcx + s is a unit, so that Ux(cx) can be defined.

For the holomorphic mapping ϕ : X −→ Y , let y = ϕ(x) and suppose

{0} 6= Iy 6= Oy and ϕ∗

x(Iy) ⊂ Ix. Let cy ∈ Oy/Iy. If rcy + s is a unit of

Oy/Iy, then one sees at once that rϕ∗

x(cy) + s is also a unit of Ox/Ix and

that we have

Ux(ϕ∗

x(cy)) =
p ϕ∗

x(cy) + q

r ϕ∗
x(cy) + s

= ϕ∗

x

(
p cy + q

r cy + s

)
= ϕ∗

x(Uy(cy)) .

§3. Nevanlinna parametrizations

Based on Nevanlinna’s method([9]), we defined and studied Nevanlinna

parametrizations in [14]. In this section, we wish to restate, in terms of the

formulation introduced in the previous sections, the definition and some

results, obtained in [14] and needed below.

Let X be a simply connected Riemann surface of hyperbolic type; that

is, X is biholomorphically equivalent to the open unit disc D. Let (I, c),

where I = (Ix)x∈X and c = (cx)x∈X , be an extended interpolation problem

on X. Let B denote the set of all holomorphic functions f on X with |f | ≤ 1

on X and let E denote the set of all solutions in B of the problem (I, c).

A Nevanlinna parametrization π is by definition a bijection π : B −→ E

represented by a quadruple (P,Q,R, S) of four holomorphic functions on

X in such a way that

π(g) =
Pg + Q

Rg + S
, Rg + S 6≡ 0 (∀g ∈ B) .

It is well known ([9] and [14]) that E admits a Nevanlinna parametriza-

tion if and only if E has at least two elements. From now on in §3 as

well as in §4, we assume that E has at least two elements and that the set

σ = {x ∈ X : Ix 6= Ox} is nonempty. Then σ has no limit points in X

and there exists a Blaschke product B on X associated to I = (Ix)x∈X .

In fact, for two distinct elements f0 and f1 of E , we see that the function

h = f0 − f1(6≡ 0) is bounded on X, and that each x ∈ σ is a zero of h of

order at least nx, where nx is the positive integer such that Ix = m

���
� . Take
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a biholomorphic mapping θ : X −→ D and write

B(x) =
∏

xi∈σ

(
λi

θ(x) − zi

1 − zi θ(x)

)ni

,

λi =

{
1 (if zi = 0)

−|zi|/zi (if zi 6= 0)
,

where zi = θ(xi), ni = nxi
. It is not hard to see that B is a required

Blaschke product on X.

If (P,Q,R, S) represents a Nevanlinna parametrization π of E , then

these functions have the following properties (Proposition 3 and Corollary

2 of [14]. See also Notes in §5 of [14]):

(a) S 6≡ 0.

(b) |P/S| < 1, |Q/S| < 1, |R/S| < 1 on X.

(c) Q/S ∈ E .

(d) We may write
PS − QR

S2
= U · B ,

where U is a holomorphic function on X such that 0 < |U | ≤ 1 on X and

B is a Blaschke product on X associated to I.

By virtue of these properties, we may assume S ≡ 1. If two quadruples

(P,Q,R, S) and (P̂ , Q̂, R̂, Ŝ) represent the same π, then there exists a mero-

morphic function M on X such that (P̂ , Q̂, R̂, Ŝ) = M(P,Q,R, S). Hence,

each Nevanlinna parametrization of E is represented by one and only one

quadruple of the form (P,Q,R, 1).

Let P denote the set of all Nevanlinna parametrizations of E and let G

denote the group of all Möbius transformations

τ(w) = λ
w + a

1 + aw
(λ, a ∈ C ; |λ| = 1, |a| < 1) ,

regarded as analytic automorphisms of the closed unit disc D = D
⋃

∂D.

The group G operates on P in the following way:

(τ∗(π))(g) = π(τ ◦ g) (τ ∈ G, π ∈ P, g ∈ B) .

We obtained (Theorem 1 of [14])

Theorem 1. Let π, π0 ∈ P. Then there exists one and only one τ ∈ G

such that π = τ∗(π0).
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For each x ∈ X, let

W (x) = {f(x) : f ∈ E}

denote the set of values at x taken by all solutions f ∈ E . We have W (x) ⊂
D. To each π ∈ P and to each x ∈ X, we associate the mapping πx :

D −→ W (x) defined by

πx(ζ) = π(ζ)(x) (ζ ∈ D) ,

where ζ is regarded as a constant function. If π is represented by

(P,Q,R, S), we have

πx(ζ) =
P (x)ζ + Q(x)

R(x)ζ + S(x)
(ζ ∈ D) .

If x ∈ X \ σ, then πx is bijective and W (x) is a nondegenerate closed disc

in D.

We showed (Lemma 1 of [14])

Theorem 2. Let x ∈ X\σ, w ∈ ∂W (x). Then there is a unique f ∈ E
such that f(x) = w.

About the extremal solutions, we established (Corollary 3 of [14])

Theorem 3. Assume that E has at least two elements. Let π ∈ P and

f ∈ E. The following three conditions are equivalent :

(a) f(x) ∈ ∂W (x) for some x ∈ X \ σ.

(b) f(x) ∈ ∂W (x) for all x ∈ X \ σ.

(c) There exists a ζ ∈ ∂D such that f = π(ζ).

If one of these conditions is satisfied, ζ in (c) is uniquely determined by π

and f .

§4. A sufficient condition for parametrization

Let (I, c) be an extended interpolation problem on a simply connected

Riemann surface X of hyperbolic type. Let B, E , and σ be as in §3 and

assume E has at least two elements. Consider three holomorphic functions

P,Q, and R on X. In this section, we want to give a sufficient condition
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for the quadruple (P,Q,R, 1) to represent a Nevanlinna parametrization of

E . To this end, consider for each x ∈ X two sets

δ(x) =

{
P (x)ζ + Q(x)

R(x)ζ + 1
: ζ ∈ D , R(x)ζ + 1 6= 0

}

and

W (x) = {f(x) : f ∈ E} .

We recall here well-known properties concerning linear transforma-

tions :

Proposition. Let

τ(w) =
pw + q

rw + s
(p, q, r, s ∈ C ; ps − qr 6= 0)

be a linear transformation of the Riemann sphere. If τ(D) ⊂ D then we

have |p| < |s|, |q| < |s|, and |r| < |s|

We begin with the following

Lemma. Suppose δ(x) ⊂ W (x) for all x ∈ X.

(a) Then we have

Pg + Q

Rg + 1
∈ E (∀g ∈ B) .

(b) Moreover, if there is a point x0 ∈ X \ σ such that δ(x0) = W (x0),

then we have δ(x) = W (x) for all x ∈ X.

First of all, we remark something about P−QR. If P (x)−Q(x)R(x) 6= 0

for a point x ∈ X \σ, then, by the assumption δ(x) ⊂ W (x) ⊂ D and by the

above proposition, we see easily |R(x)| < 1. Thus, if P − QR 6≡ 0, then we

have |R| < 1 on X and the condition R(x)ζ +1 6= 0 in the definition of δ(x)

can be omitted. If P −QR ≡ 0, then δ(x) degenerates to a sole point Q(x)

for any x ∈ X and, in (a) of the lemma, we may set (Pg+Q)/(Rg+1) = Q

for any g ∈ B, even in the case Rg + 1 ≡ 0.

Proof. To see (a), take a Nevanlinna parametrization π̂ of E represented

by a quadruple (P̂ , Q̂, R̂, 1) and let g ∈ B. In any case, f = (Pg+Q)/(Rg+

1) is holomorphic on X and we have f(x) ∈ δ(x) ⊂ W (x) for any x ∈ X.
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Since, for each x ∈ X \ σ, the mapping π̂x : D −→ W (x), defined in §3, is

bijective, the function

ĝ(x) = π̂−1
x (f(x)) =

f(x) − Q̂(x)

−R̂(x)f(x) + P̂ (x)

is well-defined and holomorphic on X \ σ and satisfies |ĝ| ≤ 1 there. Hence

ĝ may be regarded as a function in B. Clearly f = π̂(ĝ) ∈ E .

To see (b), let x ∈ X \ σ and w ∈ ∂W (x). Note that P − QR 6≡ 0

since δ(x0) = W (x0) is nondegenerate. By Theorem 2, there is a unique

f0 ∈ E such that f0(x) = w and, by Theorem 3, we have f0(x0) ∈ ∂W (x0) =

∂δ(x0). Therefore, there exists a unique ζ0 ∈ ∂D such that

f0(x0) =
P (x0)ζ0 + Q(x0)

R(x0)ζ0 + 1
.

The function f = (Pζ0 + Q)/(Rζ0 + 1) belongs to E by (a). As f(x0) =

f0(x0), Theorem 2 yields f = f0 and w = f0(x) = f(x) ∈ δ(x). This implies

δ(x) = W (x). For x ∈ σ, W (x) and hence δ(x) consist of the same single

point.

We proceed to present a sufficient condition for parametrization.

Theorem 4. If we have δ(x) ⊂ W (x) for any x ∈ X \ σ and δ(x0) =

W (x0) for at least one x0 ∈ X \σ, then the quadruple (P,Q,R, 1) represents

a Nevanlinna parametrization of E.

Proof. Note that we see P − QR 6≡ 0 as in (b) of Lemma. For each

g ∈ B, we have (Pg + Q)/(Rg + 1) ∈ E by (a) of Lemma. Conversely, let

f ∈ E . By (b) of Lemma, δ(x) = W (x) for all x ∈ X. Hence, for any

x ∈ X \ σ, the linear mapping πx : D −→ W (x) defined by

πx(ζ) =
P (x)ζ + Q(x)

R(x)ζ + 1
(ζ ∈ D)

is bijective and we have P (x) − Q(x)R(x) 6= 0. The function

g(x) = π−1
x (f(x)) =

f(x) − Q(x)

−R(x)f(x) + P (x)

is then holomorphic in X \σ and satisfies |g| ≤ 1 there. The function g may

be regarded as a function in B. Clearly f = (Pg +Q)/(Rg+1). This shows
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that (P,Q,R, 1) represents a Nevanlinna parametrization π : B −→ E with

its inverse π−1 : E −→ B given by

π−1(f) =
f − Q

−Rf + P
(f ∈ E) .

Here, we would like to observe that there are many quadruples

(P,Q,R, 1) satisfying the condition δ(x) ⊂ W (x) for any x ∈ X but

representing no Nevanlinna parametrization of E . Let (P0, Q0, R0, 1) be

a quadruple representing a Nevanlinna parametrization of E and let h ∈ B.

Set (P,Q,R, 1) = (P0h,Q0, R0h, 1). For these functions P,Q, and R holo-

morphic on X and for x ∈ X, consider the set

δ(x) =

{
P (x)ζ + Q(x)

R(x)ζ + 1
: ζ ∈ D

}

=

{
P0(x)h(x)ζ + Q0(x)

R0(x)h(x)ζ + 1
: ζ ∈ D

}
.

Taking account of |R(x)ζ| < 1 for ζ ∈ D, we see at once that δ(x) ⊂
W (x) for any x ∈ X and that, for any x ∈ X \ σ, δ(x) = W (x) if and

only if |h(x)| = 1. By h ∈ B and by Theorem 4, (P,Q,R, 1) represents a

Nevanlinna parametrization of E if and only if h is a constant with |h| = 1.

This affirms the required assertion, since there are many h ∈ B such that

|h| < 1 on X. Finally, note that these functions P,Q, and R with S ≡ 1

satisfy evidently the properties (a), (b), (c) and (d) indicated in the previous

§3 if h has no zeros on X. Thus, these properties give no sufficient condition

for Nevanlinna parametrization.

§5. An extension of Heins theorem

In this section, let us extend Heins theorem to our extended interpola-

tion problem.

Let (I, c), where I = (Ix)x∈X and c = (cx)x∈X , be an extended inter-

polation problem on a simply connected Riemann surface X of hyperbolic

type. Let B, E , and σ be as in the preceding section. We assume always

σ 6= ∅. On the other hand, consider an analytic automorphism T of X and

a Möbius transformation U :

U(w) = λ
w + a

1 + aw
(λ, a ∈ C ; |λ| = 1, |a| < 1) .
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Our present problem is to find a solution f ∈ B satisfying the interpolation

condition

fx + Ix = cx (∀x ∈ X)

and moreover the condition

f ◦ T = U ◦ f .

For this purpose, it would be normal to impose on (I, c) the follow-

ing consistency conditions (5.1) and (5.2) and moreover the hypothesis of

existence E 6= ∅:

T ∗

x (IT (x)) = Ix (∀x ∈ X) ;(5.1)

T ∗

x (cT (x)) = Ux(cx) (∀x ∈ σ) .(5.2)

Note that, under the hypothesis E 6= ∅, Ux(cx) is defined for each x ∈ σ, as

was pointed out in §2, because we have {0} 6= Ix 6= Ox and cx = fx + Ix

for some f ∈ B, which implies that we have 1+af(x) 6= 0 and hence 1+acx

is a unit of Ox/Ix.

We are now ready to establish

Theorem 5. Suppose E 6= ∅ and that the consistency conditions (5.1)

and (5.2) are fulfilled. Then, there exists a function f ∈ E satisfying

f ◦ T = U ◦ f .(5.3)

Proof. Let f ∈ E . We claim that U−1 ◦ f ◦ T ∈ E and U ◦ f ◦ T−1 ∈ E .

Clearly, U−1 ◦ f ◦ T ∈ B and U ◦ f ◦ T−1 ∈ B. For any x ∈ σ, we have

(U−1 ◦ f ◦ T )x + Ix = (U−1)x((f ◦ T )x + Ix) = U−1
x (T ∗

x (fT (x) + IT (x))) =

U−1
x (T ∗

x (cT (x))) = cx and (U ◦ f ◦ T−1)T (x) + IT (x) = (T−1)∗
T (x)((U ◦ f)x +

Ix) = (T ∗

x )−1(Ux(cx))= cT (x) , by definition and by (5.1) and (5.2). For any

x ∈ X \ σ, we have to say nothing.

In the case where E has only one element f , we have f = U−1 ◦ f ◦ T ,

which proves the theorem.

Now, assume E has at least two elements. Then, as was mentioned

in §3, we may take a Nevanlinna parametrization π of E represented by a

quadruple (P,Q,R, S). Consider for each x ∈ X the set W (x) = {f(x) :

f ∈ E}. We claim that

W (x) = U−1(W (T (x))) (∀x ∈ X) .(5.4)

https://doi.org/10.1017/S0027763000006905 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006905


NEVANLINNA PARAMETRIZATION AND HEINS THEOREM 97

In fact, if f ∈ E and x ∈ X, then f(T (x)) = U((U−1 ◦f ◦T )(x))∈ U(W (x))

and U(f(x)) = (U ◦ f ◦ T−1)(T (x)) ∈ W (T (x)). This shows W (T (x)) =

U(W (x)) and hence (5.4) holds.

Keeping in mind the expression

U−1(w) =
w − λa

λ − aw

and defining four holomorphic functions P0, Q0, R0, and S0 on X by

[
P0 Q0

R0 S0

]
=

[
1 −λa

−a λ

] [
P Q

R S

]
,

we can write by (5.4)

W (x) = U−1

({
P (T (x))ζ + Q(T (x))

R(T (x))ζ + S(T (x))
: ζ ∈ D

})

=

{
P0(T (x))ζ + Q0(T (x))

R0(T (x))ζ + S0(T (x))
: ζ ∈ D

}
,

which is in D.

By Proposition in §4, the functions

P̂ (x) =
P0(T (x))

S0(T (x))
, Q̂(x) =

Q0(T (x))

S0(T (x))
, R̂(x) =

R0(T (x))

S0(T (x))

are holomorphic and verify |R̂| < 1, first in X \ σ and hence on X entirely.

From

W (x) =

{
P̂ (x)ζ + Q̂(x)

R̂(x)ζ + 1
: ζ ∈ D

}
(∀x ∈ X)

and from Theorem 4 in §4, it follows that (P̂ , Q̂, R̂, 1) represents a Nevan-

linna parametrization π̂ of E . By Theorem 1, we find a unique Möbius

transformation Û such that

π(g) = π̂(Û ◦ g) (∀g ∈ B) .

Let us see that, for g ∈ B, f = π(g) satisfies f ◦ T = U ◦ f if and only

if g satisfies the condition

g ◦ T = Û ◦ g.(5.5)
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In fact, for x ∈ X, we have by definition

(U−1 ◦ π(g) ◦ T )(x) = U−1

(
P (T (x)) g(T (x)) + Q(T (x))

R(T (x)) g(T (x)) + S(T (x))

)

=
P̂ (x) g(T (x)) + Q̂(x)

R̂(x) g(T (x)) + 1
= (π̂(g ◦ T ))(x) = π(Û−1 ◦ g ◦ T )(x).

Therefore f = π(g) = U−1 ◦ f ◦ T if and only if g = Û−1 ◦ g ◦ T , which

shows the assertion.

The theory of linear transformations permits us to take a fixed point ζ

of Û in D. When g is the constant ζ, g satisfies evidently (5.5) and hence

f = π(g) ∈ E satisfies the condition (5.3). The theorem is established.

We wish to conclude this paper with applying Theorem 5 to the ex-

tended interpolation problem on the annuli, just as Heins did in [5] for the

Pick-Nevanlinna interpolation problem.

Let X be a doubly connected Riemann surface biholomorphically equiv-

alent to an annulus {z ∈ C : 1 < |z| < ρ} (1 < ρ < ∞) and let (I, c), where

I = (Ix)x∈X and c = (cx)x∈X , be an extended interpolation problem on X.

Choose a holomorphic mapping ϕ : D −→ X of the open unit disc D onto

X such that (D,ϕ) is a universal covering of X. For each z ∈ D, setting

Ĩz = ϕ∗

z(Iϕ(z)) , Ĩ = (Ĩz)z∈D and c̃z = ϕ∗

z(cϕ(z)) , c̃ = (̃cz)z∈D ,

we have an extended interpolation problem (Ĩ, c̃) on D.

Corollary. A necessary and sufficient condition that there exists a

holomorphic function f on X satisfying

|f | ≤ 1 on X and fx + Ix = cx (∀x ∈ X)

is that there exists a holomorphic function f̃ on D satisfying

|f̃ | ≤ 1 on D and f̃z + Ĩz = c̃z (∀z ∈ D) .

In fact, if f is such a function on X, then it is not hard to see that

f̃ = f◦ϕ satisfies the second conditions. Conversely, let f̃ be such a function

on D. In Theorem 5, let U : D −→ D be the identity, replace X by D,

and let T : D −→ D be a generator of the covering transformation group
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of (D,ϕ). We have T ∗

z (ĨT (z)) = T ∗

z (ϕ∗

T (z))(Iϕ(T (z))) = (ϕ ◦ T )∗z(I(ϕ◦T )(z)) =

ϕ∗

z(Iϕ(z)) = Ĩz and T ∗

z (̃cT (z)) = T ∗

z (ϕ∗

T (z))(cϕ(T (z))) = ϕ∗

z(cϕ(z)) = c̃z . As

the consistency conditions are thus verified, we may assume f̃ ◦ T = f̃ by

Theorem 5. Then there exists a holomorphic function f on X such that

f ◦ϕ = f̃ . Clearly |f | ≤ 1 on X. As ϕz is isomorphic for any z ∈ D, we see

at once fx + Ix = cx (∀x ∈ X).
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[11] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J.

Reine Angew. Math., 147 (1917), 205–232.

[12] A. Stray, Minimal interpolation by Blaschke products II, Bull. London Math. Soc.,

20 (1988), 329–332.

[13] S. Takahashi, Extension of the theorems of Carathéodory-Toeplitz-Schur and Pick,
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