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Abstract

A Hausdorff space X is said to be compactly generated (a &-space) if and only if the open subsets V of
X are precisely those subsets for which K n U is open in K for all compact subsets of K of X. We
interpret this property as a duality property of the lattice O( X) of open sets of X. This view point
allows the introduction of the concept of being quasicompactly generated for an arbitrary sober space
X. The methods involve the duality theory of up-complete semilattices, and certain inverse limit
constructions. In the process, we verify that the new concept agrees with the classical one on
Hausdorff spaces.
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A topological Hausdorff space X is said to be a compactly generated space, or
simply a &-space if and only if the compact subsets K C X determine the topology
O( X) of X in the sense that a subset U of X is open exactly if U D K is open in K
for all compact subsets K of X. A slightly weaker form of Hausdorff separation,
called "axiom t2", has turned out to be the appropriate form of separation for the
theory of A:-spaces, but it is based on the presence of a rich supply of closed
compact r2-subspaces in X. In the absence of these, several attempts are known to
formulate a useful theory of fc-spaces; the best known being based on the idea
that a topological space X ought to be called compactly generated precisely when
its topology agrees with the coinitial topology for all continuous maps K -» X
from compact Hausdorff spaces K into X.
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[2] Quasicompactly generated spaces 195

We propose an alternative which is based on recent developments in the theory
of locally quasicompact sober spaces in the light of continuous lattices [Gierz,
Hofmann, Keimel, Lawson, Mislove, and Scott [2], Hofmann and Mislove [3]]
and certain generalizations of their theory.

Firstly, a subset Q of a space X is called quasicompact if and only if it has the
Heine-Borel property. A subset Y of X is called saturated, if it agrees with the
intersection of its filter of open neighborhoods. A subset Q of X is quasicompact
if and only if its saturation D {U: Q C U E O(X)} is quasicompact. The relevant
quasicompact sets are, therefore, the saturated ones. We denote their collection
with Q(X). The set Q(X) is a semilattice with respect to finite unions; it is not in
general closed under the formation of finite intersections. A descending family in
Q(X) may very well have an empty intersection, as is illustrated by the example
X = N, O{X) = { 0 } U {[«, oo[} and the descending family O(X)\{ 0 } . This is
in stark contrast with the Hausdorff case. Such pathology, however, vanishes if X
is a sober space, that is, a space in which every irreducible closed set has a unique
dense point. (A set is irreducible if it cannot be represented as a union of two
proper closed subsets.) This was shown by Hofmann and Mislove [3]. It is for this
reason that we will be concerned mostly with sober spaces. Another reason,
hardly less cogent, is that knowlege of O( X) as a lattice allows the reconstruction
of the topological space X precisely if X is sober (see for example [2], Chapter V).

Can the set Q(X) be reconstructed from the lattice O{X)1 The answer is yes: A
subset Q of X is quasicompact if and only if its filter %(<2) of open neighbor-
hoods is, as a subset of O{X), open relative to a natural topology defined on
complete lattices, namely, the so-called Scott topology. This topology was consid-
ered in the context of O(X) by Day and Kelly [6] and is described in detail by
Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott [2]. It has become a crucial
tool in lattice theoretical discussions which link order and topology. Thus there is
a bijection between the set Q(X) and the set OFilt(O(X)) of Scott open filters on
O( A"), and this bijection is order reversing. In order to make this correspondence
convenient, we will consider on Q(X) the reverse order, so that Q(X) is in fact an
inf-semilattice with largest element 0 . Since OFilt(O(Ar)) is completely de-
termined by the lattice structure of O(X), then Q(X) is a lattice invariant of
O(X),too.

Now the question is whether indeed complete information on the semilattice
Q(X) allows us to reconstruct O(X) (and hence, in the case of sober spaces X,
the space X itself). This is not always the case as one knows from the example of
any Hausdorff space X which is not a fc-space. A space for which this reconstruc-
tion is possible should reasonably be called quasicompactly generated.

In order to find a suitably elegant description of a way to construct O( X) from
Q(X) we have to turn to the second point: Duality of partially ordered sets and
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196 Karl. H. Hofmann and Jimmie D. Lawson [31

semilattices. We consider the category SL of (inf-) semilattices L with identity
which are up-complete in the sense that each directed subset D of L has a sup in
L (see Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott [2]). The morphisms
in the category are maps f:L->M which preserve identities, finite infs and
directed sups. (It is shown by Gierz, Hofmann, Keimel, Lawson, Mislove, and
Scott [2] that the preservation of directed sups is equivalent to continuity with
respect to the Scott topologies.) For an SL-object L the set SL(L, 2) of morphisms
into the two element lattice 2 is itself an SL-object if it is given the structure
inherited from 2L. We call this object the dual of L and write L . For each L
there is a natural morphism hL: L -> L given by hL(x)(c) = c(x) for all c G L.
The operation itself is a contravariant self-functor of SL. All of this is a very
general formalism which for example is familiar for topological abelian groups.
We say that an object L has duality, if hL: L -» L is an isomorphism. The
operation with duals is greatly facilitated by an alternative description of L : If
c £ L , then the characteristic function c^ of U is a member of L . Thus L and
the semilattice OFilt L of Scott open filters of L are naturally isomorphic. We
remark that even for a complete lattice L the dual L may not be a lattice; it is for
this reason that the duality theory which we have to apply to treat the relation of
O(X) and Q(X) has to leave the domain of complete lattices and transgress at
least into the domain of up-complete semilattices.

In the context of topological spaces we may now reproduce our discussion by
saying that the dual O(X) of O(X) in the category SL is (naturally isomorphic
to) Q{X). In particular, we note O(X) = Q(X) . Hence we have a natural map
j x : O(X) -» Q(X)'. If we identify Q(X)~ with OFi\t(Q(X)), then jx(U) = {CG
Q(X): C Q U) (where We assume that X is sober; recall that the order on Q(X)
is reverse containment). That such a set of quasicompact saturated sets is a Scott
open filter was shown by Hofmann and Mislove in [3]. Now it is clear that O( X)
and thus X (in the sober case) can be reconstructed from the quasicompact
saturated sets of X exactly whenyL is an isomorphism, that is, if and only if O( X)
has duality in the sense of the category SL. Thus we propose the following general
definition:

DEFINITION. A space X is a <jr-space or is quasicompactly generated if and only
if it is sober and O(X) has duality (in the sense of the category SL).

Our discussion shows that the definition is reasonable. However, it is certainly
desirable to know for sure that sufficiently large classes of spaces which could
reasonably be expected to be determined by their quasicompact subsets and that
the class of all fc-spaces both belong to the class of ^-spaces. In this paper we
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propose to provide the order theoretical background for a proof of the following

result:

PROPOSITION. Let X be a sober space such that every quasicompact subset C is

contained in some locally quasicompact and properly embedded subspace Y Q X

{where a continuous map is proper if the pull-back of any quasicompact saturated set

in the range is quasicompact and the lower set {relative to the order given by x < y if

and only if x G {y}') of the image of a closed set is closed), and suppose that a set

U C X is open if and only if its intersection with any properly embedded locally

quasicompact subset Y of X is open in Y. Then X is a q-space.

As an immediate corollary we obtain the remark

COROLLARY. Every Hausdorff k-space is a q-space.

For a proof of these facts we have to develop some tools about the duality of
semilattices in SL. Just as in the analogous situation of abelian groups one knows
certain well-studied classes of objects with duality such as the class of locally
compact abelian groups one has a well understood subclass of objects in SL with
duality, namely, the class of continuous semilattices which were first investigated
by Lawson (see [5], see also Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott
[2], page 191). The numerous ways in which continuous lattices, semilattices, and
posets are related to the concept of local quasicompactness have been exhibited
by Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott in [2], and the more
recent Proceedings of the First Bremen Workshop on Continuous Lattices edited
by B. Banaschewski and R.-E. Hoffmann contains further information [1]. Suffice
it here to recall that for a sober space X the lattice O{ X) is continuous if and only
if X is locally quasicompact and that each distributive continuous lattice is
(isomorphic to) such an 0{X). Since continuous semilattices have duality, this
implies in particular that any locally quasicompact sober space is a ^-space. But
the example of a fc-space X which is not locally compact (such as for instance any
first countable space which is not locally compact) yields an example O{ X) of a
complete Heyting algebra (frame, locale, Brouwerian lattice) with duality which is
not continuous.

Similarly to the case of abelian groups one is therefore motivated to seek
construction methods which allow us to pass from known objects with duality to
more general ones which still satisfy duality. In this regard we will establish the
following result:
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198 Karl. H. Hofmann and Jimmie D. Lawson [51

THEOREM. Let L be a semilattice in SL and dy L -> Lj a limit cone of SL-maps
into semilattices Lj with duality, and suppose that the following two conditions are
satisfied:

(A) For each x G L and each Scott open filter U of L containing x, there is an
index j and a Scott open filter Uj in Lj containing x such that d~lUj C U.

(B) For each x G L and each Scott open filter U of L not containing x there is an
index j such that T djU ( = {y £ Ly. there is an x G L with dyx < y}) is Scott open
and does not contain djX.

Then L satisfies duality.

This theorem is one of the following type: If an object L allows "sufficiently
many and sufficiently good" test morphisms into objects with duality, then it
itself has duality. The proof of the proposition above is reduced to applying the
theorem with L— O{X) and Ly = O(Yj) for suitable locally quasicompact spaces
Yy the morphisms dj will arise from proper continuous maps fy Yj -* X.

The following questions arise naturally:
i. Is the category of ^-spaces reflective in the category of sober spaces (in a way

similar to the reflective embedding of the category of A>spaces into the category of
Hausdorff spaces)?

ii. Is the category of ^-spaces cartesian closed?
We shall address these questions another time.
The paper has benefitted from the referee's careful scrutiny.

1. Preliminaries in general topology

Our general references are [1] and [2]; for easy reference we recall at this time
some notation and a few relevant results. For an element a in a poset P let ] a
denote {x G P: a < x}, and for A C P, set T A - U { T a: a G A}. The sets i a
and I A are defined analogously.

1.1. DEFINITIONS. A lattice L is called a complete Hey ting algebra (or a frame,
local lattice, complete Brouwerien lattice, locale) if and only if it is complete and
satisfies the infinite distributive law

xAVX=V(xAX) foral\xGL,XQL.

An element p of an (inf) semilattice L is called prime if and only if L\ I p is a
non-empty subsemilattice (that is, if and only if p ¥= 1 and xy < p implies x < p
or y ^ p). The space of all prime elements of L carrying the spectral or hull-kernel
topology is called the spectrum of L and is written SpecL; here the hull-kernel
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[6] Quasicompactly generated spaces 199

topology is generated by all hulls Spec L n T x, x G L as subbasic closed sets; if
L is a complete lattice, then the hulls themselves already form the closed sets of
the hull-kernel topology.

With a topological space X one associates its topology O( X), the lattice of all
open sets under containment. The complement A of a prime element U G
Spec(O(X)) is called irreducible; an irreducible set is characterized by the fact
that A = Ax U A2 for closed subsets Aj, j = 1,2, implies Ax= A or A2 = A
Evidently every singleton closure is irreducible; a space is called .sofer if and only
if every closed irreducible set has a unique dense point.

1.2. REMARKS, i. The spectrum of a complete Heyting algebra L is a sober space
(hence is, in particular, To). The function

x ^ A W " : * H > Spec(O(A'))

is a continuous function which under the pulling back of open sets induces an
isomorphism of Heyting algebras from C>(Spec(0(X))) to O(X). The functor
Xv-> Spec(O(X)) is a left reflection from the category of topological spaces onto
the full subcategory of sober spaces, called the sobrification.

From the viewpoint of studying topological spaces X and continuous maps via
the lattices O(X) and the maps induced between them by continuous maps it is
therefore no essential loss to restrict one's attention to sober spaces.

ii. A morphism of complete Heyting algebras is a map f:L->M between
complete Heyting algebras preserving finite infs and arbitrary sups (as is sug-
gested by the defining identity in 1.1). The category of complete Heyting algebras
is denoted HEYT. The function

A'h+SpecLX T x: L -> O(SpecL)

for a complete Heyting algebra L is a morphism in HEYT which is injective
(hence an isomorphism, since it is always surjective!) if and only if L is order
generated by its primes (that is, every element is an inf of primes). Such complete
Heyting algebras are therefore called topologies or complete Heyting algebras with
points; their full subcategory is denoted HEYT0. The function L \-* O(SpecL) is
a left reflection of HEYT onto HEYT0.

From the viewpoint of studying concrete topological spaces via their topologies
it is therefore no restriction of generality to concentrate on the subcategory
HEYT0, although much attention is given in some quarters to HEYT, its opposite
category and the study of topological spaces without points, called locales.

iii. (The Duality Theorem for Spaces and complete Heyting algebras.) The
functors Spec and O establish a duality between the categories HEYT0 of
complete Heyting algebras with points and the category SOB of sober spaces and
continuous maps.
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There is another relation between topology and order to which we must

occasionally refer, and which we recall in the following section:

1.3. D E F I N I T I O N , i. For a topological space X we set x < y if and only if

x G {y}~. This defines a quasi-order called the specialisation order. It is a partial

order if and only if X satisfies To.

ii. A subse t^ C * is called saturated if and only if A = C\{U:A C U G O(X)},

and for an arbitrary subset Y we call D {U: Y C U G O(X)} its saturation.

In terms of the specialisation order, the closure Y of a subset contains the lower

set i Y and is itself a lower set (so that closed sets are lower sets), while the

saturation sat Y of Y is the upper set T Y.

iii. A subset K C X is called quasicompact if and only if for any directed family

of open sets Uj with K C U Uj there is an index k with K C Uk. (This is

equivalent to the Heine-Borel property which says that every open cover of K

allows a finite subcover.)

1.4. REMARKS, i. A subset K of X is quasicompact if and only if its saturation

sat K is quasicompact.

ii. Finite unions of quasicompact sets are quasicompact.

iii. If X is sober, then for any filtered family Kj of quasicompact subsets and

any open set U the relation C\Kj Q U implies the existence of an index k such

that Kk C U. In particular, a filter-basis of quasicompact sets has a non-empty

intersection. (See Hofmann and Mislove [3].)

In view of these remarks, it is no loss of generality in discussing quasicompact-

ness to focus one's attention on quasicompact and saturated sets. We will denote

the collection of all quasicompact and saturated subsets of X with Q(X) and

endow Q(X) with the order of reverse containment, that is, we write C *£ K in

Q(X) if and only if K C C. Then Q(X) is an inf-semilattice with identity 0 in

which every directed subset has a supremum. It is a particular property of X that

Q(X) is a lattice (see Hofmann and Mislove [3]).

2. Duality of up-complete semilattices and

its application in general topology

2.1. DEFINITION, i. An up-complete semilattice L is an inf-semilattice with

identity in which every directed subset has a sup.

ii. The Scott-topology o(K) on an up-complete semilattice L consists of all

subsets U with U = } U such that the relation sup D G U for a directed subset

D C L implies D C\ U ¥* 0.
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iii. A morphism of up-complete semilattices / : L -» M is a Scott-continuous
semilattice morphism between up-complete semilattices.

iv. The class of up-complete semilattices together with the class of their
morphisms form a category SL, the category of up-complete semilattices.

2.2. REMARK. A function between up-complete semilattices is a morphism if
and only if it preserves identities, finite infs, and directed sups. (See [2], page 112,
Proposition 1.2; the equivalence of (l)-(3) is valid for SL-objects.)

Every complete lattice is of course an up-complete semilattice; every morphism
of complete Heyting algebras is an SL-morphism. Hence we may write

HEYT C SL.

In particular, the lattice 2 of two elements is an SL-object. If L is an SL-object
then the hom-set SL(L, 2) inherits from 2L the structure of an up-complete
semilattice. (Indeed more generally, if M is a meet-continuous lattice (see, for
example, Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott, pages 30 ff.),
then SL(L, M) is an SL-object under pointwise operations.)

We denote SL(L, 2) with its structure of an up-complete semilattice by L and
call it the dual of L. For a morphism / : L -» M in SL we define a morphism / :
M~ -> L as usual by / (c) = cf. Thus we obtain a contravariant functor of SL
into itself, and it is (for the categorist) a routine verification to show that is
adjoint to itself on the right, that is, that there is a natural isomorphism
SL(L, M) ss SL(M, L ) . This formalism is familiar from vector spaces or topo-
logical abelian groups. A portion of this formalism is the natural map

hL:L^L', hL(x)(c) = c{x) for x £ L , c E L

We say that L has duality or satisfies duality if and only if hL is an
isomorphism.

What is different in the category SL from other categories carrying a similar
formalism is the fact that the dual L has a second, more geometrical interpreta-
tion which is relevant for our applications and which we discuss next.

2.3. DEFINITION. A subset U of an SL-object L is called an open filter (or more
accurately a Scott-open filter) if and only if it is Scott open (that is, U E CT(JL))

and a filter (semilattice and upper set). The totality of open filters will be denoted
with OFilt L; the containment provides it with a natural partial order relative to
which it is a up-complete semilattice.

2.4. REMARK. The function c t-> c~'(l) provides an isomorphism L -» OFilt L
whose inverse is given by U i-* cv where cv is the characteristic function of U. If/:
L -» M is an SL-morphism, then the function U \^>f~xU: OFilt M -» OFilt L is
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202 Karl. H. Hofmann and Jimmie D. Lawson [9]

an SL-morphism OFilt / which makes the following diagram commutative:

M" - > L

OFilt M
OFilt f

> •

OFilt L

Finally there is a natural SL-morphism x h* %L(x): L -> OFilt(OFilt(L)),
= {U e OFilt L: x £ U) such that the following diagram is commutative:

u,

•> L

-> OFi l t (OFi l t (L))

For our purposes it is more convenient to work with open filters than with
characters. Hence we make the following convention:

2.5. CONVENTION. We identify L with OFilt L, a l s o / with OFilt/, and hL

with %L. Thus we consider the semilattice of open filters as the dual of a
semilattice.

Now we connect the concept of duality with general topology by identifying the
dual of O( X) in SL. We observe first that the dual of a complete Heyting algebra
is, in general, not even a lattice. This motivates our consideration of the category
SL which is much larger than the category HEYT, let alone HEYT0.

Suppose now that K is a quasicompact subset of a topological space X. Then by
1.3 and the definition of an open filter, the filter % ( # ) of open neighborhoods of
K is Scott open, hence a member of O{ X) . Conversely, if % is a Scott open filter
on O(X), we define K = H%. Then K is saturated (see 1.3), and if X is sober,
then K is also quasicompact and thus is a member of Q{X). Moreover, % is the
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filter of open neighborhoods of K. This was shown by Hofmann and Mislove in
[3]. Thus we can formulate for easy reference:

2.6. REMARK. The function K\-> % ( ^ ) which associates with a quasicompact
saturated set K of a topological sober space X its neighborhood filter is an
isomorphism Q(X) -» O(X) .

Notice that a continuous function / : X -> Y induces a morphism O(f) of
complete Heyting algebras: O(Y) -> O(X) with O(f)(V) =f~\V), and an.
SL-morphism Q(f): Q(X) -> Q(Y) with Q{f\K) = sat/(A"). Under the iso-
morphism of 2.6, the map Q(f) corresponds to the dual O(f) via the obvious
commutative diagram.

If U G O(X) and X is sober, then by 1.4.iii the set %(U) of all quasicompact
saturated subsets of U is a Scott open filter of Q(X), that is, %(U) £ Q(X)\
Note that we have £/ = U 3C(t/) for any open set £/. It is readily verified that the
following diagram is commutative:

0(X) 0(X)

U I-

Thus we have

2.7. REMARK. For a sober space X, the complete Heyting algebra O(X) satisfies
duality in SL if and only if every Scott open filter in Q(X) is of the form %(U)
for an open set U in X.

We now formally define the concept of a <jr-space:

2.8. DEFINITION. A topological space X is called a q-space or quasicompactly
generated space if and only if O( X) satisfies duality, and X is sober.

This may be made explicit as follows; the virtue of the definition of course is in
its simplicity and formal elegance made possible through the use of duality.
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2.9. PROPOSITION. For a sober space X the following definitions are equivalent:
(1) Xis a q-space.
(2) For each collection % of quasicompact saturated subsets of X, the following

statement holds:

Suppose that % is closed under finite unions and the passage to
quasicompact and saturated subsets, and suppose that for every
filterbasis <$ of quasicompact saturated sets the relation D f G %
implies ^ 1 1 5 ( ^ 0 . Then U% is open and every quasicom-
pact saturated subset of U%is an element of %.

Recall at this point that for a ^-space X the semilattice Q( X) of quasicompact
and saturated sets in X completely determines O{ X) » O( X) as Q( X) ; and
since X is sober, X can be retrieved as SpecO(X) from O(X). Thus Q(X)
determines X. We will exhibit various types of spaces as ^-spaces.

3. Galois connections, duality, and proper maps

Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott have shown in [2] how
important the concept of Galois connection is in the study of complete lattices.
We utilize this concept in SL. But first we recall the definition:

3.1. DEFINITION. A Galois connection between two posets S and T is a pair of
maps d: S -> T and g: T -> S such that for all J G S and / G T the relations
ds < / and s < gt are equivalent. The map d is called the lower adjoint and the
map g the upper adjoint. We will simply write (d, g): S -» T when a Galois
connection is given.

It is well known that a function between complete lattices which preserves
arbitrary sups has an upper adjoint and that every function with an upper adjoint
preserves arbitrary sups. The opposite statement holds for the preservation of infs
and lower adjoints (see Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott [2],
pages 18 ff.). In general, SL-morphisms need not have adjoints. However, the
following observation illustrates the significance of Galois connections in the
context of duality:

3.2. PROPOSITION. Suppose that d: L -> M and g: M -» L are two SL-morphisms
such that (d, g): L -» M is a Galois connection. Then (g , d ): M -> L is a Galois
connection. (Notice that g is now the lower adjoint and d is the upper adjointl)
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PROOF. Let K 6 M * and U G L. Then g'{V) < U means g ' F C £/. But
g~xV = t </K by the definition of Galois adjunctions. But since U is an upper set,
the relation T dV C U is equivalent "to the containment </F c U, which means
precisely F< d^U = d\U).

If/: Z -> Y is a continuous map between spaces, then the morphism # ( / ) :
O(Y)^O(X) always has an upper adjoint G(f): O(X) -* O(Y) given by
G(/)({/) = U {V e O(Y): f'lV C U}. This map preserves arbitrary infs, but is
not always an SL-morphism, since it may very well fail to be Scott continuous.
We now exhibit an important class of functions / for which G(/ ) is Scott
continuous and hence an SL-morphism:

3.3. PROPOSITION. For a continuous function f: X -» Y between sober spaces the
following conditions are equivalent:

(1) (i) The setf~\K)is quasicompact for each saturated quasicompact set K of Y,
and

(ii) the set I / (C) = {y G Y: y G {/(c)}~ for some c G C} is closed for each
closed subset C of X.

(2) The morphism G(/): O(X) -> O(Y) is Scott continuous {that is, an SL-mor-
phism).

(3) For each open filter <Yin O(Y) the set G(/)-'(cV) = t O(f)CV) is an open
filter in O(X).

PROOF. (1) => (3): Let The an open filter in O{Y). Then there is a quasicom-
pact saturated set K G Q(Y) with °V= %(K) by 2.6. Let % = %(/"'A:). By
(1X0 and 2.6, this is an open filter on O(X). We will show that G(/)"1(CV) = %
and thereby establish (3). If UG% then AT C U, whence/" 'AT £ / " ' [ / and thus
O(fW)=f'xU G %, and thus G(f)-lCY) = t OC/XT) C %. Conversely, let
K 6 t . Then C = * \ K is a closed set which is disjoint from /""A". Hence
/(C) n A: = 0 , and since A* is saturated, 1/(C) n A" = 0 . But 1/(C) is closed
by (lXii), hence U= Y\if(C) is open. But K C U and / " ' l / C F, whence
V G T O(f)CV). This proves the claim.

(3) => (2): Let Vj be a directed family of open sets in X with union V. We
denote the union of the G(f)(Vj) with (/. Since G(f) is order preserving, we
know U cG(f)(V). Now let us assume U =t G(f)(V). Then we find a >> G
G{f)(V)\U. Now the filter %(>') of open neighborhoods of y is open by 2.6.
Hence by (3) we know that the filter % = t O(/)(%(_y)) generated by all f~]W
withy G Wis open in O(X). Sincey G G(/)(F) we know that O(/)G(/)(F) =
/" 'G(/)(F) G%. But O(/)G(/)(K)C V since O(/) is a lower adjoint of
G(/). Hence U Vj, = K G ^ . The openness of % imphes the existence of ay with
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Vj G %. But then G{f\Vj) e ^(y), that is, >> G G{fWj) Q U, and this is a
contradiction.

(2) =>(1): To show (i), let K be a quasicompact saturated subset of Y. Then
%(/<:) is open in O(Y) by 2.6. Since G(f) is Scott continuous, the filter
G(fylGlL(K) = T 0(/)(%(A:)) is open, too. Its intersection however isf~\K).
Hence f~l(K) is quasicompact by 2.6. In order to show (ii) we let C be a closed
subset of * ; define £/ G O(X) by f/ = * \ C . Now let y G/(C)". Then y £
<?(/)(£/), since G(/)(f/) is the largest open set Fin 7 wi th / 'K C £/ = * \ C . If
we denote with Q the prime F \{ j} - of O(J) we have (?(/)(f/) C £. Then by a
lemma on primes by Hofmann and Watkins (see [4], 1.3) there is a prime
P G O(X) with G{f\P) Q Q and U C P, since (?(/) is Scott continuous by (2).
NowP = A'XfxJ-withx G C since* is sober, and G(f)(X\{x}-) = y\{/(*)}- .
The relation G(/)(P) C g then implies {j}"C {f(x)}~, that is, >> </(x) in the
specialisation order of Y. Thus y G J,/(C). This shows that/(C)~C I/(C); since
always if(C) C/(C) ' , we deduce that I f(C) = f(C)~ is closed.

3.4. DEFINITION. A function between two sober spaces / : X -» Y is called
proper if and only if it satisfies the three equivalent conditions of Proposition 3.3.

From this Proposition and 1.2.iii we obtain the following corollary:

3.5. COROLLARY. The category of sober spaces and proper maps is dual to the
subcategory of Heyt0 consisting of all complete Heyting algebras with points and all
morphisms whose upper adjoint is Scott continuous (preserves directs sups).

If/: X-> Y is a proper map, we have the Galois connection (O(f),G(f)):
O{Y) -> O(X). Hence according to 3.1 we also obtain a Galois connection
(G(f)',O(f)~): O(Y)"'-> O(X)'. Via 2.6 this corresponds to a Galois connec-
tion (/»(/), g ( / ) ) : Q(Y) - Q(X) with P(fXK) =f'\K) IOTK&Q(Y) (and
Q(fXK) = sat/(AT) for K G Q(X)).

4. On the construction of semilattices with duality

We observe several criteria expressing the property of being dual for an
SL-object in terms of other SL-objects which are known to have duality.

4.1. PROPOSITION. Let L be an up-complete semilattice. Then the following
conditions are equivalent:

(1) There is a surjective Sh-morphism g: M -» L with a left inverse in SL such
that M satisfies duality, that is, L is a retract in SL of an object with duality.

(2) L satisfies duality.
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PROOF. (2) => (1) is trivial with g = \L.
(1) =» (2): Suppose that % G L.". We let d: L -» M be the left inverse of g and

define CV= {(/ G M*: rf-'f/ G %} = / " ( % ) . Then T 6 Af" and since M has
duality there is an m G M with CV= % ( w ) . We claim that % = %(g(m)), which
will finish the proof. But U G % if and only if d~xg~xU = (gd)-lU = U G % if
and only if g" ' l / G T i f and only if m G g~'£/ if and only if g(m) G U.

The principal result in this line is a theorem of the following type which we will
prove next: If an SL-object L is a (suitable) limit of SL-objects with duality, then
L has duality. In order to discuss this situation more accurately, we recall the
concept of a limit. Let J be a category and F: J -» SL a functor. An object L is
called a limit of F, written lim F, provided that there are natural morphisms py.
L -> F(j) (one for each object j in / ; and natural means that for each morphism
/ : i ->j in J one has pj = F(f)pi) such that for any system qy E -> F{j) of
natural morphisms there is a unique solution q: E -» L such that q^ = / ^ for ally.
If / is a set (that is, a small category) then one can identify the limit L with the
subset in the product UJ(EobjF(j) of all (xj)JedbJ with F(f)(xdomf) = x r a n / for
a l l / G morph / (where dom / i s the domain o f / and ran / i t s range). The natural
maps pj are then just the restrictions of the projections. We record from this the
following remark:

4.2.LEMMA. IfL — lim F and if we find for each) an element Xj G F(j) in such
a fashion that F(f)(xdomf) = xTanf, then there is a unique element x G L with
Pj(x) = Xj.

4.3. THEOREM. Let L be an up-complete semilattice. Then the following conditions
are equivalent:

(1) L = lim F for some functor such that the following conditions are satisfied:
(i) F(j) satisfies duality for allj.
(ii) For each x G L and each open filter U G L with x G U there is aj and an

open filter V in F(j) containing Pj(x) such that pjx{V) C U.
(iii) For each x G L and each open filter U G L with x $ U there is a j and

an upper adjoint gy F(j) -» L of pj in SL such that Pj(x) & Pj(U), that is,
gj(Pj(x)) £ U.

(2) L satisfies duality.

PROOF. (2) =» (1) is trivial with the constant functor with value L.
(1) => (2): Let % G L". We must find an x G L such that % = %(x) . For

eachy we have a map pj : L -> F(j) . In particular, p (%,) is an open filter
on F(j)\ In fact,

(a)/>/"(%) = {V G F{j):pj\V) G % } .
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Since F(j) satisfies duality, there is a unique element Xj G F(j) such that
(b)/>/"(%) = %(*,).

From (a) and (b) we conclude:
(c) For an open filter Fon F(j) one has Xj G Fif and only if pj\V) G %.
For any morphism / in the domain category J of F we have a commutative

diagram

(d)

'F( i ) i = dom f, j = ran f.

From this diagram we deduce
(e) F(/)(x,) = Xj for all/: i -»y in / .

By Lemma 4.2 we obtain an element x £ L uniquely such that
(f) Pj(x) = Xj for ally in J.

Now we claim that % - %(x).
Firstly, let U G %(JC). Then x G U. Hence by condition (ii) there is ay in / and

an open filter IA in F(j) with Xj = pj(x) G Uj and pj\Uj) C U. But by (c) the
relation x} G Uj impliespj\Uj) G %, whence U G %.

Secondly, suppose that (/ G %. We claim x G U. Assume not. Then by
condition (iii) there is ay in J such that Xj = Pj(x) $ TPj(U). Since />. has an
upper adjoint, TPj(U) = gj\U) is an open filter. Since U Cpj\tpj{U)) and
U G %we have/>r1(T/»/(t/)) G %. Then by (c) we have Xj G 1 pj(U). But this is a
contradiction. The proof is complete.
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Notice that we did use the hypothesis in (iii) that the upper adjoint gj is in SL,
that is, preserves directed sups. It was this property which allowed us to conclude
that T Pj(U) = gj\U) was open. It would, however, have sufficed in condition
(iii) to demand instead of the existence of the upper adjoint gj that T dj{U) be
open. To understand condition (iii) fully, recall that gj(Pj(x)) > x, so that, in
principle, x $ U does not imply gj(Pj(x)) £ U.

Condition (ii) in 4.3(1) has an equivalent formulation in terms of topologies.
For this purpose, we introduce in an up-complete semilattice, in addition to the
Scott topology o(L), another possibly coarser topology.

4.4. DEFINITION. Let L be an up-complete semilattice. The set OFilt L of
Scott-open filters of L is an intersection closed basis for a topology q>(L), called
the filter topology. The topological space (£ , <p(L)) we simply denote <bL.

Since <p(L) C o(L), every <p(L)-open filter is in OFilt L and by definition,
OFilt LCq>(L). Hence

4.5. REMARK. For an up-complete semilattice, the semilattice L = OFilt L is
also the semilattice of <p(L )-open filters.

Now we can reformulate condition 4.3(l)(ii):

4.6. PROPOSITION. In Theorem 4.3, condition (l)(ii) is equivalent to the following
condition

(ii1) Q(\im F) = limQF.
In other words: The filter topology of the semilattice L is the limit of the spaces F(j)
with their filter topology in the category of topological spaces.

PROOF. It is clear that any SL-morphism is continuous relative to the filter
topologies, so that $ is a functor from SL into the category of topological spaces
and continuous maps. In particular $ F is a functor into the category of topologi-
cal spaces. Limits are calculated in this category just as we described it for SL.
Thus the underlying set of lim $ F is that of L = lim F. Its topology is the coarsest
making all limit maps />• continuous. Since p<•: OL -» $ L is always continuous,
the limit topology is always contained in the filter topology <t>(L). But condition
4.3(1 X") exactly ensures the reverse containment.

We now return to topological spaces and use Theorem 4.3 to show that
Jfc-spaces and indeed a much larger class of non-separated spaces are ^r-spaces.
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The following definition allows a simplification of terminology in the discus-
sion which we are about to undertake.

4.7. DEFINITION. We say that a family ^of functions/: Y -> X of sober spaces
is sufficient (for X) if and only if the following conditions are satisfied:

(i) Each/: Y -> Xin <<Fis proper.
(ii) For each K G Q(X) there is a n / G ^with K C im / .
(iii) If Uf is open in Y fox f: Y -* X in ®i such that the family {Uf: f G <5)

satisfies g-'(L^) = L̂  for every continuous function g: 7 -> y' with / ' = fg for
/ , / ' G <S, then there is an open set U in A' such that Uf = f~\U).

4.8. THEOREM. For a sober space, the following conditions are equivalent:
(1) There is a sufficient family <§ofmaps f: Y -» X such that all Y are q-spaces.
(2) X is a q-space.

PROOF. (2) => (1) is trivial with ®s = {\x}.
(1) =>(2): The maps / G <F are the objects of a category / whose morphism

/, -> f2 are given by continuous proper maps g: y2 -» y, such that the diagram

is commutative. For each / : Y-> X in <¥=obJ, the topology O(F) is in
particular an up-complete semilattice, so that we have a functor O: J -» SL which
associates with a morphism / , ->/2 the SL-map O(g): O{YX) -» O(y2). We set
L = O(X) and obtain for each / G 9" an SL-morphism pf= O(f): L-+ O(Y).
The map g^: O(y) -» L is given by g^ = G(f) and is the upper adjoint ofpf. By
Proposition 3.3, it is an SL-morphism.

Condition 4.7(iii) implies that L = lim O. In order to complete the proof, it
now suffices to verify conditions (ii) and (iii) of 4.3(i); then Theorem 4.3 will
establish the claim, since condition 4.3(1 Xi) is satisfied by 4.8(1).

Ad 4.3(l)(ii): Let U be an open set in X and % a Scott open filter on O(X)
containing U. Then by 2.6, the set K = C\% is quasicompact and saturated. By
4.7(ii) there is an / G ob J with K C im / . The filter %(/~lK) on Y= dom / of
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open neighborhoods of the quasicompact set f~xK in Y is Scott open in O(Y) by
2.6, and it contains f~xU = pj(U). Furthermore, an open set W of X is in
p;\<*L(f-lK)) if and only if f'lW = pf(W) G <%L(f-lK) if and only if f~xK C
f-]W, and this implies K = ff~lK (since K C im / ! ) C ff~lW Q W, that is,
W G %(/sT). Thus 4.3(lXii) is proved.

Ad 4.3(1 )(iii): Let U be an open set of X and % a Scott open filter on O ( I ) not
containing U. If K = H % , then # G £>(*) and /iT g t/. By 4.7(ii) we find an
/ G o b / with K C im / . Assume that/y(f/) G T/y(%); then there is an open set
W of X such that f'xW = /y(W) C /y(£/) = f~lU and K C W. Then /iT = ff~xK
(since ^ C i m / ! ) Cff'lU C f/, and this is a contradiction. Thus 4.3(l)(iii) is
proved and the theorem established.

We recall that any locally quasicompact sober space is a g-space: indeed if Y is
locally quasicompact, then O(Y) is a continuous lattice (see [2], page 259). But
then O(Y) has duality ([2], page 191). Thus Y is a </-space, if in addition it is
sober (2.8). The following corollary then is a generalisation of this fact:

4.9. COROLLARY. / / a sober space K allows a sufficient family of maps f:Y->-X
with Y locally quasicompact (and sober), then X is a q-space.

PROOF. This is immediate from Theorem 4.8 and the preceding remarks.

4.10. COROLLARY. Suppose that X is a sober space with the following properties:
(i) Every quasicompact saturated subset is locally quasicompact, sober, and closed

inX.
(ii) A subset U of X is open if and only if U D K is open for every quasicompact

saturated subset K of X.
Then X is a q-space.

PROOF. If every quasicompact saturated subset is closed, then every quasicom-
pact saturated subset is properly embedded into X. Then by (i) and (ii) the family
of inclusion maps of the subspaces K G Q( X) is sufficient for X. The assertion
then follows from 4.9.

4.11. COROLLARY. Every t2 k-space is a q-space.

4.12. COROLLARY. Every Hausdorff k-space is a q-space.
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