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A NOTE ON STRONG MARKUSEVIC DECOMPOSITIONS
OF BANACH SPACES

P.K. JalN AND D.P. SINHA

The space £ is known to have no Schauder decomposition. It is proved here that
£ does not even possess any strong Markusevié decomposition.

1. INTRODUCTION

A sequence (G4n) of non-zero linear subspaces of a Banach space E is said to be
a decomposition of E if for each z € E there exists a unique sequence (z,) with

zn € Gp (n=1,2,...) such that the series 3_3 z, converges to z. This gives a
n=1

unique sequence (v,) of linear projections on E satisfying v;.v; = 0, whenever i #7.
If each v, is continuous then (G,) is said to be a Schauder decomposition. It is
known that every infinite dimensional Banach space has a decomposition and that
every decomposition may not be Schauder ([9], Theorem 1 and Example 2) so much so,
that every Banach space need not possess a Schauder decomposition. In fact, the space
£ does not possess any Schauder decomposition (Dean [2]). A detailed account of the
theory of Schauder decompositions can be found in [10]. A more general concept than
that of Schauder decompositions, namely Markusevié decompositions was introduced
under the name “complete biorthogonal decompositions” in [1}. These decompositions
together with a particular class of them, called the strong Markusevi¢ decompositions,
have been discussed in detail by the authors in [5, 6]. It is natural to ask whether
£ possesses a Markusevié decomposition. In the present note, we establish that £
does not have any strong Markusevi¢ decomposition, countable or uncountable. The
proof of our result is a little cumbersome and makes use of certain ideas developed by
Lindenstrauss [7].

2. MAIN RESULT

DEFINITION 1: An indexed collection (Ga),¢, of non-zero closed linear subspaces
of a Banach space E is said to be a Markusevi¢ decomposition ( M-decomposition)
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of E if there exist bounded linear projections (vi),ecp With vA(E) = G such that

span |J G. is dense in E and vy(z) =0(A € A), imply z = 0.
AEA

It has been shown in [5] that the collection (v)),¢, , called the associated family of
coordinate projections, is uniquely determined by the M-decomposition and that every
weakly compactly generated Banach space admits of a countable M-decomposition.
Note that £ being the non-separable dual of a separable Banach space cannot be
contained in any weakly compactly generated Banach space.

DEFINITION 2: An M-decomposition (Ga),¢, of a Banach space E with the asso-
ciated family of coordinate projections (v),¢, is said to be a strong M-decomposition
if each z € Span,¢,(,)Ga, where A(z) = {) € A : vp(z) # 0}.

Clearly every Schauder decomposition is a countable strong M-decomposition. Ev-
ery M-decomposition may not be a strong M-decomposition and a countable strong
M-decomposition may not be a Schauder decomposition [6]. In the present discussion

we shall write

o(z)={n:an#0}, (z=(as)€l>®).

THEOREM. The space £ has no countable or uncountable strong
M -decomposition.

PROOF: Write E = £=. Let (Ga),cs be a strong M-decomposition of E with
the associated family of projections (va)y¢, . Define seminorms on E by

ta(z) = loall 7 Ioa(2)ll, (A € A).
Since (va)yeyp is total on E, the set
(2, ) = {A€A:tx(z) > ¢}

is finite for each z € E and € > 0. Without any loss of generality we may assume that
N and A are disjoint sets. Let A = {0}UNUA. Define a mapping Qg : E — co(A) by

27"(1+n) |z, (n=6/2and 6=0,2,4...),
(Qoz)(8) = an/n, (n=(6+1)/2, §=1,3,5,... and z = (o)),
ts(z), (8€A).

Let J denote the Day’s locally uniformly convex norm as shown in [8] and |.||, the
usual sup norm on cg(A). Then

Izl /2< 3(2) < ll21/v3, (= € eo(A)).
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The function on E given by
lzllle = 2J(Qoz)

defines a norm on E ([11], Lemma) and there is a K > 1 such that
I=ll < lli=lllo < K ll=ll, (= € E).

Write M = sup{]||z|||, : l|z]] = 1}. Since (3M +1)/4 < M, there is an z; = (asl)) €
E with ||z,|| =1 such that

(3M +1)/4 < [l[=allo -

We may assume that N\ o(z;) is infinite. Let S; be an infinite subset of N\ o(z;)
such that N\ (o(z) U ) is infinite and let 4, be an integer in N\ (o(z;) U S1). Writing

= {y = (ﬂ:) €E: ”y” =1, |ﬂi1| =1, Bi= agl)v
for all i € o(z) U S; and N\ (o(y) U o(z1) U S1) is infinite}

and K; = sup{|||lylll, : ¥ € F1} and since for each y € Fi, 2z, —y € F;, we have
[I2z1]] —1 < K. This gives

K, -1<(4K-3)M -1)2K < (M —-1)/2.
Again, since (3K, +1)/4 < K, thereis an z; = (af-”) € E with ||z2]| =1 such that
(38K: —1)/4 < |ll=lllo -

Again, we may assume without any loss of generality that N\ (o(z;) U o(22) U S1)
is infinite. Let S2 be an infinite subset of N\ (o(z1) U o(z2) U S1) such that the set
N\ (o(z1) Uo(z2) U S U S32) is infinite and let i, € N\ (o(z1)Uo(z2) US1 US).
Writing

F, = {y =(B)EE: |IBiyl=1, Pfi= agz), for all i € o(z1) Uo(z2) US1US:

and the set N\ (o(y)Uo(21)Uo(z2)U S) U Sy) is infinite}
and K, = sup{|||ylll, : ¥ € F2}, we have ||2z;]| — 1 < K. This gives

K, -1<((4M -3)K, —-1)/2M < (K, —1)/2< (M —-1)/4.
Continuing in this way, we get for each n, z, = (asn)) €EE,S,CN, F,CE,a
real number K,, > 1 and a positive integer i, such that

(a) 2zn € Faoa, 1 < |||2allly € Kn-1 and K3 < (M —1)/2", where Ky =
M,
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n n—1
(b) if M, = ( U v(zj)) U ( U S,-) , then S, is an infinite subset of N\ M,,
- ; j=1

=1
such that IJ\I \ (M, U S,) is infinite,
(c) in€N\(MnUS,) and [afn™)| =1,
(d) o =al"™ for ke My_; USa_;.
Thus, there is an zg = (7;) € E such that

o™, (k€EM,US,, n=12,...),

Tk = 0, (k € N\(G (o(za))U S,,)).

n=1

Note that |y;,| =1, (n =1, 2, ...) and consider the continuous linear functional on E
given by the Banach limit ([4], p.73) defined by

f(y) = LIM(%,-2i,), (y = () € E).

Then, f(zo) =1 and f(zn)=0, (n=1,2,...).
Let for each A € A, F) be a separable closed subspace of G such that

{z0, z1, ...} C F =5pan U F,.
AEA

Also, let wx = vy|F. Then, (Fi),¢, is a strong M-decomposition of F with the

(=]

associated family of coordinate projections (w),¢,. For each A € A, let (69))

n=1

be dense in F). Write foreach n, U, ={4A CA: cardA<n} and U = |J U,. Let
n=1

us define the following semi-norms on F

PR

: B, a?) are sca.lars} W(AeU,n=1,2,..)
A€A  i=l

E{)(z) = inf {

Fa(z) =) ti(z), (4€U),

A€A
Go(z) = |I=Il ,
Gn(z) = sup {Eg‘")(z) +nFa(z): A€ U} , (rn=1,2,..)).

Define a mapping Q: F — co(A) by

27"Gn(z), (n=4§/2, §=0,2,4,...),
(Qz)(8) = an/n, (n=(6+1)/2, 6§=1,3,... and z = (o)),
ts(z), (6 €A).
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Note that since Gn(z) < (1 +n?)||z||, (n=1,2,...), we have

(Q=)(8) < (Qoz)(8), (z€E,§€A)

Thus, the function on F given by

l=lll = 27(Q=),

defines a norm on F' ([11}, Lemma) and, for each z € F, satisfies

Izl < =11 < M=kl -

Finally, since (a,) — (an/n) is an injective continuous linear operator of E into
co, that (Fi)ye, is a strong M-decomposition of F and that each F) is separable,
it follows (for example see the proof of Theorem 2 in [3], p.101) that the norm |||.|||
is a locally uniformly convex on F. Now, note that for each n, the elements z and
(zn +2)/2 are in F,. Therefore, 1 < |||za]|| € Kn-1, 1 < |l|z]]| € Kn and 2 <
lllzn + ||| € 2K, where Ko = M and for all n. This gives that |||z]|| = "l_i_xgo Hzalll =

lim K, =1 and lim |||z, + z|]| =2. Hence lim z, = z. But this is a contradiction
n—oo n—oo

n—oo

and hence the proof is complete. 0
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