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Abstract
We propose an intersection-theoretic method to reduce questions in genus 0 logarithmic Gromov–Witten theory
to questions in the Gromov–Witten theory of smooth pairs, in the presence of positivity. The method is applied to
the enumerative geometry of rational curves with maximal contact orders along a simple normal crossings divisor
and to recent questions about its relationship to local curve counting. Three results are established. We produce
counterexamples to the local-logarithmic conjectures of van Garrel–Graber–Ruddat and Tseng–You. We prove
that a weak form of the conjecture holds for product geometries. Finally, we explicitly determine the difference
between local and logarithmic theories, in terms of relative invariants for which efficient algorithms are known.
The polyhedral geometry of the tropical moduli of maps plays an essential and intricate role in the analysis.
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Introduction

Let X be a smooth projective variety and D a simple normal crossings divisor whose irreducible
components 𝐷1, . . . , 𝐷𝑘 are hyperplane sections, hereafter section pairs. We examine three genus 0
Gromov–Witten theories: (1) the logarithmic theory of (𝑋 |𝐷), (2) the naive logarithmic theory of
(𝑋 |𝐷) constructed out of the relative theories of (𝑋 |𝐷𝑖) and (3) the local theory of the direct sum of
the O𝑋 (−𝐷𝑖). The first two encode rational curves in X with tangency conditions along D. The local
theory models rational curves in a rigid embedding of X in an ambient variety with split normal bundle
⊕𝑘
𝑖=1O𝑋 (−𝐷𝑖).

The naive theory is defined as follows. First let 𝑋 = P be a product of k projective spaces, with
𝐻𝑖 ⊆ P the pullback of a hyperplane from the ith factor and 𝐻 = Σ𝑘

𝑖=1𝐻𝑖 . The naive space is defined as
the fibre product of stacks:
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N(P|𝐻)
∏𝑘

𝑖=1 K(P|𝐻𝑖)

K(P)
∏𝑘

𝑖=1 K(P).

�

Δ

The moduli space K(P) is smooth and so Δ is a regular embedding. We obtain a virtual class on N(P|𝐻)

by pullback:

[N(P|𝐻)]vir := Δ !

(
𝑘∏
𝑖=1

[K(P|𝐻𝑖)]

)
.

The pushforward to K(P) is simply the product of the classes [K(P|𝐻𝑖)]. Virtual pullback defines the
theory for arbitrary section pairs (𝑋 |𝐷); see Section 4.1

0.1. Correspondences

If D is smooth, logarithmic Gromov–Witten theory coincides with the relative theory for all tangency
orders. If the tangency with D is maximal, it coincides with the local theory by a result of van
Garrel–Graber–Ruddat [31], following Takahashi and Gathmann [28, 16].

The local-logarithmic correspondences. Let X be smooth and projective with simple normal crossings
divisor D with smooth nef components 𝐷1, . . . , 𝐷𝑘 . Let 𝛽 be a curve class and suppose 𝑑𝑖 := 𝐷𝑖 · 𝛽 > 0
for all i. Consider the moduli of logarithmic stable maps Kmax

0,𝑘 (𝑋 |𝐷, 𝛽) with maximal contact with each
component at distinct points.

Strong form: There is an equality of homology classes on the Kontsevich space K0,𝑘 (𝑋, 𝛽) of
k-pointed stable maps to X, suppressing the relevant pushforwards, given by

[Kmax
0,𝑘 (𝑋 |𝐷, 𝛽)]vir =

𝑘∏
𝑖=1

(−1)𝑑𝑖+1ev★𝑖 𝐷𝑖 · [K0,𝑘 (⊕
𝑘
𝑖=1O𝑋 (−𝐷𝑖), 𝛽)]vir.

Original form: The equality above holds after pushing forward to the Kontsevich space K0,0(𝑋, 𝛽) of
unpointed stable maps to X; that is,

[Kmax
0,𝑘 (𝑋 |𝐷, 𝛽)]vir =

𝑘∏
𝑖=1

(−1)𝑑𝑖+1𝑑𝑖 · [K0,0(⊕
𝑘
𝑖=1O𝑋 (−𝐷𝑖), 𝛽)]vir.

The pushforward on the left-hand side is suppressed, while the right-hand side is a naturally a class on
the Kontsevich space.

The original form was conjectured by van Garrel–Graber–Ruddat [31]. Fan–Wu and Tseng–You
observed that if D is smooth, the original proof yields the strong form. The general strong form was
conjectured by Tseng–You [29]. The conjecture holds in numerical form in many cases [11, 12].

We refer to the local theory class cut down by the divisorial evaluations as they appear in the strong
form above as the evaluation local theory of (𝑋 |𝐷). The following observation is elementary.

Observation. The evaluation local theory of (𝑋 |𝐷) coincides up to sign with the naive theory of (𝑋 |𝐷).
After pushforward to K0,0(𝑋, 𝛽), the naive theory coincides up to explicit multiplicity with the local
theory of (𝑋 |𝐷) as a homology class on K0,0(𝑋, 𝛽).

With this observation at hand, we dispense with local Gromov–Witten theory and focus on the more
general question of when the logarithmic and naive theories coincide.

1A fourth possibility is the multi-root theory of (𝑋 |𝐷) constructed by Tseng–You [29]. This coincides with the naive theory
for section pairs; see [7, Corollary 2.2].
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0.2. Results

Our first result proves that the naive theory does not coincide with the logarithmic theory, giving
counterexamples to both forms of the local-logarithmic correspondence.

Theorem X. The naive and logarithmic maximal contact theories do not coincide in degree 2 for P2

equipped with the divisor consisting of two lines. The strong form of the correspondence fails for this
geometry in degree 2. The original form of the correspondence fails in degree 4.

The result is proved by direct geometric analysis. The proof gives a basic flavour of the naive theory
and implies that the naive theory is not even enumerative in genus 0 for logarithmically convex pairs. The
difference between the theories is controlled by the following result; see Sections 2–3 and in particular
Theorem 3.4.

Theorem Y. The difference between the logarithmic and local/naive maximal contact Gromov–Witten
invariants of a section pair (𝑋 |𝐷) is determined algorithmically in terms of tautological integrals on
the moduli space of stable maps to X.

Numerical consequences can be extracted. For example, the logarithmic theory of P2 relative to two
lines can be computed with primary insertions in degree up to 4, as the corrections will not contribute;
see Remark 1.6. A systematic study will appear in future work.

The result is a consequence of the following much stronger result, which implies that the difference
between the two theories is captured by Chern classes of tautological bundles, Segre classes of boundary
strata in the moduli space of relative maps and descendent integrals thereon.

Let P denote a product of k projective spaces and H a divisor that is a union of hyperplanes 𝐻1, . . . , 𝐻𝑘

pulled back from each factor.

Theorem Z. Let Kmax
0,𝑘 (P|𝐻𝑖 , 𝛽) be the space of logarithmic stable maps to P that are maximally tangent

to 𝐻𝑖 at the ith marked point. There is an explicit sequence of weighted blowups of the Kontsevich space

K0,𝑘 (P, 𝛽)† → K0,𝑘 (P, 𝛽)

along smooth centres such that, denoting strict transforms as Kmax
0,𝑘 (P|𝐻𝑖 , 𝛽)† and suppressing pushfor-

wards, there is an equality of cycles in the Chow group of K0,𝑘 (P, 𝛽):

[Kmax
0,𝑘 (P|𝐻1, 𝛽)†] · · · [Kmax

0,𝑘 (P|𝐻𝑘 , 𝛽)†] = [Kmax
0,𝑘 (P|𝐻, 𝛽)] .

Blowups of moduli spaces have appeared in recent work on logarithmic Gromov–Witten theory
[26, 25]. The theorem above is considerably stronger. The birational modifications in those papers
are not made explicit, while the result above is completely algorithmic, without arbitrary choices.
The combinatorics of the maximal contacts situation is leveraged heavily. A reader will find that the
combinatorial arguments, manipulating the cone stack of tropical maps, are delicate. These arguments
are crucial in deducing structure results for the birational models of stable map spaces. Outside the
maximal contact setup, a sequence of blowups exists but cannot be made explicit. The utility of a
general systematic description is likely to be high. In particular, we are not aware of any other methods
that calculate the set of invariants that our algorithm calculates.

Insights from this analysis lead to a new range of cases where the correspondence holds; see Section 5.
These are not covered by the existing literature.

Theorem W. Let 𝑋1, . . . , 𝑋𝑘 be smooth, equipped with smooth hyperplane sections 𝐷1, . . . , 𝐷𝑘 .
The local-logarithmic-naive correspondence holds for the pair (

∏
𝑋𝑖 |

∑
𝐷𝑖) with primary factorwise

insertions.

The condition ‘primary factorwise insertions’ is explained in Subsection 5.2. It includes in particular
all primary invariants with three markings or fewer. These provide the first nontoric examples of the
numerical correspondence in dimension larger than 2. Numerical consequences may again be extracted:
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invariants of the pair (P3 × P2 |𝐾3 + 𝐸) where 𝐾3 and E are a quartic and a cubic can be computed by
[20, 17].

0.3. Rank reduction and further questions

The local-logarithmic correspondence is one among a number of beautiful results in the relative Gromov–
Witten theory of a smooth pair, starting with Gathmann’s striking work [16]. In simple normal crossings
geometries, results are much harder to come by and the analogue of Gathmann’s recursion is not known.
The difficulty of working with the invariants is visible in the degeneration formalism [2, 26].

An approach to our results via degeneration appears to be difficult, at least to the authors. We chart a
‘pure thought’ alternative for reducing questions about the geometry of logarithmic stable map spaces
to the case of smooth pairs and implement it completely in the maximal contacts case. The method is
restricted to genus 0 invariants satisfying a positivity assumption, but even these invariants have not
been computed by other methods, not even in principle. Moreover, many important phenomena, such
as the failure of the local-logarithmic correspondence, appear already in this setting.

Our technique geometrises a categorical insight of Abramovich–Chen [1]. Given a logarithmic curve
in (𝑋 |𝐷), one obtains a logarithmic curve in the smooth pairs (𝑋 |𝐷𝑖) by forgetting the logarithmic
structure away from 𝐷𝑖 . A naive expectation is that the intersection of these loci recovers the locus of
logarithmic maps to (𝑋 |𝐷). This expectation fails but is corrected by blowing up the moduli of maps
to X. The intersection of strict transforms recovers the space of logarithmic maps to (𝑋 |𝐷). Tropical
geometry informs the blowups used to correct the intersection.

We open two directions for future work.

Problem 0.1 (Moduli factorisation). For fixed contact order data Γ, determine an efficient and explicit
sequence of blowups at smooth centres K0,𝑘 (P, 𝛽)† → K0,𝑘 (P, 𝛽) such that the strict transform of
KΓ (P|𝐻) → K0,𝑘 (P, 𝛽) along the blowup is transverse to the strata.

A solution would generalise the combinatorics in this article. It dovetails with the following. For fixed
contact orders Γ there is a cycle KΓ (P|𝐻) → K0,𝑘 (P, 𝛽) in the space of stable maps. For any sufficiently
fine logarithmic blowup of the codomain K0,𝑘 (P, 𝛽)† → K0,𝑘 (P, 𝛽), the strict transform of KΓ (P|𝐻) is
transverse to the boundary of K0,𝑘 (P, 𝛽)†. We refer to this as the transverse class.

Problem 0.2 (The transverse class). Determine an expression, in terms of tautological classes, for the
transverse relative Gromov–Witten class in any sufficiently fine blowup K0,𝑘 (P, 𝛽)† of the moduli space
of stable maps.

We do not extract a closed form in the maximal contacts case; our expression is algorithmic, not
closed. A solution to this question would determine the genus 0 Gromov–Witten theory of all section
pairs, which is beyond the present state of the art and complete a parallel to [16].

To conclude this introduction, we note that an important recent development in the subject has been
the development of an approach to Gromov–Witten theory relative to reducible divisors by means of
orbifold structures by Tseng–You [29]. Our naive theory for section pairs coincides with this orbifold
theory; see [7, Corollary 2.2]. Admitting this equality, our framework explains in simple geometric
terms why the new orbifold theory does not coincide with the logarthmic theory.

Comparison with v1

An earlier version of this article incorrectly claimed a positive answer to the local-logarithmic conjecture
for section pairs. The error was wrongly deducing that the strict transform of the relative Gromov–Witten
class was equal to the total transform, which occurred via a misapplication of the vanishing results in
[31]. The technique has been refined in this version, but the basic geometric strategy remains the same.
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1. Counterexamples, conics, quartics

The counterexamples to the cycle-theoretic correspondence follow the same basic principle. The local
theory of a split rank 2 vector bundle satisfies a simple product rule, coming from the Whitney sum
formula for the obstruction bundle. The parallel splitting for the logarithmic theory fails. The analysis
here is based on examples computed in the Ph.D. thesis of N.N. [23, §3].

1.1. Unpointed counterexample: plane quartics

Let 𝐻1, 𝐻2 ⊆ P2 be distinct lines. For 𝑖 ∈ {1, 2} we consider the moduli space

Kmax
0,1 (P2 |𝐻𝑖 , 4) (1)

of logarithmic stable maps to (P2 |𝐻𝑖) with maximal tangency at a single marked point. The logarithmic
Euler sequence shows that 𝑇(P2 |𝐻𝑖)

is convex, so the moduli space (1) is logarithmically smooth. As
such, it contains the dimensionally transverse locus, consisting of maps with smooth domain whose
image is not contained inside 𝐻𝑖 , as a dense open. Using an explicit parametrisation of this open locus,
we conclude that (1) is irreducible with dimension and expected dimension equal to 8.

Forgetting the logarithmic structures and the marking, we obtain a generically finite map:

𝜋𝑖 : Kmax
0,1 (P2 |𝐻𝑖 , 4) → K0,0 (P

2, 4).

The target is a smooth Deligne–Mumford stack, of dimension 11.

Lemma 1.1. There is an equality of classes in K0,0 (P
2, 4):

𝜋1
★[K

max
0,1 (P2 |𝐻1, 4)] · 𝜋2

★[K
max
0,1 (P2 |𝐻2, 4)] = 42 · [K0,0 (OP2 (−𝐻1) ⊕ OP2 (−𝐻2), 4)]vir.

Proof. The rational Chow groups of K0,0(P
2, 4) possess an intersection product, as this space is smooth.

The local class on the right-hand side is the product of the Euler classes of the two local classes associated
to the Gromov–Witten theories of the bundles OP2 (−𝐻1) and OP2 (−𝐻2). By the local-logarithmic
correspondence for smooth pairs [31], each Euler class is equal to the corresponding logarithmic term
on the left-hand side. The result follows. �

Consider the moduli space

Kmax
0,2 (P2 |𝐻1 + 𝐻2, 4)

of logarithmic stable maps with maximal contact to 𝐻1 and 𝐻2 at markings 𝑥1 and 𝑥2. As before, the
logarithmic Euler sequence shows that this space is logarithmically smooth and contains the locus of
maps from smooth domains not mapping into 𝐻1 ∪ 𝐻2 as a dense open. It follows that it is irreducible,
with dimension equal to the expected dimension 5. There is a forgetful morphism:

𝜋 : Kmax
0,2 (P2 |𝐻1 + 𝐻2, 4) → K0,0 (P

2, 4).

The remainder of this section will focus on the following result, which, combined with Lemma 1.1,
demonstrates the failure of the local-logarithmic correspondence.

Proposition 1.2. The following classes in K0,0 (P
2, 4) are not equal:

𝜋1
★[K

max
0,1 (P2 |𝐻1, 4)] · 𝜋2

★[K
max
0,1 (P2 |𝐻2, 4)] ≠ 𝜋★[Kmax

0,2 (P2 |𝐻1 + 𝐻2, 4)] .

The forgetful morphisms are all generically injective, so the pushforward classes may be identified
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with the fundamental classes of the images. Proposition 1.2 becomes

[𝜋1 (Kmax
0,1 (P2 |𝐻1, 4))] · [𝜋2 (Kmax

0,1 (P2 |𝐻2, 4))] ≠ [𝜋(Kmax
0,2 (P2 |𝐻1 + 𝐻2, 4))] . (2)

Lemma 1.3. The intersection

𝜋1 (Kmax
0,1 (P2 |𝐻1, 4)) ∩ 𝜋2 (Kmax

0,1 (P2 |𝐻2, 4)) ⊆ K0,0(P
2, 4) (3)

contains two irreducible components, each of dimension 5.

Proof. The first irreducible component is the main component, which is the closure of the locus of
dimensionally transverse maps. This is contained in the intersection (3). As noted above, it coincides
with the image of the moduli space of logarithmic stable maps to (P2 |𝐻1 + 𝐻2):

𝜋(Kmax
0,2 (P2 |𝐻1 + 𝐻2, 4)).

For the second irreducible component, consider the closure in K0,0 (P
2, 4) of the locus parametrising

maps from rational curves of the form

𝐶 = 𝐶0 ∪ 𝐶1 ∪ · · · ∪ 𝐶4 → P2

in which each 𝐶𝑖 is smooth, the component 𝐶0 is contracted to 𝐻1∩𝐻2 and meets each of the components
𝐶1, . . . , 𝐶4 in a node and the remaining components are mapped isomorphically onto lines. The image
of such a map is a collection of four lines through the point 𝐻1 ∩𝐻2 and there is an M0,4 moduli for the
internal component 𝐶0; it follows that this locus is 5-dimensional. It remains to show that it is contained
in each of the images 𝜋𝑖 (Kmax

0,1 (P2 |𝐻𝑖 , 4)). The image of

Kmax
0,1 (P2 |𝐻𝑖 , 4) → K0,1(P

2, 4)

is the closure of its interior; the interior consists of maps from smooth domains which have maximal
contact order to 𝐻𝑖 but do not map inside 𝐻𝑖 . The closure is identified by Gathmann’s numerical
balancing criterion [16, Remark 1.7(ii)]. Consider the locus of maps

𝐶 = 𝐶0 ∪ 𝐶1 ∪ · · · ∪ 𝐶4 → P2

as above, where 𝐶0 bears the marked point. Each noncontracted component meets 𝐻𝑖 with contact order 1,
and by the numerical criterion we deduce that the locus is contained in the image of Kmax

0,1 (P2 |𝐻𝑖 , 4) →
K0,1 (P

2, 4). The claim follows by applying the forgetful morphism K0,1(P
2, 4) → K0,0(P

2, 4). �

Proof of Proposition 1.2. By Lemma 1.3, the intersection contains at least two irreducible components,
each of dimension 5. Any additional irreducible component must arise as the intersection of images of
boundary strata in Kmax

0,1 (P2 |𝐻𝑖 , 4). We claim its dimension is at most 5. Consider Kmax
0,1 (P2 |𝐻1, 4). This

has dimension 8 and any boundary stratum has dimension at most 7. Forgetting the marking reduces the
dimension to 6 unless the marking lies on a contracted tail. In the former case, as in general, the resulting
locus in K0,0(P

2, 4) does not generically satisfy the numerical criterion with respect to 𝐻2, which cuts
the dimension to at least 5. In the latter case, the component of four lines has been dealt with already.
The remaining possibility comprises a conic tangent to 𝐻1 and two lines through the tangency point.
Elementary geometry again bounds the dimension at 5. It follows that every irreducible component of
the intersection (3) has dimension 5.

The left-hand side of (2) is the sum of classes of the irreducible components, with positive multi-
plicities [15, Proposition 7.1]. The space K0,0(P

2, 4) is projective, and Bezout’s theorem guarantees that
the sum of classes of excess components is not zero in the Chow group of K0,0(P

2, 4). The component
[𝜋(Kmax

0,2 (P2 |𝐻1 + 𝐻2, 4)] appears on both sides of (2), so the two sides cannot be equal. �
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Remark 1.4. The counterexample implies that there is some invariant for which the local and logarithmic
theories differ. Indeed, Gromov–Witten theory includes all integrals against tautological classes on the
moduli space of stable maps. Poincaré duality furnishes a cohomology class that distinguishes the two
classes, but the cohomology of K0,0(P

2, 4) is entirely tautological; see [24]. An explicit instance is
calculated in Subsection 3.7.

Remark 1.5. The intersection in Lemma 1.3 is exactly the union of the two components described
above; there are no additional components. This follows from the blowup analysis of Sections 2–3,
which also provides a technique to calculate the excess components.

Remark 1.6 (Primary correspondence). In the degree 4 maximal contact geometry for (P2 |𝐻1 + 𝐻2),
the excess component consists of four lines through a point. As a consequence, this component cannot
contribute to a Gromov–Witten invariant with only primary insertions, as the cross ratio of the nodes
on the contracted component cannot be fixed by primary insertions. In particular, the local-logarithmic
correspondence holds in degrees up to 4 with primary insertions.

1.2. Pointed counterexample: plane conics

The strong form of the correspondence implies the original form, so the counterexample above also
falsifies the strong form. We record a simpler failure of the strong form, which occurs in lower degree.
We leave some verifications to the reader, since the analysis is simpler than the one above.

For 𝑖 ∈ {1, 2} consider the moduli space Kmax
0,2 (P2 |𝐻𝑖 , 2) with maximal contact order at the mark-

ing 𝑥𝑖 and zero contact order at the marking 𝑥≠𝑖 . This is the universal curve over the moduli space
Kmax

0,1 (P2 |𝐻𝑖 , 2). Proceeding as above, it suffices to show the following inequality:

[Kmax
0,2 (P2 |𝐻1, 2)] · [Kmax

0,2 (P2 |𝐻2, 2)] ≠ [Kmax
0,2 (P2 |𝐻1 + 𝐻2, 2)] (4)

in K0,2 (P
2, 2), where we have suppressed pushforwards from the notation.

Proof of (4). We examine the intersection

Kmax
0,2 (P2 |𝐻1, 2) ∩ Kmax

0,2 (P2 |𝐻2, 2) ⊆ K0,2(P
2, 2). (5)

This has a main component: the closure of the space of maps intersecting each 𝐻𝑖 in precisely one
point. This component coincides with the locus Kmax

0,2 (P2 |𝐻1 + 𝐻2, 2), which has dimension equal to the
expected dimension 3.

A second 3-dimensional component of the intersection (5) parametrises maps of the form

𝐶0 ∪ 𝐶1 ∪ 𝐶2 → P2

where 𝐶0 bears the two marked points, is contracted to 𝐻1 ∩ 𝐻2 and meets 𝐶1 and 𝐶2 at distinct
points. The components 𝐶1 and 𝐶2 each map isomorphically onto lines. Elementary geometry shows
that this locus has dimension 3: two dimensions for the two lines and one for the cross ratio of the four
points. Direct analysis shows that there are no further irreducible components. This second irreducible
component contributes with positive multiplicity. Therefore, the logarithmic class is not the product of
the two classes associated to the relative theories of the smooth pairs. This yields a counterexample to
the strong form of the conjecture. �

Remark 1.7. The examples are the lowest degree failures of the two conjectures. The degree 2 coun-
terexample above does not yield a counterexample to the original form of the correspondence; the cross
ratio of the points in the contracted component is lost, so the class vanishes in the pushforward. So the
strong form of the conjecture is genuinely stronger than the original one.
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2. Correcting the correspondence I: subdivisions and modifications

The failure of the local-logarithmic correspondence stems from the fact that moduli spaces of logarithmic
maps do not satisfy a naive product formula over the space of ordinary maps:

K(𝑋 |𝐷1) ×K(𝑋 ) K(𝑋 |𝐷2) ≠ K(𝑋 |𝐷).

The left-hand side can include excess components, even in convex settings where the right-hand side
is irreducible. The local and naive theories do satisfy a product formula, so the local-logarithmic
correspondence cannot hold in generality. This observation led to the counterexamples of Section 1.

In the next two subsections, we establish a method for calculating the defect between the naive and
logarithmic theories. We transversalise the naive intersection by performing blowups on K(𝑋) and apply
Fulton’s blowup formula to quantify the difference between the theories.

2.1. Setup: target geometry and moduli spaces

Consider a target (𝑋 |𝐷) with 𝑋 = P𝑛1 × P𝑛2 and 𝐷 = 𝐷1 + 𝐷2 a divisor, with each smooth component
𝐷𝑖 the pullback of a hyperplane in P𝑛𝑖 . Spaces of genus 0 logarithmic stable maps to X, (𝑋 |𝐷1),
(𝑋 |𝐷2) and (𝑋 |𝐷) are logarithmically unobstructed; the discussion which follows applies to any target
satisfying this.

We establish a corrected local-logarithmic correspondence in this setting; the case with more divisor
components follows mutatis mutandis by replacing 𝐷2 with 𝐷2 + . . . + 𝐷𝑘 and the case of hyperplane
sections follows by virtual pullback (see Section 4).

We begin by establishing notation for the maximal contacts theory. We fix a curve class 𝛽 and
introduce markings 𝑥1, 𝑥2 which have maximal tangency with respect to 𝐷1, 𝐷2, respectively. We obtain
a moduli space of logarithmic stable maps to (𝑋 |𝐷) with maximal contacts

Kmax
0,2 (𝑋 |𝐷, 𝛽)

and for 𝑖 ∈ {1, 2} a moduli space of logarithmic stable maps Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽) to (𝑋 |𝐷𝑖). The latter space

is also two-pointed; the marking 𝑥≠𝑖 carries no tangency condition. This is the universal curve over the
one-pointed space Kmax

0,1 (𝑋 |𝐷𝑖 , 𝛽).
The following target diagram is Cartesian in fine and saturated logarithmic schemes:

(𝑋 |𝐷) (𝑋 |𝐷1)

(𝑋 |𝐷2) 𝑋.

�

The moduli spaces of two-pointed logarithmic stable maps enjoy a similar relationship

Kmax
0,2 (𝑋 |𝐷, 𝛽) Kmax

0,2 (𝑋 |𝐷1, 𝛽)

Kmax
0,2 (𝑋 |𝐷2, 𝛽) K0,2(𝑋, 𝛽);

�

see [1, Theorem 2.6]. This diagram is Cartesian in the category of fine and saturated logarithmic stacks
but not typically Cartesian in the category of ordinary stacks (the Cartesian product in the category of
ordinary stacks is instead the naive space). The failure is accounted for by the fact that neither of the
morphisms Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽) → K0,2(𝑋, 𝛽) is integral and saturated.
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2.2. Semistable reduction

Our strategy is to correct this fibre product by replacing the morphism Kmax
0,2 (𝑋 |𝐷1, 𝛽) → K0,2(𝑋, 𝛽)

with an integral and saturated birational model. This will be constructed using weak semistable reduction
[3, 22].

A toroidal morphism 𝑋 → 𝐵 of toroidal embeddings is logarithmically smooth with the divisorial
structure. The morphism need not be equidimensional or have reduced fibres. In their work on weak
semistable reduction, Abramovich–Karu [3] identified criteria for these properties.

Lemma 2.1 ([3, Lemma 4.1]). Let 𝑓 : 𝑋 → 𝐵 be a toroidal morphism of toroidal embeddings and let
Σ𝑋 → Σ𝐵 be the morphism of cone complexes. Then f has equidimensional fibres if and only if every
cone of Σ𝑋 surjects onto a cone of Σ𝐵.

Lemma 2.2 ([3, Lemma 5.2]). Let 𝑓 : 𝑋 → 𝐵 be a toroidal morphism with equidimensional fibres and
let Σ𝑋 → Σ𝐵 be the morphism of cone complexes. Then f has reduced fibres if and only if for every
cone 𝜎 with image cone 𝜏, the image of the morphism on associated lattices is saturated.

A toroidal morphism satisfying the conditions in the lemmas above is weakly semistable. Any
toroidal morphism can be modified to a weakly semistable one.

Proposition 2.3 (Toroidal weak semistable reduction [3]). Let 𝑓 : 𝑋 → 𝐵 and Σ 𝑓 : Σ𝑋 → Σ𝐵 be as
above. There exist subdivisions of the source and target Σ†

𝑋 → Σ†
𝐵, such that the resulting morphism

𝑋† → 𝐵† is equidimensional. By applying a sequence of root stack constructions (change of lattice)
to 𝐵†, we obtain a Deligne–Mumford stack B† and a new morphism 𝑋† → B† which is equidimensional
with reduced fibres.

The Abramovich–Karu construction is nonunique, depending on an auxiliary choice of piecewise-
linear support functions. Later work of Molcho [22, Theorem 2.4.2] showed that if the morphism Σ 𝑓 is
proper and surjective, there is a unique minimal choice. The construction declares the image of every
cone to be a cone and subdivides the intersections as necessary.

2.3. The subdivision

We apply the construction in the previous section to spaces of logarithmic stable maps. The first step
is to replace each of the moduli spaces Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽) for 𝑖 = 1, 2 with Kim’s space of logarithmic
stable maps to expansions [19]. As discussed in [6, Section 2.1], this is a logarithmic modification
of the Abramovich–Chen–Gross–Siebert moduli space, representing the subfunctor of image-ordered
tropical maps. The tropicalisation

Tmax
0,2 (𝑋 |𝐷𝑖 , 𝛽) = Trop Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽)

is the cone complex parametrising image-ordered degree-weighted tropical stable maps to R≥0. The
space K0,2 (𝑋, 𝛽) has logarithmic structure induced by its normal crossings boundary (equivalently, by
viewing it as a space of logarithmic stable maps to a trivial logarithmic scheme) and the tropicalisation

T0,2 (𝑋, 𝛽) = Trop K0,2(𝑋, 𝛽)

is the cone complex parametrising degree-weighted tropical stable curves. We apply weak semistable
reduction to the morphism

Kmax
0,2 (𝑋 |𝐷1, 𝛽) → K0,2(𝑋, 𝛽).

This produces subdivisions of the associated cone complexes with an induced morphism

Tmax
0,2 (𝑋 |𝐷1, 𝛽)† → T0,2(𝑋, 𝛽)†,
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which is combinatorially equidimensional and reduced; it satisfies the polyhedral criteria for these
conditions. On the associated logarithmic modifications, we obtain a morphism

Kmax
0,2 (𝑋 |𝐷1, 𝛽)† → K0,2 (𝑋, 𝛽)†,

which is integral and saturated. We subdivide T0,2 (𝑋 |𝐷2, 𝛽) by pulling back the subdivision T0,2 (𝑋, 𝛽)†

of T0,2 (𝑋, 𝛽) (note the asymmetry between 𝐷1 and 𝐷2 in this construction). We thus obtain a diagram

Kmax
0,2 (𝑋 |𝐷, 𝛽)† Kmax

0,2 (𝑋 |𝐷1, 𝛽)†

Kmax
0,2 (𝑋 |𝐷2, 𝛽)† K0,2 (𝑋, 𝛽)†

� 𝑔

which, since the morphism g is now integral and saturated, is Cartesian in both the category of fine and
saturated logarithmic stacks and the category of ordinary stacks. The fibre product Kmax

0,2 (𝑋 |𝐷, 𝛽)† is a
birational model for Kmax

0,2 (𝑋 |𝐷, 𝛽).

Remark 2.4. The construction is canonical, since the morphism of cone complexes

Tmax
0,2 (𝑋 |𝐷1, 𝛽) → T0,2 (𝑋, 𝛽)

is surjective. This is shown at the start of the next section.

Remark 2.5. The preceding subdivisions do not require a change of lattice (saturation), as the minimal
monoid associated to a tropical stable map is automatically saturated over the minimal monoid associated
to the underlying tropical curve [18, §1.5]. However, the interpretation of our weighted blowups as stacky
modifications will require a stacky change of lattice; see Subsection 3.6.

2.4. Modular description: image-ordering (left-to-right)

In order to access the intersection theory of these modifications, it is necessary to obtain a more explicit
description of the subdivisions involved. We begin with a modular interpretation for the subdivision
T0,2 (𝑋, 𝛽)† in terms of order relations on the vertices of the tropical curve. A similar discussion can be
found in [13], and additional examples are discussed there.

Remark 2.6. Both the results and the arguments of this section apply beyond the maximal contacts
setting to any moduli space of genus 0 logarithmic stable maps relative to a smooth divisor.

Given a two-pointed, degree-weighted stable tropical curve � over a base cone 𝜎, we may assign the
formal expansion factor 𝐷1 · 𝛽 to the semi-infinite leg corresponding to 𝑥1 and the formal expansion
factor 0 to the semi-infinite leg corresponding to 𝑥2. Having done this, there is then a unique way to
assign a formal expansion factor 𝑚𝑒 to each (directed) edge 𝑒 ∈ �, in such a way that the resulting tropical
curve is balanced; this is a consequence of the genus 0 hypothesis. From this, we obtain a tropical map

𝑓 : �→ Hom(𝜎,R),

well-defined up to overall translation in R. For vertices 𝑣1, 𝑣2 ∈ � we declare

𝑓 (𝑣1) ≤ 𝑓 (𝑣2) if and only if 𝑓 (𝑣2) − 𝑓 (𝑣1) ∈ Hom(𝜎,R≥0)

and observe that this defines a partial ordering on the vertices of �.

Proposition 2.7. T0,2(𝑋, 𝛽)† is the space of degree-weighted stable tropical curves, such that the 𝑓 (𝑣)
are totally ordered. The cones of this subdivision are the images of cones of Tmax

0,2 (𝑋 |𝐷1, 𝛽).
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We refer to T0,2(𝑋, 𝛽)† as the moduli space of image-ordered tropical curves. A similar construction
was outlined in [6, Section 2.1].

Proof. Temporarily denote the moduli space of image-ordered tropical curves by T0,2(𝑋, 𝛽)‡; it is clear
that this is a subdivision of T0,2 (𝑋, 𝛽).

Consider a cone 𝜏 ∈ Tmax
0,2 (𝑋 |𝐷1, 𝛽). This corresponds to a combinatorial type of tropical stable map

to R≥0, and if we consider the image 𝜏 ⊆ |T0,2 (𝑋, 𝛽) | and restrict the universal curve � to 𝜏, we obtain
a tropical curve whose 𝑓 (𝑣) are totally ordered (we obtain a total ordering because we work with Kim’s
space). This total ordering determines a combinatorial type of image-ordered curve, corresponding to a
cone 𝜌 ∈ T0,2 (𝑋, 𝛽)‡ such that 𝜏 ⊆ 𝜌. We need to show that in fact 𝜏 = 𝜌.

The cone 𝜏 is simplicial, with coordinates over Q given by the target edge lengths 𝑙1, . . . , 𝑙𝑘 . We may
assume that over 𝜏 there is at least one vertex 𝑣0 ∈ � mapping to 0 ∈ R≥0 (if not, replace 𝜏 with the
subcone defined by 𝑙1 = 0 and note that this does not alter 𝜏 or 𝜌).

Choosing for each i a stable vertex 𝑣𝑖 ∈ � mapping to the ith target vertex, we have 𝑓 (𝑣0) < 𝑓 (𝑣1) <
. . . < 𝑓 (𝑣𝑘 ) on 𝜌 and every other vertex satisfies 𝑓 (𝑣) = 𝑓 (𝑣𝑖) for some i. Thus, we see that 𝜌 is also a
simplicial cone, with coordinates over Q given by

𝑓 (𝑣1) − 𝑓 (𝑣0), 𝑓 (𝑣2) − 𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑘 ) − 𝑓 (𝑣𝑘−1).

The map 𝜏 → 𝜌 is given by 𝑙𝑖 ↦→ 𝑓 (𝑣𝑖) − 𝑓 (𝑣𝑖−1), which is clearly surjective, so 𝜏 = 𝜌 as required.
On the other hand, given a cone 𝜌 ∈ T0,2(𝑋, 𝛽)‡ corresponding to a combinatorial type of image-

ordered tropical curve, we obtain a unique minimal combinatorial type for a stable tropical map � → R≥0,
by forcing vertices in � with minimal 𝑓 (𝑣) to map to 0 ∈ R≥0; there are no further edge length relations
as � has genus 0. This corresponds to a cone 𝜏 ∈ Tmax

0,2 (𝑋 |𝐷1, 𝛽), and it follows from the discussion
above that 𝜏 = 𝜌. �

Corollary 2.8. The subdivision procedure does not modify the source cone complex:

Tmax
0,2 (𝑋 |𝐷1, 𝛽)† = Tmax

0,2 (𝑋 |𝐷1, 𝛽).

Proof. The image 𝜏 of every cone of Tmax
0,2 (𝑋 |𝐷1, 𝛽) is a cone in the image-ordered subdivision, so the

images of two cones cannot intersect away from the image of a common face. �

Remark 2.9. The previous result helps in understanding the subdivision procedure. It is essentially
unimportant for our later arguments.

Corollary 2.10. The subdivision T0,2(𝑋, 𝛽)† is simplicial and K0,2(𝑋, 𝛽)† is a smooth orbifold.

Proof. We saw in the proof of Proposition 2.7 that image-ordered cones are simplicial. The fact that
K0,2 (𝑋, 𝛽)† is smooth follows immediately, interpreting the logarithmic modification as a nonrepre-
sentable orbitoroidal embedding (see Subsection 3.6 for details). �

2.5. Modular description: alignment (right-to-left)

The results of the previous subsection are general, applying to moduli spaces with arbitrary tangency
orders. When the contact order is maximal, we exhibit a combinatorial factorisation of the subdivision,
describing it as a sequence of weighted stellar subdivisions along smooth cones. The description
resembles the radial alignments in [27].

Observe that if we let 𝑣0 ∈ � denote the vertex containing the marking 𝑥1, the balancing condition
implies that 𝑓 (𝑣0) must be maximal amongst the 𝑓 (𝑣). If we therefore let

𝜑(𝑣) = 𝑓 (𝑣0) − 𝑓 (𝑣) ∈ Hom(𝜎,R≥0),
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then we see that totally ordering the 𝑓 (𝑣) is equivalent to totally ordering the 𝜑(𝑣). We think of 𝜑(𝑣)
as the distance from the root 𝑣0: it is the expansion factor–weighted sum of the edge lengths along the
unique path connecting 𝑣0 to v. We obtain the following.

Proposition 2.11. T0,2(𝑋, 𝛽)† is the moduli space of degree-weighted stable tropical curves, such that
the distances 𝜑(𝑣) from the root 𝑣0 are totally ordered.

We call such a tropical curve radially aligned, or aligned, with respect to 𝑣0.

2.6. Iterative description

The modular interpretation via alignments gives a very concrete iterative description of T0,2 (𝑋, 𝛽)† →
T0,2 (𝑋, 𝛽) and therefore of the logarithmic modification K0,2 (𝑋, 𝛽)† → K0,2(𝑋, 𝛽). This description,
inspired by results in [27, 30], will be crucial in Section 3.

Definition 2.12. A floral cone 𝜎 ∈ T0,2(𝑋, 𝛽) is a cone indexed by a type of the following form:

𝛽1 . . . 𝛽𝑟

𝛽0

𝑥1

The vertex supporting the marking 𝑥2 is allowed to be arbitrary and is denoted 𝑣(𝑥2). We impose a
partial ordering on the floral cones as follows:

𝛽1 . . . 𝛽𝑟

𝛽0

𝑥1

<

𝛽′1 . . . 𝛽′𝑟 ′

𝛽′0

𝑥1

(6)

if and only if

(1) 𝛽0 < 𝛽′
0; or

(2) 𝛽0 = 𝛽′
0 and 𝑟 < 𝑟 ′; or

(3) 𝛽0 = 𝛽′
0, 𝑟 = 𝑟 ′ and 𝑣(𝑥2) ≠ 𝑣0 but 𝑣′(𝑥2) = 𝑣0.

Remark 2.13. Given floral cones 𝜎, 𝜎′ ∈ T0,2(𝑋, 𝛽) with 𝜎′ ∈ Star(𝜎), stability ensures that 𝜎′ < 𝜎.
Equivalently,

𝜎′ ≮ 𝜎 ⇒ 𝜎′ ∉ Star(𝜎).

Therefore, 𝜎′ will be unaffected by taking a weighted stellar subdivision along 𝜎; that is, it will remain
a cone in the subdivided cone complex.

Given this setup, we have the following strong combinatorial structure result.

Theorem 2.14. The morphism T0,2(𝑋, 𝛽)† → T0,2(𝑋, 𝛽) is an iterated weighted stellar subdivision of
T0,2 (𝑋, 𝛽) along floral cones, in an order extending the partial order (6).
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A floral stratum is a closed boundary stratum 𝑍 (𝜎) ⊆ K0,2(𝑋, 𝛽) corresponding to a floral cone
𝜎 ∈ T0,2(𝑋, 𝛽).

Corollary 2.15. The morphism K0,2(𝑋, 𝛽)† → K0,2(𝑋, 𝛽) is an iterated weighted blowup of K0,2(𝑋, 𝛽)
along strict transforms of floral strata, in an order extending the partial order (6).

Remark 2.16. The statement of Remark 2.13 asserts that 𝑍 (𝜎′) is not contained in the blowup centre
𝑍 (𝜎) and therefore that its strict transform under the blowup – indexed by the same cone 𝜎′ in the
subdivided complex – is nonempty.

Proof of Theorem 2.14. Fix a cone 𝜎 ∈ T0,2 (𝑋, 𝛽) corresponding to a combinatorial type of a two-
pointed, degree-weighted tropical curve �. As before, let 𝑣0 ∈ � denote the root vertex containing the
marking 𝑥1 and use the balancing condition to assign formal expansion factors to every edge.

We construct the radially aligned subdivision 𝜎† → 𝜎 inductively. The idea is as follows: in order
to choose a total ordering of the distances 𝜑(𝑣) of the vertices from the root, we first must decide which
vertex has smallest 𝜑(𝑣). Having done this, we then need to decide which vertex is the next smallest; that
is, the smallest amongst the remaining vertices and so on. Each step is a weighted stellar subdivision of
a floral cone, consistent with the ordering (6).

Edges with zero expansion factor play no role in the subdivision, since their length parameters do
not appear in the 𝜑(𝑣). Therefore, we formally contract all such edges for this discussion. Orient the
graph � in such a way that every edge points away from the root. The first step is to decide which v has
minimal 𝜑(𝑣); the candidate vertices are the immediate descendants of 𝑣0:

𝑣1

𝜑(𝑣1)

. . . 𝑣𝑟

𝜑(𝑣𝑟 )

𝑣0

𝑥1

Setting all coordinates other than 𝜑(𝑣1), . . . , 𝜑(𝑣𝑟 ) to zero, we obtain the floral subcone

𝑣1

𝜑(𝑣1)

. . . 𝑣𝑟

𝜑(𝑣𝑟 )

𝑣0

𝑥1

The weighted stellar subdivision of 𝜎 along this floral subcone subdivides 𝜎 into cones, on each of
which we have

min(𝜑(𝑣1), . . . , 𝜑(𝑣𝑛)) = 𝜑(𝑣𝑖)

for some i. The weights are determined by the edge expansion factors, noting that the 𝜑(𝑣𝑖) may not be
primitive in 𝜎. On each cone of the subdivision there is a minimal vertex of �. This forms the base of
the induction.

For the induction step, choose a cone 𝜌 of the subdivision constructed so far; to simplify notation, we
assume that 𝜌 is maximal. On this cone we have a total ordering of a subset {𝑢1, . . . , 𝑢𝑘 } of the vertices
of �:

𝜑(𝑢1) < . . . < 𝜑(𝑢𝑘 ) < 𝜑(𝑣) for 𝑣 ∉ {𝑢1, . . . , 𝑢𝑘 , 𝑣0}. (7)
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Suppose that at the previous step we had taken a weighted stellar subdivision along a floral cone

𝑣1
𝛽1

𝜑(𝑣1)

. . . 𝑣𝑟
𝛽𝑟

𝜑(𝑣𝑟 )

𝑣0 𝛽0

𝑥1

(8)

and that (without loss of generality) 𝜌 is the cone of this subdivision on which 𝜑(𝑣1) is minimal (that
is, 𝑣1 = 𝑢𝑘 in (7)).

The candidates for the next-smallest vertex of � comprise the vertices 𝑣2, . . . , 𝑣𝑟 along with any
immediate descendants of 𝑣1; denote these by 𝑤1, . . . , 𝑤𝑠 . The following picture describes �:

𝑣0

𝑥1

. . .

𝑣1

𝑤1 . . . 𝑤𝑠

𝑣2 . . . 𝑣𝑟

The following functions then form part of a coordinate system for the cone 𝜌:

𝜑(𝑣2) − 𝜑(𝑣1), . . . , 𝜑(𝑣𝑟 ) − 𝜑(𝑣1), 𝜑(𝑤1) − 𝜑(𝑣1), . . . , 𝜑(𝑤𝑠) − 𝜑(𝑣1) (9)

(geometrically, the curve is destabilised by slicing it with the circle of radius 𝜑(𝑣1) and the parameter
𝜑(𝑣𝑖) − 𝜑(𝑣1) is the length of the final edge segment preceding the vertex 𝑣𝑖). Set all parameters other
than (9) to zero to obtain the following floral subcone:

𝑣0 𝛽0 + 𝛽1

𝑥1

𝑤1 . . . 𝑤𝑠 𝑣2 . . . 𝑣𝑟

(10)

Note that, since 𝜑(𝑣1) = 0 on this cone, the degree of the root changes from 𝛽0 in (8) to 𝛽0 + 𝛽1 in (10).
Taking the weighted stellar subdivision along this cone corresponds to choosing a minimum amongst
the parameters (9). But of course this is equivalent to choosing a minimum amongst

𝜑(𝑣2), . . . , 𝜑(𝑣𝑟 ), 𝜑(𝑤1), . . . , 𝜑(𝑤𝑠).

We have completed the induction step of the construction. Either 𝛽1 > 0, in which case 𝛽0 < 𝛽0 + 𝛽1,
or 𝛽1 = 0 and so by stability we have either 𝑠 ≥ 2 and so 𝑟 < 𝑠 + 𝑟 − 1, or 𝑠 = 1, in which case 𝑣1 must
contain the marking 𝑥2, which lies on the vertex 𝑣0 once we set 𝜑(𝑣1) = 0. In every case, we see that
the floral locus (10) appears strictly later than (8) in our ordering (6). �

Remark 2.17. We note T0,2(𝑋, 𝛽)† → T0,2(𝑋, 𝛽) is not a weighted stellar subdivision along every
floral cone. It is obtained by subdividing along those floral cones for which each edge of the tropical
curve is assigned a nonzero formal expansion factor with respect to 𝐷1; equivalently, those floral cones
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for which 𝐷1 · 𝛽𝑖 > 0 for 𝑖 ∈ {1, . . . , 𝑟}. This follows from the formal contraction of edges with zero
expansion factor, carried out in the proof above.

Example 2.18. Take 𝑋 = P𝑛 with 𝐷1 = 𝐻1 a hyperplane and consider the 4-dimensional cone
𝜌 ∈ T0,2 (P

𝑛, 3) indexed by the following combinatorial type:

𝑣00

𝑥2𝑥1

𝑣1 1

𝑒1

𝑣20

𝑒2

𝑣3 1

𝑒3

𝑣41

𝑒4

where the degree data are given in blue. We show how the above procedure produces the radial alignment
subdivision of 𝜌. We assign formal expansion factors to the edges, which in this case gives

𝑣00

𝑥2𝑥1

𝑣1 1

𝑒1 1

𝑣20

𝑒22

𝑣3 1

𝑒3 1

𝑣41

𝑒41

The distances from the root vertex are then given by

𝜑(𝑣1) = 𝑒1, 𝜑(𝑣2) = 2𝑒2, 𝜑(𝑣3) = 2𝑒2 + 𝑒3, 𝜑(𝑣4) = 2𝑒2 + 𝑒4.

The radial alignment construction subdivides 𝜌 into cones on which these quantities are totally ordered.
Following the process outlined in the proof of Theorem 2.14, the first step is to compare 𝜑(𝑣1) and
𝜑(𝑣2). This amounts to taking a weighted stellar subdivision along the floral subcone

𝑣00

𝑥2𝑥1

1

𝑒1

2

𝑒2

obtained inside 𝜌 by setting 𝑒3 = 𝑒4 = 0. The maximal cones of this first subdivision are 𝜌1 = {𝑒1 < 2𝑒2}
and 𝜌2 = {2𝑒2 < 𝑒1}. We focus on the latter (similar arguments apply to the former). On 𝜌2 we have
𝜑(𝑣2) < 𝜑(𝑣1), and the next step is to select a minimum amongst 𝜑(𝑣1), 𝜑(𝑣3) and 𝜑(𝑣4). This amounts
to subdividing along the floral subcone obtained inside 𝜌2 by setting 𝑒2 = 0:
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Figure 1. The subdivision of 𝜌 described in Example 2.18. The 𝑣𝑖 are dual to the parameters 𝑒𝑖 .

𝑣00

𝑥2𝑥1

1

𝑓1

1

𝑒3

1

𝑒4

Here 𝑓1 = 𝑒1 − 2𝑒2 forms part of the natural coordinate system on 𝜌2. This second subdivision
produces three maximal cones inside 𝜌2, and restricting to any one of these we see that the third and
final step is to subdivide along a floral subcone of type

𝑣01

𝑥2𝑥1

1 1

Note that the ordering (6) of floral cones is respected. The height- 1 slice is shown in Figure 1.

A note on monodromy. Floral strata typically have self-intersections. However, the iterative process
described above only involves blowups along strata with no self-intersections. This is the content of the
following lemma; the key observation is that the self-intersection of each floral stratum is separated by
taking the strict transforms along the blowups appearing earlier in the process.

Lemma 2.19. Let 𝜎 ∈ T0,2(𝑋, 𝛽) be a floral cone and T0,2(𝑋, 𝛽)‡ be the partial subdivision of
T0,2 (𝑋, 𝛽), such that 𝜎 is the next floral cone to be subdivided. The stratum 𝑍 (𝜎) ⊆ K0,2(𝑋, 𝛽)‡ has
empty self-intersection.

Proof. Combinatorially, this says that there is no cone 𝜌 ∈ T0,2(𝑋, 𝛽)‡ which contains 𝜎 as a face in two
different positions. Suppose that such a cone exists. As in the proof of Theorem 2.14, 𝜌 is indexed by a
combinatorial type of tropical curve, with a partial ordering of a subset of its vertices (which without
loss of generality are chosen to be strict):

𝜑(𝑢1) < . . . < 𝜑(𝑢𝑘 ) < 𝜑(𝑣) for 𝑣 ∉ {𝑢1, . . . , 𝑢𝑘 , 𝑣0}.
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Let 𝑣1, . . . , 𝑣𝑟 denote the vertices of � lying immediately outside the circle of radius 𝜑(𝑢𝑘 ) around 𝑣0.
Then a Q-coordinate system for the simplicial cone 𝜌 is given by

𝜑(𝑢1), 𝜑(𝑢2) − 𝜑(𝑢1), . . . , 𝜑(𝑢𝑘 ) − 𝜑(𝑢𝑘−1), (11)

𝜑(𝑣1) − 𝜑(𝑢𝑘 ), 𝜑(𝑣2) − 𝜑(𝑢𝑘 ), . . . , 𝜑(𝑣𝑟 ) − 𝜑(𝑢𝑘 ), (12)

𝑓1, . . . , 𝑓𝑙 , (13)

where the functions 𝑓1, . . . , 𝑓𝑙 are the lengths of all edges of � which descend from 𝑣1, . . . , 𝑣𝑟 .
The above parameters are presented in increasing order of distance from 𝑣0. The ordering of the

𝜑(𝑢𝑖) defines a collection of concentric circles around 𝑣0, and the coordinates (11) give the widths of
the corresponding annuli. Since 𝜎 is the next cone to subdivide, the functions (12) form a coordinate
system for 𝜎, cut out inside 𝜌 by setting the coordinates (11) and (13) to zero.

Recall that we assume that 𝜌 contains 𝜎 as a face in another position. Hence, there is a different
collection of coordinates on 𝜌 whose common vanishing locus also gives 𝜎. We claim that this collection
must also contain all of the coordinates (11); otherwise, the resulting combinatorial type involves a
nontrivial order relation between the edge lengths and hence cannot give 𝜎 since 𝜎 was not altered by
the previous subdivisions; see Remark 2.13.

Therefore, all of the coordinates (11) must be set to zero. For dimension reasons, at least one of the
coordinates (12) must also be set to zero. As in the proof of Theorem 2.14, it follows from stability
that the resulting combinatorial type cannot be 𝜎, since the discrete data associated to 𝑣0 (curve class,
number of adjacent edges, markings) must increase. �

3. Correcting the correspondence II: blowup formula analysis

The previous section furnishes a sequence of birational modifications of the space of maps, resulting
in a completely explicit intersection problem. We now unwind this problem and explain how it corrects
the local-logarithmic correspondence.

3.1. Corrected products

Consider again the diagram of subdivided moduli spaces from Subsection 2.3:

Kmax
0,2 (𝑋 |𝐷, 𝛽)† Kmax

0,2 (𝑋 |𝐷1, 𝛽)†

Kmax
0,2 (𝑋 |𝐷2, 𝛽)† K0,2(𝑋, 𝛽)†.

�

The entries in this diagram are all logarithmically smooth and irreducible. The fibre product is transverse
over the dense locus where the logarithmic structure is trivial, yielding an equality

[Kmax
0,2 (𝑋 |𝐷, 𝛽)†] = [Kmax

0,2 (𝑋 |𝐷1, 𝛽)†] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)†] in K0,2(𝑋, 𝛽)†

(pushforwards have been suppressed from the notation). Pushing down along the modification
𝜌 : K0,2(𝑋, 𝛽)† → K0,2(𝑋, 𝛽), we obtain

[Kmax
0,2 (𝑋 |𝐷, 𝛽)] = 𝜌★

(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)†] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)†]

)
in K0,2(𝑋, 𝛽). (14)

It is natural to ask how this class relates to the naive intersection class:

[Kmax
0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax

0,2 (𝑋 |𝐷2, 𝛽)] in K0,2(𝑋, 𝛽). (15)
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We probe the geometry of the logarithmic modifications in order to explicitly describe the difference
between these classes. The main result is Theorem 3.4, which expresses this difference as a sum of
correction terms supported on excess loci.

This result compares the logarithmic and naive theories; see [23, §3]. We view this comparison as
the more fundamental result; the local-logarithmic comparison arises as a consequence.

3.2. Corrected local-logarithmic correspondence

Let 𝐹 : K0,2(𝑋, 𝛽) → K0,0(𝑋, 𝛽) denote the forgetful morphism. The corrected local-logarithmic corre-
spondence is obtained by pushing forward Theorem 3.4 along F. The key is the following simple result
concerning the local class.

Lemma 3.1. The following relation holds in K0,0(𝑋, 𝛽):

𝐹★

(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

)
= α · [K0,0(O𝑋 (−𝐷1) ⊕ O𝑋 (−𝐷2), 𝛽)]vir (16)

where α = (−1) (𝐷1+𝐷2) ·𝛽 (𝐷1 · 𝛽) (𝐷2 · 𝛽).

Proof. This follows from a comparison of diagonals. For 𝑖 ∈ {1, 2} consider the morphism

𝐺𝑖 : K0,2(𝑋, 𝛽) → K0,1(𝑋, 𝛽),

forgetting the marking 𝑥≠𝑖 , and let 𝐻 : K0,1(𝑋, 𝛽) → K0,0 (𝑋, 𝛽) be the morphism forgetting the remain-
ing marking. Consider the tower

K0,2(𝑋, 𝛽) × K0,2(𝑋, 𝛽) K0,1(𝑋, 𝛽) × K0,1(𝑋, 𝛽) K0,0(𝑋, 𝛽) × K0,0(𝑋, 𝛽).
𝐺1×𝐺2

𝐹×𝐹

𝐻×𝐻

For 𝑛 ∈ {0, 1, 2} we denote the inclusion and fundamental class of the diagonal by

𝜄𝑛 : K0,𝑛 (𝑋, 𝛽) ↩→ K0,𝑛 (𝑋, 𝛽) × K0,𝑛 (𝑋, 𝛽), Δ0,𝑛 = (𝜄𝑛)★[K0,𝑛 (𝑋, 𝛽)] .

These moduli spaces are unobstructed and we have

(𝐺1 × 𝐺2)★(Δ0,2) = (𝐻 × 𝐻)★(Δ0,0) (17)

since this equality holds on the dense open locus where the source curve is smooth. There is also an
equality

[Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽)] = (𝐺𝑖)

★[Kmax
0,1 (𝑋 |𝐷𝑖 , 𝛽)] .
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From these we obtain

(𝜄0)★
(
𝐹★

(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

) )
= (𝐹 × 𝐹)★(𝜄2)★

(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

)
= (𝐹 × 𝐹)★

((
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] × [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

)
· Δ0,2

)
= (𝐻 × 𝐻)★(𝐺1 × 𝐺2)★

((
𝐺★

1 [K
max
0,1 (𝑋 |𝐷1, 𝛽)] × 𝐺★

2 [K
max
0,1 (𝑋 |𝐷2, 𝛽)]

)
· Δ0,2

)
= (𝐻 × 𝐻)★

((
[Kmax

0,1 (𝑋 |𝐷1, 𝛽)] × [Kmax
0,1 (𝑋 |𝐷2, 𝛽)]

)
· (𝐺1 × 𝐺2)★(Δ0,2)

)
= (𝐻 × 𝐻)★

((
[Kmax

0,1 (𝑋 |𝐷1, 𝛽)] × [Kmax
0,1 (𝑋 |𝐷2, 𝛽)]

)
· (𝐻 × 𝐻)★(Δ0,0)

)
=

(
𝐻★[Kmax

0,1 (𝑋 |𝐷1, 𝛽)] × 𝐻★[Kmax
0,1 (𝑋 |𝐷2, 𝛽)]

)
· Δ0,0

= (𝜄0)★

(
𝐻★[Kmax

0,1 (𝑋 |𝐷1, 𝛽)] · 𝐻★[Kmax
0,1 (𝑋 |𝐷2, 𝛽)]

)
.

Letting 𝑝 : K0,0(𝑋, 𝛽) × K0,0(𝑋, 𝛽) → K0,0(𝑋, 𝛽) be the first projection, we have 𝑝 ◦ 𝜄0 = Id and so
applying 𝑝★ gives

𝐹★
(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

)
= 𝐻★[Kmax

0,1 (𝑋 |𝐷1, 𝛽)] · 𝐻★[Kmax
0,1 (𝑋 |𝐷2, 𝛽)] .

The claim then follows from the local-logarithmic correspondence for smooth divisors [31] applied to
the targets (𝑋 |𝐷1) and (𝑋 |𝐷2) and the product formula for the local class (a consequence of the splitting
of the obstruction bundle). �

Given this result, if we can relate the classes (14) and (15) on K0,2 (𝑋, 𝛽), then pushing forward along
F will relate the logarithmic class to the local class on K0,0(𝑋, 𝛽).

3.3. Iterated blowups: conventions and notation

The iterative description of the modification 𝜌 given in Subsection 2.6 will allow us to access this
intersection theory. The key tool is Fulton’s blowup formula comparing the strict transform to the
refined total transform [15, §6.7].

By Corollary 2.15 we may factor the modification 𝜌 as a tower of weighted blowups along strict
transforms of floral strata:

K0,2(𝑋, 𝛽)† = K0,2(𝑋, 𝛽)𝑚 → K0,2(𝑋, 𝛽)𝑚−1 → · · · → K0,2(𝑋, 𝛽)0 = K0,2(𝑋, 𝛽). (18)

For 𝑗 ∈ {1, . . . , 𝑚} we let 𝜎𝑗 denote the floral cone whose weighted blowup produces K0,2(𝑋, 𝛽) 𝑗 →
K0,2 (𝑋, 𝛽) 𝑗−1. Notice that 𝜎𝑗 is a cone in both T0,2 (𝑋, 𝛽) and in the subdivided cone complex
T0,2 (𝑋, 𝛽) 𝑗−1 and, as such, represents strata in both K0,2(𝑋, 𝛽) and K0,2(𝑋, 𝛽) 𝑗−1. We denote these
respectively by

𝑍 (𝜎𝑗 ) = 𝑍 (𝜎𝑗 )0 ⊆ K0,2(𝑋, 𝛽), 𝑍 (𝜎𝑗 ) 𝑗−1 ⊆ K0,2(𝑋, 𝛽) 𝑗−1.

Of course, 𝑍 (𝜎𝑗 ) 𝑗−1 is nothing but the strict transform of 𝑍 (𝜎𝑗 ) under the preceding weighted blowups
K0,2 (𝑋, 𝛽) 𝑗−1 → K0,2(𝑋, 𝛽) (which is well-defined because of the ordering: see Remark 2.16).

For 0 ≤ 𝑗 < 𝑘 ≤ 𝑚 we let 𝜌𝑘, 𝑗 denote the birational morphism

𝜌𝑘, 𝑗 : K0,2(𝑋, 𝛽)𝑘 → K0,2 (𝑋, 𝛽) 𝑗 .

https://doi.org/10.1017/fms.2021.78 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.78


20 Navid Nabijou and Dhruv Ranganathan

3.4. The blowup formula: strict and total transforms

For 𝑖 ∈ {1, 2} there is a corresponding tower of strict transforms:

Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽)† = Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽)𝑚 → Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽)𝑚−1 → · · · → Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽)0 = Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽).

(Note that by Corollary 2.8 these strict transforms are all isomorphic for 𝑖 = 1; this does not hold for
𝑖 = 2 and in any case is not important for the arguments which follow.)

Fulton’s blowup formula compares the fundamental class of the strict transform to the refined
fundamental class of the total transform, the latter being defined by Gysin pullback [15, Proposition 6.7
and Example 6.7.1]. In Subsection 3.6 we explain how to extend this to weighted blowups. For each
𝑗 ∈ {1, . . . , 𝑚} we obtain the following relation in K0,2(𝑋, 𝛽) 𝑗 :

𝜌★𝑗, 𝑗−1 [K
max
0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗−1] = [Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗 ] + 𝐴𝑖
𝑗 (19)

where 𝐴𝑖
𝑗 is a correction term supported on the excess locus of the total transform

Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗 Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽)tot
𝑗 K0,2 (𝑋, 𝛽) 𝑗

Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗−1 K0,2 (𝑋, 𝛽) 𝑗−1.

� 𝜌 𝑗, 𝑗−1

We describe the terms 𝐴𝑖
𝑗 in detail. The weighted blowup of the moduli space of ordinary stable

maps has an exceptional divisor lying over the blowup centre

𝐸 𝑗 K0,2(𝑋, 𝛽) 𝑗

𝑍 (𝜎𝑗 ) 𝑗−1 K0,2(𝑋, 𝛽) 𝑗−1

�

and the excess locus 𝐹𝑖
𝑗 in the total transform of the logarithmic moduli space is obtained by fibring

over this blowup centre:

𝐹𝑖
𝑗 𝐸 𝑗

Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗−1 K0,2(𝑋, 𝛽) 𝑗−1.

�

To describe 𝐹𝑖
𝑗 we must identify the maximal strata in Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗−1 which map to 𝑍 (𝜎𝑗 ) 𝑗−1.
This is equivalent to identifying the minimal cones in Tmax

0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗−1 that map to the interior of
Star(𝜎𝑗 ) ⊆ T0,2(𝑋, 𝛽) 𝑗−1.

3.4.1. Excess locus for 𝐷1
For 𝑖 = 1 these cones can be identified very explicitly. We expect the following result to be extremely
useful for future applications of the rank reduction technique. Recall that associated to the floral cone
𝜎𝑗 ∈ T0,2 (𝑋, 𝛽) there is a unique cone

𝜏𝑗 ∈ Tmax
0,2 (𝑋 |𝐷1, 𝛽)
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obtained by assigning formal expansion factors to the edges of the tropical curve and requiring all
nonroot vertices to map to 0 ∈ R≥0:

𝛽1 . . . 𝛽𝑟

𝛽0

𝑥1

𝜎𝑗

�

𝑚1
...

𝑚𝑟

𝑥1

0
x

𝐷1

𝜏𝑗

Here each expansion factor 𝑚𝑖 = 𝐷1 · 𝛽𝑖 is nonzero (see Remark 2.17) and so dim 𝜏𝑗 = 1. We refer
to 𝜏𝑗 as a comb cone. Clearly, we have 𝜏𝑗 → 𝜎𝑗 and both 𝜏𝑗 and 𝜎𝑗 are unaffected by the first 𝑗 − 1
weighted stellar subdivisions.

Theorem 3.2. The cone 𝜏𝑗 in Tmax
0,2 (𝑋 |𝐷1, 𝛽) 𝑗−1 is the unique minimal cone mapping into Star(𝜎𝑗 ) ⊆

T0,2 (𝑋, 𝛽) 𝑗−1; that is, every cone 𝜃 in Tmax
0,2 (𝑋 |𝐷1, 𝛽) 𝑗−1 mapping into Star(𝜎𝑗 ) contains 𝜏𝑗 as a face.

Remark 3.3. The analogous statement on the initial moduli space T0,2 (𝑋, 𝛽) fails to hold; a simple
counterexample with (𝑋 |𝐷1) = (P𝑛 |𝐻) is given by

1

𝑒1

1

𝑒2

2

𝑥1

𝜎𝑗

1 𝑒1

1 𝑒2

2 𝑥1

0
x

𝐷1

𝜏𝑗

1 𝑒1

1
𝑒2

2
𝑓

0 𝑥1

0
x

𝐷1

𝜃

where the curve classes are indicated in blue and the tropical edge lengths in black. Here 𝜃 maps into
Star(𝜎𝑗 ) but does not contain 𝜏𝑗 as a face. The issue is that when we try to specialise 𝜃 by setting 𝑓 = 0,
the edge length relations 𝑒1 = 𝑒2 = 2 𝑓 force 𝑒1 = 𝑒2 = 0 as well.

Nevertheless, we claim that after performing the first 𝑗 − 1 subdivisions, the statement holds. The
reason for this is that these subdivisions cause the star of 𝜎𝑗 to become smaller, so eventually every such
minimal cone 𝜃 maps outside the star; this occurs because the tropical edge length relations for continuity
of the tropical map to R≥0 become incompatible with the radial alignment inequalities. Geometrically,
this means that every such maximal stratum 𝑍 (𝜃) becomes separated from 𝑍 (𝜎𝑗 ) by the process of
blowing up and taking strict transforms.

This process is visible in the above example; the first subdivision reduces the star of 𝜎𝑗 to the locus
where 2 𝑓 < 𝑒1, 𝑒2, and this is incompatible with the continuity relations on 𝜃.

Proof. Suppose that we are given a cone 𝜌 in Star(𝜎𝑗 ):

𝜎𝑗 ⊆ 𝜌 ∈ T0,2 (𝑋, 𝛽) 𝑗−1.

The cone 𝜌 is indexed by the combinatorial type of a more degenerate tropical curve, together with
a partial radial alignment of its vertices. Crucially, this partial alignment is such that, in the iterative
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subdivision process described in the proof of Theorem 2.14, 𝜎𝑗 is the next floral cone at which we must
subdivide. Now consider a cone

𝜃 ∈ Tmax
0,2 (𝑋 |𝐷1, 𝛽) 𝑗−1 = Tmax

0,2 (𝑋 |𝐷1, 𝛽)

which maps into 𝜌. We wish to prove that 𝜃 contains the comb cone 𝜏𝑗 as a face.
In order for 𝜃 → 𝜌, their combinatorial types must have the same source curve, after possibly

removing some 2-valent vertices. The vertex alignments/orderings induced by the combinatorial types
must be compatible. This means that, if the combinatorial type of 𝜃 has k target expansion levels, then
𝜌 aligns precisely those vertices mapped to the final l levels (for some 𝑙 < 𝑘), in the same order as
prescribed by 𝜃.

As noted, the partial ordering on 𝜌 is such that in the iterative subdivision process, 𝜎𝑗 is the next
cone at which we must subdivide. Following the procedure in the proof of Theorem 2.14, this means
the following: after we set 𝜑(𝑢𝑖) = 0 for every vertex 𝑢𝑖 appearing in the partial alignment, we obtain
a tropical curve such that the immediate descendants of 𝑣0 give the type of 𝜎𝑗 , in the sense that setting
all further edge lengths to zero specialises to the cone 𝜎𝑗 .

On 𝜃, the tropical parameters are given by the target edge lengths and the above description of the
shape of the tropical curve implies that when we set every target edge length except the (𝑘 − 𝑙 − 1)st to
zero, we specialise to the type of 𝜏𝑗 . This shows 𝜏𝑗 is a face of 𝜃, as claimed. �

By Theorem 3.2, the excess locus 𝐹1
𝑗 in the total transform of Kmax

0,2 (𝑋 |𝐷1, 𝛽) 𝑗−1 is given by

𝐹1
𝑗 = 𝑍 (𝜏𝑗 ) 𝑗−1 ×𝑍 (𝜎 𝑗 ) 𝑗−1 𝐸 𝑗 .

This is an explicit weighted projective bundle of dimension 𝑟−1 over the comb stratum 𝑍 (𝜏𝑗 ) 𝑗−1 = 𝑍 (𝜏𝑗 )
(where r is the number of leaves of the source curve in 𝜎𝑗 ). It has excess dimension 𝑟 −2 and the blowup
formula takes the form

𝜌★𝑗, 𝑗−1 [K
max
0,2 (𝑋 |𝐷1, 𝛽) 𝑗−1] = [Kmax

0,2 (𝑋 |𝐷1, 𝛽) 𝑗 ] + 𝛾1
𝑗 ∩ [𝐹1

𝑗 ] (20)

where 𝛾1
𝑗 is an excess class of codimension 𝑟 − 2. This is obtained from Chern and Segre classes of

strata and hence can be described algorithmically in terms of tautological classes; see Remark 3.5. We
defer this computation to future work.

We may now pass up the tower (18) of weighted blowups, applying the formula (20) at each level.
At the top we obtain

𝜌★[Kmax
0,2 (𝑋 |𝐷1, 𝛽)] = [Kmax

0,2 (𝑋 |𝐷1, 𝛽)†] +
𝑚∑
𝑗=1

𝜌★𝑚, 𝑗

(
𝛾1
𝑗 ∩ [𝐹1

𝑗 ]
)

(21)

in K0,2 (𝑋, 𝛽)† = K0,2(𝑋, 𝛽)𝑚 (where 𝜌 = 𝜌𝑚,0). We note that the pullback 𝜌★𝑚, 𝑗 (𝛾
1
𝑗 ∩ [𝐹1

𝑗 ]) is typically
nontransverse and so further excess classes will enter into the formula; however, since we will push
back down along 𝜌, there is no need to describe these. This formula provides a quantitative relationship
between the strict transform and the refined total transform of Kmax

0,2 (𝑋 |𝐷1, 𝛽).

3.4.2. Excess locus for 𝐷2
For 𝑖 = 2 there is no result analogous to Theorem 3.2 and there are typically several minimal cones

𝜃 ∈ Tmax
0,2 (𝑋 |𝐷2, 𝛽) 𝑗−1

which map into Star(𝜎𝑗 ). It is possible to construct examples where these minimal cones have different
dimensions. This is not surprising; the subdivision of T0,2(𝑋, 𝛽) is constructed with reference to 𝐷1
and so is typically insensitive to the geometry of 𝐷2.
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Let us denote the minimal cones of Tmax
0,2 (𝑋 |𝐷2, 𝛽) 𝑗−1 mapping into Star(𝜎𝑗 ) by

𝜃 𝑗 (1), . . . , 𝜃 𝑗 (𝑙 𝑗 ).

We note that some of these cones may be exceptional; that is, the corresponding strata

𝑍 (𝜃 𝑗 (𝑘)) 𝑗−1 ⊆ Kmax
0,2 (𝑋 |𝐷2, 𝛽) 𝑗−1

may have positive dimension over Kmax
0,2 (𝑋 |𝐷2, 𝛽). The irreducible components of the excess locus 𝐹2

𝑗
are the fibre products

𝐹2
𝑗 (𝑘) = 𝑍 (𝜃 𝑗 (𝑘)) 𝑗−1 ×𝑍 (𝜎 𝑗 ) 𝑗−1 𝐸 𝑗 .

As before, each such component is an explicit weighted projective bundle of dimension 𝑟 − 1 over
the stratum 𝑍 (𝜃 𝑗 (𝑘)) 𝑗−1. Its excess dimension is determined by the dimension of the cone 𝜃 𝑗 (𝑘) and
is at most 𝑟 − 2. The excess class 𝛾2

𝑗 may be written as a sum of classes pushed forward from the
irreducible components (such an expression is necessarily nonunique, but see Remark 3.5). We arrive
at the correction term:

𝜌★𝑗, 𝑗−1 [K
max
0,2 (𝑋 |𝐷2, 𝛽) 𝑗−1] = [Kmax

0,2 (𝑋 |𝐷2, 𝛽) 𝑗 ] + Σ
𝑙 𝑗
𝑘=1𝛾2

𝑗 (𝑘) ∩ [𝐹2
𝑗 (𝑘)] . (22)

Applying this iteratively, at each level of the tower (18), we obtain

𝜌★[Kmax
0,2 (𝑋 |𝐷2, 𝛽)] = [Kmax

0,2 (𝑋 |𝐷2, 𝛽)†] +
𝑚∑
𝑗=1

𝑙 𝑗∑
𝑘=1

𝜌★𝑚, 𝑗

(
𝛾2
𝑗 (𝑘) ∩ [𝐹2

𝑗 (𝑘)]
)

(23)

in K0,2 (𝑋, 𝛽)† = K0,2(𝑋, 𝛽)𝑚.

3.5. Corrected product formula and local-logarithmic correspondence

Expressions (21) and (23) allow us to compare the intersections before and after blowing up. We obtain

𝜌★
(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

)
= [Kmax

0,2 (𝑋 |𝐷1, 𝛽)†] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)†]

+ 𝜌★[Kmax
0,2 (𝑋 |𝐷1, 𝛽)] ·

𝑚∑
𝑗=1

𝑙 𝑗∑
𝑘=1

𝜌★𝑚, 𝑗

(
𝛾2
𝑗 (𝑘) ∩ [𝐹2

𝑗 (𝑘)]
)

+ 𝜌★[Kmax
0,2 (𝑋 |𝐷2, 𝛽)] ·

𝑚∑
𝑗=1

𝜌★𝑚, 𝑗

(
𝛾1
𝑗 ∩ [𝐹1

𝑗 ]
)

−

𝑚∑
𝑗1=1

𝑚∑
𝑗2=1

�
�𝜌★𝑚, 𝑗1

(
𝛾1
𝑗1
∩ [𝐹1

𝑗1
]
)
·

𝑙 𝑗2∑
𝑘=1

𝜌★𝑚, 𝑗2

(
𝛾2
𝑗2
(𝑘) ∩ [𝐹2

𝑗2
(𝑘)]

)��� .

We now apply 𝜌★ to this. The first term on the right-hand side pushes forward to

[Kmax
0,2 (𝑋 |𝐷, 𝛽)]
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by (14). On the other hand, the second and third terms push forward to zero by the projection formula,
since the individual correction terms vanish under pushforward:

(𝜌 𝑗 , 𝑗−1)★

(
𝛾1
𝑗 ∩ [𝐹1

𝑗 ]
)
= 0, (𝜌 𝑗 , 𝑗−1)★

(
𝛾2
𝑗 (𝑘) ∩ [𝐹2

𝑗 (𝑘)]
)
= 0.

Similarly, in the final term only products of correction terms with 𝑗1 = 𝑗2 can survive. We obtain the
comparison of logarithmic and naive virtual classes.

Theorem 3.4. The following relation holds in K0,2(𝑋, 𝛽):

[Kmax
0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax

0,2 (𝑋 |𝐷2, 𝛽)] = [Kmax
0,2 (𝑋 |𝐷, 𝛽)]

−

𝑚∑
𝑗=1

(𝜌 𝑗 ,0)★
�
�

𝑙 𝑗∑
𝑘=1

(𝛾1
𝑗 ∩ [𝐹1

𝑗 ]) · (𝛾
2
𝑗 (𝑘) ∩ [𝐹2

𝑗 (𝑘)])
��� .

Pushforward along the morphism F produces the corrected local-logarithmic correspondence by
Lemma 3.1.

Remark 3.5 (Implementation). The correction terms are well-understood as tautological classes. Excess
loci are always weighted projective bundles over logarithmic strata, obtained by imposing edge length
equalities in the tropical moduli. Excess classes are handled as follows. (1) Chern classes of normal
bundles to strata of the space of absolute maps are easily calculated. (2) The classes of the exceptional
divisors are handled directly. (3) Segre classes of strata of (strict transforms of) the relative spaces;
these are the most complex and arise as follows. The blowup centre is cut out by a monoidal ideal; the
intersection with the relative space is therefore cut out by the pullback of this ideal. The Segre class is
computed by Aluffi’s formula for Segre classes [5, Theorem 1.1]. The output is an explicit weighted linear
combination of smooth strata with tautological excess classes. The correction is therefore determined.

In ongoing work, we calculate the terms explicitly and identify situations in which they vanish,
establishing new cases of the numerical local-logarithmic correspondence.

Remark 3.6. Theorem 3.4 holds with the same proof with additional markings without tangency.

3.6. Stacky subdivisions, roots and weighted blowups

The key formula (19) above (along with its more specific counterparts (20) and (22)) requires a
generalisation of Fulton’s blowup formula to weighted blowups. For this, it is more convenient to
interpret each weighted blowup as a smooth orbitoroidal embedding, rather than a logarithmically
smooth toroidal embedding. We now explain this process. The basic idea is that a weighted blowup
factors uniquely as a root stack followed by an ordinary blowup. We assume familiarity with the basics
of toric orbifolds [9, 14].

For 𝑗 ∈ {1, . . . , 𝑚} the weighted stellar subdivision T0,2 (𝑋, 𝛽) 𝑗 → T0,2 (𝑋, 𝛽) 𝑗−1 is induced by a
primitive weight vector 𝑤 𝑗 ∈ 𝜎𝑗 ∩ 𝑁𝜎 𝑗 where 𝑁𝜎 𝑗 is the lattice of integral points. The lattice has
a natural basis 𝑣1, . . . , 𝑣𝑟 dual to the edge lengths of the associated tropical curve, and we can write
𝑤 𝑗 = 𝑚1𝑣1 + . . . + 𝑚𝑟𝑣𝑟 with each 𝑚𝑖 > 0. Let

𝑁�
𝜎 𝑗

⊆ 𝑁𝜎 𝑗 (24)

be the finite-index sublattice generated by 𝑚1𝑣1, . . . , 𝑚𝑟𝑣𝑟 . The triple (𝜎𝑗 , 𝑁𝜎 𝑗 , 𝑁�
𝜎 𝑗
) constitutes a

stacky cone and hence corresponds to an affine toric orbifold, with isotropy given by the cokernel of the
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lattice inclusion (24). This globalises uniquely to a family of compatible sublattices, producing a stacky
modification:

T0,2 (𝑋, 𝛽)�𝑗−1 → T0,2 (𝑋, 𝛽) 𝑗−1.

This is a stacky cone complex; that is, a complex of stacky cones. By [10, §4] the stacky modification
induces a nonrepresentable toroidal modification:

K0,2 (𝑋, 𝛽)�𝑗−1 → K0,2(𝑋, 𝛽) 𝑗−1.

This is an iterated root stack, with rooting index 𝑚𝑖 along the divisor 𝑍𝑖 corresponding to the ray 𝑣𝑖 . Let

𝑍𝑖/𝑚𝑖 ⊆ K0,2(𝑋, 𝛽)�𝑗−1

denote the gerby divisor in the root stack; note that 𝑚𝑖 · (𝑍𝑖/𝑚𝑖) = 𝑍𝑖 , which justifies the notation. The
resulting space K0,2(𝑋, 𝛽)�𝑗−1 is an orbitoroidal embedding; that is, a pair which is locally isomorphic
to a toric orbifold.

The weight vector 𝑤 𝑗 has co-ordinates (1, . . . , 1) in the lattice 𝑁�
𝜎 𝑗

. We denote the stellar subdivision
at 𝑤 𝑗 by

T0,2 (𝑋, 𝛽) 𝑗 → T0,2 (𝑋, 𝛽)�𝑗−1.

This produces an associated toroidal modification

K0,2(𝑋, 𝛽) 𝑗 → K0,2(𝑋, 𝛽)�𝑗−1

which is the blowup of the intersection of the gerby divisors 𝑍𝑖/𝑚𝑖 . The composite

K0,2(𝑋, 𝛽) 𝑗 → K0,2(𝑋, 𝛽)�𝑗−1 → K0,2(𝑋, 𝛽) 𝑗−1 (25)

is a stacky toroidal modification in the sense of [22, §3.1], with relative coarse moduli space given
by the ordinary weighted blowup. Locally, K0,2(𝑋, 𝛽) 𝑗 is the toric stack canonically associated to the
simplicial toric variety obtained via the ordinary weighted blowup [14, Theorem 4.11].

Strictly speaking, the above construction differs from the output of the weak semistable reduction
algorithm, the latter being the relative coarse moduli space of the former. Crucially, however, the above
construction still results in an integral and saturated morphism K0,2(𝑋 |𝐷1, 𝛽)† → K0,2(𝑋, 𝛽)†, which
is all we require.

The composition (25) shows that this stacky toroidal modification is the composition of a root stack
and an ordinary blowup. We obtain the weighted blowup formula by pulling back to the root stack
and applying the ordinary blowup formula. Pullbacks of characteristic classes to the root stack are
well-understood. Since K0,2(𝑋, 𝛽) is a smooth Deligne–Mumford stack, it follows inductively that each
K0,2 (𝑋, 𝛽) 𝑗 is also a smooth Deligne–Mumford stack (see Corollary 2.10).

3.7. Example

We now apply the iterated blowup procedure to the plane conic example of Subsection 1.2, calculating
the defect between local/naive and logarithmic theories. To indicate how the discussion generalises, we
employ the same notation as used in Subsections 3.3–3.5.
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Consider degree 2 logarithmic stable maps to (P2 |𝐻1 + 𝐻2) with maximal tangency at two distinct
markings. By Subsection 2.6 the relevant floral cones in T0,2 (P

2, 2) are

1

𝑥2

1

0

𝑥1

𝜎1

1 1

0

𝑥1 𝑥2

𝜎2

The iterated blowup is obtained by first blowing up 𝑍 (𝜎1) and then blowing up the strict transform of
𝑍 (𝜎2). The blowup weights are trivial because all edges have expansion factor 1. In the notation of
Subsection 3.3 we have

K0,2 (P
2, 2)0 = K0,2(P

2, 2)
K0,2 (P

2, 2)1 = Bl𝑍 (𝜎1) K0,2(P
2, 2)

K0,2(P
2, 2)† = K0,2 (P

2, 2)2 = Bl𝑍 (𝜎2)1 Bl𝑍 (𝜎1) K0,2 (P
2, 2)

where 𝑍 (𝜎2)1 ⊆ K0,2(P
2, 2)1 is the strict transform of 𝑍 (𝜎2) ⊆ K0,2 (P

2, 2). Following Subsection 3.4,
we calculate the excess loci and correction terms at each step. For 𝑍 (𝜎1), the minimal cones mapping
to Star(𝜎1) ⊆ T0,2 (P

2, 2) are

1

1
𝑥2

0 𝑥1

x
𝐻1

𝜏1

1
0

𝑥1

1 𝑥2

xx
𝐻2

𝜃1 (1)

1
x

1
0

𝑥1

0 𝑥2

xx
𝐻2

𝜃1 (2)

As guaranteed by Theorem 3.2, there is a unique minimal cone 𝜏1 ≤ Tmax
0,2 (P2 |𝐻1, 2) mapping to Star(𝜎1).

On the other hand, we see that in this case there are two minimal cones 𝜃1(1), 𝜃1 (2) ≤ Tmax
0,2 (P2 |𝐻2, 2)

mapping to Star(𝜎1). Note in particular that 𝜃1 (2) maps to Star(𝜎1) but not to 𝜎1 itself.
The exceptional divisor 𝐸1 ⊆ K0,2 (P

2, 2)1 = Bl𝑍 (𝜎1) K0,2(P
2, 2) is a P1 bundle over the stratum

𝑍 (𝜎1). Correspondingly, the excess loci

𝐹1
1 ⊆ Kmax

0,2 (P2 |𝐻1, 2)tot
1 , 𝐹2

1 (1), 𝐹2
1 (2) ⊆ Kmax

0,2 (P2 |𝐻2, 2)tot
1

are P1 bundles over the maximal strata mapping to 𝑍 (𝜎1):

𝑍 (𝜏1) ⊆ Kmax
0,2 (P2 |𝐻1, 2), 𝑍 (𝜃1 (1)), 𝑍 (𝜃1 (2)) ⊆ Kmax

0,2 (P2 |𝐻2, 2).

Since 𝑍 (𝜃1 (1)) and 𝑍 (𝜃1 (2)) are strata of codimension 2, 𝐹2
1 (1) and 𝐹2

1 (2) have excess dimension
−2 + 1 = −1; that is, they do not carry an excess class. We conclude that the correction term arising
from the first blowup vanishes.
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We now blow up 𝑍 (𝜎2)1, the strict transform of 𝑍 (𝜎2). The minimal cones mapping to Star(𝜎2) ⊆
T0,2 (P

2, 2)1 are

1

1

0 𝑥1

𝑥2

x
𝐻1

𝜏2

1

1

0 𝑥2

𝑥1

x
𝐻2

𝜃2(1)

The exceptional divisor 𝐸2 in K0,2(P
2, 2)2 is again a P1 bundle over 𝑍 (𝜎2)1 and so the excess loci

𝐹1
2 ⊆ Kmax

0,2 (P2 |𝐻1, 2)tot
2 , 𝐹2

2 (1) ⊆ Kmax
0,2 (P2 |𝐻2, 2)tot

2

are P1 bundles over 𝑍 (𝜏2)1 and 𝑍 (𝜃2 (1))1. Both of these strata have codimension 1, so both excess loci
have excess dimension 0 and in each case the excess class is simply the fundamental class of the excess
locus. We conclude that the correction term in K0,2(P

2, 2)2 is the product

[𝐹1
2 ] · [𝐹

2
2 (1)] .

Denoting the blowup morphisms by

K0,2(P
2, 2)2

𝜌2,1
−−−→ K0,2(P

2, 2)1
𝜌1,0
−−−→ K0,2 (P

2, 2),

we have from Theorem 3.4:

[Kmax
0,2 (P2 |𝐻1, 2)] · [Kmax

0,2 (P2 |𝐻2, 2)] = [Kmax
0,2 (P2 |𝐻1 + 𝐻2, 2)] − (𝜌1,0)★(𝜌2,1)★

(
[𝐹1

2 ] · [𝐹
2
2 (1)]

)
.

It remains to calculate the final term. Let 𝑖 : 𝐸2 ↩→ K0,2(P
2, 2)2 denote the inclusion and let 𝜋 : 𝐸2 →

𝑍 (𝜎2)1 denote the bundle projection. We have

[𝐹1
2 ] = 𝑖★𝜋★[𝑍 (𝜏2)1], [𝐹2

2 (1)] = 𝑖★𝜋★[𝑍 (𝜃2 (1))1],

from which we obtain

[𝐹1
2 ] · [𝐹

2
2 (1)] = 𝑖★

(
−𝐻 ∩ 𝜋★([𝑍 (𝜏2)1] · [𝑍 (𝜃2 (1))1])

)
where 𝐻 = −𝑐1(𝑁𝐸2 ) is the fibrewise hyperplane class of the projective bundle. Using 𝜋★𝐻 = 1 and the
projection formula, we obtain

(𝜌2,1)★

(
[𝐹1

2 ] · [𝐹
2
2 (1)]

)
= − 𝑗★ ([𝑍 (𝜏2)1] · [𝑍 (𝜃2 (1))1])

where 𝑗 : 𝑍 (𝜎2)1 ↩→ K0,2(P
2, 2)1 is the inclusion. The intersection 𝑍 (𝜎1) ∩ 𝑍 (𝜎2) is a divisor in 𝑍 (𝜎2)

and, consequently, the strict transform 𝑍 (𝜎2)1 → 𝑍 (𝜎2) is an isomorphism. We thus have

(𝜌0,1)★(𝜌2,1)★

(
[𝐹1

2 ] · [𝐹
2
2 (1)]

)
= −𝑘★ ( [𝑍 (𝜏2)] · [𝑍 (𝜃2 (1))])

where 𝑘 : 𝑍 (𝜎2) ↩→ K0,2(P
2, 2) is the inclusion. The intersection of 𝑍 (𝜏2) and 𝑍 (𝜃2 (1)) inside 𝑍 (𝜎2)
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is transverse. We denote this locus by

𝑊 = 𝑍 (𝜏2) ∩ 𝑍 (𝜃2 (1)) ⊆ 𝑍 (𝜎2) ⊆ K0,2(P
2, 2).

Geometrically, it parametrises pairs of lines through the point 𝐻1∩𝐻2 joined to a contracted component
of the source curve containing both markings. It has dimension 3 and we conclude

[Kmax
0,2 (P2 |𝐻1, 2)] · [Kmax

0,2 (P2 |𝐻2, 2)] = [Kmax
0,2 (P2 |𝐻1 + 𝐻2, 2)] + [𝑊] . (26)

This precisely quantifies the difference between the local/naive and logarithmic theories. In this case,
the formula reflects the geography of the naive space, which consists of two irreducible components
corresponding to the two terms on the right-hand side. On the other hand, the iterated blowup procedure
gives a general-purpose algorithm which does not rely on ad hoc descriptions of the naive space.

It is easy to find insertions which pair nontrivially with [𝑊]. Introduce two additional markings with
no tangency conditions and consider the forgetful morphism 𝐹 : K0,4(P

2, 2) → K0,2(P
2, 2). Applying

𝐹★ to (26) gives

[Kmax
0,4 (P2 |𝐻1, 2)] · [Kmax

0,4 (P2 |𝐻2, 2)] = [Kmax
0,4 (P2 |𝐻1 + 𝐻2, 2)] + 𝐹★[𝑊] .

We cap this with the insertion 𝛾 = 𝜓1 ev★3 (pt) ev★4 (pt) on K0,4(P
2, 2). The correction term is

𝛾 ∩ 𝐹★[𝑊] = 𝜓1 ∩ [M0,4] = 1 (27)

as the point constraints fix the moduli of the two lines. On the other hand, the strong form of the local-
logarithmic correspondence for smooth pairs gives

𝛾 ∩ [Kmax
0,4 (P2 |𝐻1, 2)] · [Kmax

0,4 (P2 |𝐻2, 2)] = 𝛾 · ev★1 (𝐻) ev★2 (𝐻) ∩ [K0,4 (OP2 (−1)⊕2, 2)]vir

= ev★1 (𝐻)𝜓1 ev★2 (𝐻) ev★3 (pt) ev★4 (pt) e(R1𝜋★ 𝑓★OP2 (−1))2

∩ [K0,4(P, 2)] .

We compute this by torus localisation. Let 𝐻0, 𝐻1, 𝐻2 ⊆ P2 be the coordinate hyperplanes and
𝑝0, 𝑝1, 𝑝2 ∈ P2 be the coordinate points. We choose the following equivariant lifts of the insertions:

ev★1 (𝐻0)𝜓1 ev★2 (𝐻1) ev★3 (𝑝0) ev★4 (𝑝1).

We equip the first copy of OP2 (−1) with the torus action which has weight zero at 𝑝0 and equip the
second copy of OP2 (−1) with the torus action which has weight zero at 𝑝1. Under these choices of
weights and equivariant insertions, the only graph contributing to the localised integral is

𝑝0

𝑥3

1

𝑝1

𝑥4

1

𝑝2

𝑥1

𝑥2

and a direct calculation of its contribution gives:

𝛾 ∩ [Kmax
0,4 (P2 |𝐻1, 2)] · [Kmax

0,4 (P2 |𝐻2, 2)] = 1. (28)
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Combining (28) and (27) with (26), we obtain the logarithmic invariant

𝛾 ∩ [Kmax
0,4 (P2 |𝐻1 + 𝐻2, 2)] = 1 − 1 = 0.

This value can be independently verified using heuristic arguments relating the logarithmic invariant to
tropical curve counts.

4. Virtual pullback

We employ virtual pullback techniques to extend Theorem 3.4 to general hyperplane sections.

4.1. Setup

Consider a pair (𝑍 |𝐸) with 𝐸 = 𝐸1 + 𝐸2 and each 𝐸𝑖 a hyperplane section. We have embeddings

(𝑍 |𝐸𝑖) ↩→ (P𝑛𝑖 |𝐻𝑖)

where 𝐻𝑖 is a hyperplane. Let 𝑋 = P𝑛1 × P𝑛2 and 𝐷 = 𝐷1 + 𝐷2 be the simple normal crossings divisor
induced by the 𝐻𝑖 . There is a closed embedding 𝑍 ↩→ 𝑋 with 𝐸𝑖 = 𝑍 ∩ 𝐷𝑖 .

Lemma 4.1. The following morphisms of moduli spaces are strict:

K0,2 (𝑍, 𝛽) → K0,2(𝑋, 𝛽),

Kmax
0,2 (𝑍 |𝐸𝑖 , 𝛽) → Kmax

0,2 (𝑋 |𝐷𝑖 , 𝛽), for 𝑖 ∈ {1, 2},
Kmax

0,2 (𝑍 |𝐸, 𝛽) → Kmax
0,2 (𝑋 |𝐷, 𝛽).

They carry relative perfect obstruction theories given (in every case) by

(𝜋★ 𝑓★N𝑍 |𝑋 )
∨[1],

and the induced virtual pullback morphism identifies the virtual fundamental classes.

Proof. The maps (𝑍 |𝐸𝑖) → (𝑋 |𝐷𝑖) and (𝑍 |𝐸) → (𝑋 |𝐷) are strict closed embeddings, so the loga-
rithmic normal bundle coincides with the ordinary normal bundle. The obstruction theories are both
relative to the moduli space of maps to the Artin fan [4], so the claim follows from functoriality of
virtual pullbacks [21]. The obstruction theory is perfect due to the convexity of X. �

Lemma 4.2. The following square is Cartesian:

Kmax
0,2 (𝑍 |𝐸, 𝛽) Kmax

0,2 (𝑋 |𝐷, 𝛽)

K0,2(𝑍, 𝛽) K0,2(𝑋, 𝛽)

𝑗

�
𝑖

and satisfies

[Kmax
0,2 (𝑍 |𝐸, 𝛽)]vir = 𝑖! [Kmax

0,2 (𝑋 |𝐷, 𝛽)] .

The analogous statements hold for (𝑍 |𝐸𝑖) → (𝑋 |𝐷𝑖).

Proof. Since i is strict, the square is a Cartesian diagram of ordinary stacks. Equality of virtual classes
holds as the relative perfect obstruction theory for i pulls back to give the relative perfect obstruction
theory for j. �
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4.2. Virtual birational models

The blowups in Section 3 may now be pulled back. For 𝑗 ∈ {1, . . . , 𝑚} we obtain virtual birational
models:

K0,2(𝑍, 𝛽) 𝑗 K0,2(𝑋, 𝛽) 𝑗

K0,2(𝑍, 𝛽) K0,2(𝑋, 𝛽).

�
𝑖

Since 𝑖 : K0,2(𝑍, 𝛽) → K0,2(𝑋, 𝛽) is strict, the morphism

K0,2 (𝑍, 𝛽) 𝑗 → K0,2(𝑍, 𝛽) (29)

is also a logarithmic modification. The space K0,2(𝑍, 𝛽) 𝑗 carries a natural perfect obstruction theory,
and the pushforward morphism (29) identifies the virtual classes [26, §3.5].

We similarly obtain virtual strict transforms

Kmax
0,2 (𝑍 |𝐸𝑖 , 𝛽)𝑚 → Kmax

0,2 (𝑍 |𝐸𝑖 , 𝛽)𝑚−1 → · · · → Kmax
0,2 (𝑍 |𝐸𝑖 , 𝛽)0 = Kmax

0,2 (𝑍 |𝐸𝑖 , 𝛽)

for 𝑖 ∈ {1, 2}, and a comparison of obstruction theories gives

[Kmax
0,2 (𝑍 |𝐸𝑖 , 𝛽) 𝑗 ]

vir = 𝑖! [Kmax
0,2 (𝑋 |𝐷𝑖 , 𝛽) 𝑗 ] .

4.3. Corrected product formula

We first restrict to the case where Z is convex, so that products in K0,2(𝑍, 𝛽) 𝑗 are well-defined. Applying
the virtual pullback 𝑖! to the blowup formulae (20) and (22) results in the following relations in
K0,2 (𝑍, 𝛽) 𝑗 :

𝜌★𝑗, 𝑗−1 [K
max
0,2 (𝑍 |𝐸1, 𝛽) 𝑗−1]

vir = [Kmax
0,2 (𝑍 |𝐸1, 𝛽) 𝑗 ]

vir + 𝛾1
𝑗 ∩ [𝐹1

𝑗 ]
vir, (30)

𝜌★𝑗, 𝑗−1 [K
max
0,2 (𝑍 |𝐸2, 𝛽) 𝑗−1]

vir = [Kmax
0,2 (𝑍 |𝐸2, 𝛽) 𝑗 ]

vir + Σ
𝑙 𝑗
𝑘=1𝛾2

𝑗 (𝑘) ∩ [𝐹2
𝑗 (𝑘)]

vir. (31)

As in Subsections 3.4 and 3.5, we now pass up the tower of logarithmic blowups, take the product and
then push back down to K0,2 (𝑍, 𝛽), obtaining the following.

Theorem 4.3. The following relation holds in K0,2(𝑍, 𝛽):

[Kmax
0,2 (𝑍 |𝐸1, 𝛽)]vir · [Kmax

0,2 (𝑍 |𝐸2, 𝛽)]vir = [Kmax
0,2 (𝑍 |𝐸, 𝛽)]vir

−

𝑚∑
𝑗=1

(𝜌 𝑗 ,0)★
�
�

𝑙 𝑗∑
𝑘=1

(𝛾1
𝑗 ∩ [𝐹1

𝑗 ]
vir) · (𝛾2

𝑗 (𝑘) ∩ [𝐹2
𝑗 (𝑘)]

vir)
��� .

Applying 𝐹★ gives the corrected local-logarithmic correspondence.

If Z is not convex, the Chow groups of K0,2(𝑍, 𝛽) need not admit a product and the corrected product
formula cannot even be formulated. Instead, we apply 𝑖! to Theorem 3.4 to obtain

𝑖!
(
[Kmax

0,2 (𝑋 |𝐷1, 𝛽)] · [Kmax
0,2 (𝑋 |𝐷2, 𝛽)]

)
= [Kmax

0,2 (𝑍 |𝐸, 𝛽)]vir

− 𝑖!
𝑚∑
𝑗=1

(𝜌 𝑗 ,0)★
�
�

𝑙 𝑗∑
𝑘=1

(𝛾1
𝑗 ∩ [𝐹1

𝑗 ]) · (𝛾
2
𝑗 (𝑘) ∩ [𝐹2

𝑗 (𝑘)])
��� .
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The strong form of the local-logarithmic correspondence for (𝑋 |𝐷1) and (𝑋 |𝐷2) can be used to identify
the left-hand side with the local theory of O𝑍 (𝐸1) ⊕ O𝑍 (𝐸2) capped with ev★1 𝐸1 · ev★2 𝐸2. Applying
𝐹★ we again obtain the corrected local-logarithmic correspondence. A difference with Theorem 4.3 is
that the correction terms are calculated in K0,2(𝑋, 𝛽) and then pulled back.

5. Local-logarithmic on product geometries

We establish an instance of the numerical local-logarithmic correspondence for products. The argument
here is elementary and independent of the more technical blowup arguments elsewhere in the article.
However, the understanding of the blowup geometry leads very naturally to the proof; we simply look
for situations where the correction terms can be shown to vanish.

5.1. Setup: unobstructed case

Let 𝑋1, . . . 𝑋𝑘 be smooth projective varieties equipped with smooth hyperplane sections 𝐷1, . . . , 𝐷𝑘 .
As before, we first specialise to the situation where each 𝑋𝑖 is a projective space P𝑛𝑖 and each 𝐷𝑖 = 𝐻𝑖

is a hyperplane. Let

P :=
𝑘∏
𝑖=1
P𝑛𝑖

be the target, H the union of pullbacks of hyperplanes 𝐻𝑖 from the factors and 𝛽 the curve class.
We work with the space of 𝑘 + 3 pointed maps. The final three points will be taken to have zero

contact order and each of the first k points will have maximal contact order with the corresponding
divisor. We have the following composition of forgetful morphisms:

Kmax
0,𝑘+3(P|𝐻, 𝛽) → Kmax

0,𝑘+3(P
𝑛𝑖 |𝐻𝑖 , 𝛽𝑖) → Kmax

0,4 (P𝑛𝑖 |𝐻𝑖 , 𝛽𝑖).

The first arrow projects onto the appropriate factor and stabilises the map; the second arrow forgets all
marked points except 𝑥𝑖 and the three markings with zero contact order. These give rise to a morphism

𝜌 : Kmax
0,𝑘+3(P|𝐻, 𝛽) →

𝑘∏
𝑖=1

Kmax
0,4 (P𝑛𝑖 |𝐻𝑖 , 𝛽𝑖).

Proposition 5.1. The morphism 𝜌 is proper and birational.

Proof. Arguments as in Section 1 show that the source and target of 𝜌 are irreducible. Examine the
locus in the source comprising maps from smooth domains, dimensionally transverse to H. Notice that
the source curve is a parametrised P1 with the parametrisation given by the three markings with zero
contact order; this locus is dense and 𝜌 has an inverse on this locus. �

5.2. Primary theory with factorwise insertions

Consider the morphism

𝜈 : K0,3(P, 𝛽) →
𝑘∏
𝑖=1

K0,3 (P
𝑛𝑖 , 𝛽𝑖)

of spaces of ordinary stable maps. It is clear that 𝜈 is proper and birational. We assemble primary
insertions on K0,3(P, 𝛽) without appealing to the existence of marked points. This is likely well-known
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to experts. Consider the universal family:

C P

𝐾0,3(P, 𝛽).

𝜋

𝑓

Given a cohomology class 𝛾 in the target P, we obtain a cycle class 𝜋★ 𝑓★𝛾 on K0,3(P, 𝛽). Primary
invariants are defined by integrating products of such classes. The comparison of diagonals (see the
proof of Lemma 3.1) equates these integrals with the ordinary Gromov–Witten invariants:

Π𝑟
𝑗=1𝜋★ 𝑓★𝛾 𝑗 ∩ [K0,3(P, 𝛽)] = Π𝑟

𝑗=1 ev★𝑗 𝛾 𝑗 ∩ [K0,𝑟+3(P, 𝛽)] .

The three auxiliary marked points can be removed by attaching divisorial insertions and appealing to
the divisor axiom; alternatively, they may be equipped with arbitrary insertions.

We now restrict to a particular class of insertions: we require that each class 𝛾 𝑗 is equal to the
pullback of a class in P𝑛𝑖 along one of the projections P → P𝑛𝑖 . We refer to this as the primary
theory with factorwise insertions. The three auxiliary markings are allowed to carry arbitrary classes;
the factorwise constraint only applies to additional markings introduced via the above procedure. We
assemble these insertions into a single class on K0,3 (P, 𝛽):

𝛾 =
3∏
𝑖=1

ev★𝑖 𝛿𝑖 ·
𝑟∏
𝑗=1

𝜋★ 𝑓★𝛾 𝑗 . (32)

Theorem 5.2. (Local-logarithmic correspondence with primary factorwise insertions). If 𝛾 is the class
(32) with factorwise insertions, then there is an equality

𝛾 ∩ 𝜓★[Kmax
0,𝑘+3(P|𝐻, 𝛽)] = α · 𝛾 ∩ [K0,3 (⊕

𝑘
𝑖=1OP(−𝐻𝑖), 𝛽)]vir

where 𝜓 : Kmax
0,𝑘+3(P|𝐻, 𝛽) → K0,3(P, 𝛽) and α = Π𝑘

𝑖=1 (−1)𝑑𝑖+1𝑑𝑖 .

Proof. There is a commutative diagram

Kmax
0,𝑘+3(P|𝐻, 𝛽)

∏𝑘
𝑖=1 Kmax

0,4 (P𝑛𝑖 |𝐻𝑖 , 𝛽𝑖)

K0,3(P, 𝛽)
∏𝑘

𝑖=1 K0,3(P
𝑛𝑖 , 𝛽𝑖)

𝜌

𝜓 𝜑

𝜈

with 𝜌 and 𝜈 birational. Because 𝛾 is assembled from primary factorise insertions, it follows that 𝛾 = 𝜈★𝛿
for some class 𝛿. This can be seen by comparing the universal curve over K0,3(P, 𝛽) to the pullback of
the universal curve over K0,3(P

𝑛𝑖 , 𝛽𝑖).
The product formula [8] applied to the total spaces of OP𝑛𝑖 (−𝐻𝑖) shows that the local class associated

to ⊕𝑘
𝑖=1OP (−𝐻𝑖) pushes forward along 𝜈 to the product of the local classes associated to OP𝑛𝑖 (−𝐻𝑖).

Combining with the local-logarithmic correspondence for the smooth pairs (P𝑛𝑖 , 𝐻𝑖) gives

𝜑★

(
Π𝑘
𝑖=1 [K

max
0,4 (P𝑛𝑖 |𝐻𝑖 , 𝛽𝑖)]

)
= α · Π𝑘

𝑖=1 [K0,3(OP𝑛𝑖 (−𝐻𝑖), 𝛽𝑖)]
vir = α · 𝜈★[K0,3(⊕

𝑘
𝑖=1OP (−𝐻𝑖), 𝛽)]vir.
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From this and the projection formula applied to 𝜈, we conclude

𝛾 ∩ 𝜓★[Kmax
0,𝑘+3(P|𝐻, 𝛽)] = 𝛿 ∩ 𝜑★𝜌★[Kmax

0,𝑘+3(P|𝐻, 𝛽)]

= 𝛿 ∩ 𝜑★

(
Π𝑘
𝑖=1 [K

max
0,4 (P𝑛𝑖 |𝐻𝑖 , 𝛽𝑖)]

)
= α · 𝛿 ∩ 𝜈★[K0,3 (⊕

𝑘
𝑖=1OP(−𝐻𝑖), 𝛽)]vir

= α · 𝛾 ∩ [K0,3 (⊕
𝑘
𝑖=1OP(−𝐻𝑖), 𝛽)]vir.ℎ𝑒𝑟𝑒

�

Remark 5.3. The above result does not contradict Theorem 3.4. Rather, the factorwise insertions kill
the correction terms in this setting. The same phenomenon explains other cases where numerical forms
of the local-logarithmic correspondence are known to hold [11, 12].

5.3. Virtual pullback

In light of the preceding result, note that for an arbitrary section pair (𝑋 |𝐷) of product type, an identical
construction produces a Cartesian diagram:

Kmax
0,𝑘+3(𝑋 |𝐷, 𝛽) Kmax

0,𝑘+3(P|𝐻, 𝛽)

∏𝑘
𝑖=1Kmax

0,4 (𝑋𝑖 |𝐷𝑖 , 𝛽𝑖)
∏𝑘

𝑖=1Kmax
0,4 (P𝑛𝑖 |𝐻𝑖 , 𝛽𝑖).

�

The horizontal arrows possess compatible perfect obstruction theories, as in Section 4. The right vertical
map is birational; therefore, we conclude that the left vertical arrow identifies virtual classes. The proof
of Theorem 5.2 then applies verbatim, extending the correspondence to section pairs:

𝛾 ∩ 𝜓★[Kmax
0,𝑘+3(𝑋 |𝐷, 𝛽)]vir = α · 𝛾 ∩ [K0,3(⊕

𝑘
𝑖=1O𝑋 (−𝐷𝑖), 𝛽)]vir.

Remark 5.4. We do not believe that the product structure is the true reason for the result; products only
produce a birational morphism that kills the corrections. The morphism

Kmax
0,𝑘+3(P|𝐻, 𝛽) →

𝑘∏
𝑖=1

Kmax
0,4 (P𝑛𝑖 , 𝛽𝑖)

is a contraction. On the right-hand side there is not necessarily a universal map to P. This is analogous
to the quasimap moduli. A study of naive and logarithmic quasimap theory may be worthwhile.
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