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The free-stream turbulence (FST) induced transition in perfect and non-ideal gas
zero-pressure-gradient flat-plate boundary layers is investigated by means of large-eddy
simulations. The study focuses on the influence of large incoming disturbances over
the laminar-to-turbulent transition, by comparing two different integral length scales
Lf , which differ by a factor of seven, at different FST intensities Tu. High-subsonic
dense-gas boundary layers of the organic vapour Novec649, representative of organic
Rankine cycle applications, are compared with air flows at Mach numbers 0.1 and
0.9. Compressibility and non-ideal gas effects are shown to be of minor importance in
comparison to the influence of the FST integral length scale Lf . An increase of the inlet
turbulent intensity always promotes transition, whereas an increase of Lf has a double
effect on the transition onset. At Tu = 2.5 %, increasing Lf promotes the transition, while
it tends to delay transition for an FST intensity of 4 %. Larger FST integral scales tend to
increase the spanwise distance between laminar streaks generated in the boundary layer.
Two competing transition scenarios are observed. When the incoming turbulence intensity
and length scale are moderate, the classical bypass route consists in the linear non-modal
growth of streaks, which then experience secondary instabilities (sinuous or varicose) and
lead to the generation of turbulent spots. The second scenario is characterized by the
appearance of �-shaped structures near the inlet, which are further stretched to hairpin
vortices before breaking down to turbulence. Spot inceptions can therefore occur at earlier
locations than the streak growth. We are then faced with a competition between the
classical bypass transition and nonlinear response mechanisms that ‘bypass’ this route.
The present case at high Lf and low Tu is an example of a competing scenario, but even
for the higher Tu and Lf conditions, only approximately one-third of turbulent spots are
due to the �-shaped events. The nonlinear alternative route has strong similarities with
scenarios described previously in the literature in the presence of leading edge effects or
due to passing wakes. Such a path is governed by the turbulence intensity, but also by the
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integral length scale, with both parameters playing a critical role in the generation of the
�-shaped structures near the inlet. This alternative mechanism is found to be robust under
varying flow and thermodynamic conditions.

Key words: boundary layer receptivity, nonlinear instability, transition to turbulence

1. Introduction

When boundary-layer flows are subjected to moderate or high levels of free-stream
turbulence (FST), the orderly route to turbulence through amplification and breakdown
of linear instabilities can be bypassed, and laminar-to-turbulent transition follows the
sporadic eruption of turbulent spots. This complex scenario is common in turbomachinery
applications due to the highly perturbed environment (Mayle 1991). Understanding
how the FST characteristics affect the so-called bypass transition is thus of utmost
importance to predict and model boundary-layer development on turbine blades. Indeed,
the laminar or turbulent state of the boundary layer can drive vortex shedding from
the blade trailing edge and affect the turbine losses. In this work, we are motivated
by the particular case of turbines in organic Rankine cycles (ORCs), which are used
to recover waste heat, for example. Since they operate at low temperatures, heat
transfer fluids are molecularly complex organic vapours, with high heat capacities
and densities compared with light fluids such as air. In recent years, there has
been increasing interest in the study of transition in such fluids, which can deviate
significantly from the perfect gas model. However, there are still few experimental
facilities available (Guardone et al. 2024), and high-fidelity numerical simulation can
be used to guide the development of transition models (Cinnella & Gloerfelt 2023).
Such ORC applications often imply small-dimension turbines compared with conventional
steam turbines, but due to the high fluid density, high Reynolds number conditions
are experienced. As a consequence, relatively large-scale turbulence compared with the
boundary-layer thickness is oncoming on turbine blades. For instance, in the closed
loop organic vapour wind tunnel (CLOWT) facility built at Münster University to study
non-ideal-gas dynamics (Reinker et al. 2016), recent experiments (Hake et al. 2023)
have been done to characterize the FST using the perfluorinated ketone Novec649.
For typical operating conditions (pressure 4 bar and temperature 100◦C), the density of
Novec649 is 48.5 kg m−3, and the integral length scale (Lf , see definition in § 2.4) is
of the order of 3 mm, with turbulence intensity Tu =

√
(u′2 + v′2 + w′2)/3/U∞ ∼ 3 %

(Hake et al. 2023). This corresponds to a very high Reynolds number based on Lf

(ReLf ≈ 9 × 105), compared with low-speed experiments on bypass transition in air. The
main subject of the present study is thus to understand how large-scale intense turbulence
can affect the bypass transition. As a first step, a zero-pressure-gradient (ZPG) boundary
layer over a flat plate is considered using Novec649 vapour in conditions representative of
the CLOWT facility.

1.1. Effects of the integral length scale on FST-induced transition
While it is clear that an increase of Tu, when keeping the other parameters constant, moves
the transition upstream (Brandt, Schlatter & Henningson 2004; Nagarajan, Lele & Ferziger
2007; Pinto & Lodato 2019; Fransson & Shahinfar 2020; Muthu, Bhushan & Walters
2021), the effect of the FST integral length scale is less obvious. In the experiments of
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Jonas, Mazur & Uruba (2000) at Tu = 3 %, it was found that the final stages of transition
occur earlier for FST with large-scale incoming structures, whereas the extent of the
transition region shortens with decreasing length scales. Brandt et al. (2004) also reported
in their numerical simulations that for a fixed Tu, larger values of the integral length
scale promote earlier transition. Similar results were reported by Ovchinnikov, Piomelli
& Choudhari (2004), Pinto & Lodato (2019) and Muthu et al. (2021). More recently, the
extensive experiments of Fransson & Shahinfar (2020) showed two scenarios depending
on the FST intensity: for low Tu (≤2.45 %), the transition was moved forward as Lf
increased, whereas the opposite was obtained with larger values of Tu (≥2.8 %).

Since streamwise laminar streaks are generally forerunners of the appearance of
turbulent spots in most FST-induced transitions, the role of the integral length scale
on their characteristics is of the utmost importance. One key property of the streaks is
their spanwise scale, which is related to the spanwise velocity gradient, thus affecting
the streak destabilization. The spanwise distance between streaks was initially thought to
be relatively independent of the FST conditions (see discussion in Fransson & Shahinfar
2020). Klebanoff (1971) observed in his experiments (reported in Kendall 1998) that the
minima of two-point spanwise correlations of the streamwise velocity, corresponding to
the average spanwise half-wavelength of the streaks, were almost constant and seemed to
be relatively independent of Tu. Kendall (1985) estimated that the mean distance between
low-speed and high-speed streaks was approximately equal to the boundary-layer thickness
but was also similar to the lateral scale of the FST. With FST scales approximately twice
as big as in Kendall (1985), Westin et al. (1994) found similar spanwise scales, thus
inferring that the spanwise scales were weakly correlated to the FST conditions. Similar
streak spanwise distances were also found by Jacobs & Durbin (2001). Under variable
FST intensity (1 %–6 %), Matsubara & Alfredsson (2001) measured a relatively constant
value of 3δ∗ (δ∗ being the displacement thickness in the transition region), confirming
the previous observations. However, this asymptotic value was attained for some cases
within the turbulent boundary layer (TBL) and not in the transitional region. The spanwise
scales found in the direct numerical simulations (DNS) of Brandt et al. (2004), similar
to those of Matsubara & Alfredsson (2001), seemed to be only weakly affected by the
FST scales, at least for ReLf between 750 and 2250, where ReLf is the Reynolds number
based on the integral length scale and the free-stream velocity. These observations, which
contrast sharply with more recent studies, may be due to the fact that relatively similar
FST conditions were used in all cited studies.

The experiments of Fransson & Alfredsson (2003) were the first to report a significant
change in streak spacing due to FST characteristics. Specifically, a significant increase
in FST intensity was found to reduce the spanwise distance between streaks. They also
suggested that the FST scales play an important role in the spanwise scale selection
process. Moreover, they observed that a reduction of the boundary-layer thickness by
a factor of two left the streak spacing unchanged, demonstrating that the latter is not
directly correlated with the former. Ovchinnikov, Choudhari & Piomelli (2008) used two
different ReLf at comparable FST intensities in order to reproduce numerically the T3B
experimental configuration (Roach & Brierley 1992). They observed that the increase
of the integral length scale leads to increased spanwise scales. Similarly, the large-eddy
simulations (LES) of FST-induced transition over a turbine blade of Zhao & Sandberg
(2020) showed that the streak spacing depends on the FST and is not directly connected
to the boundary-layer thickness. Faúndez Alarcón et al. (2022) used DNS to study FST
transition on an NACA0008 wing, and found that the scales of the free-stream vorticity
play an important role in the induced streaks. The preferred spanwise wavenumbers
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are already set in the FST, and are shown to correspond to those predicted by the
optimal disturbance theory (at least for low levels of turbulence intensity where the linear
theory is applicable). Thanks to a comprehensive investigation over a wide range of Tu
(1.8 %–6.2 %) and ReLf (6400–10 000), Fransson & Shahinfar (2020) demonstrated that
the streak spacing was correlated not to Tu or Lf separately, but rather to a combination
of these two FST parameters. They introduced a Reynolds number ReFST = ReLf × Tu
that reflects this double dependence, and proposed an empirical correlation for the streak
spanwise scale.

1.2. Turbulent spot precursors
The second key feature in FST-induced transition is the generation of turbulent spots.
In many situations, the turbulent spot precursors come from the destabilization of
Klebanoff modes inside the boundary layer. The main breakdown path is related to laminar
streaks undergoing secondary instabilities. Andersson et al. (2001) carried out secondary
instability analyses of optimal streaks and found two different instability modes, namely
the sinuous (antisymmetric) and varicose (symmetric) mode. The sinuous and varicose
modes, associated respectively with spanwise and wall-normal mean velocity gradients,
have been observed in numerous experiments and simulations. In their experiments,
Matsubara & Alfredsson (2001) observed that the streak breakdown can be associated
with secondary instabilities. In a computational domain containing a single pair of
streaks, Brandt & Henningson (2002) simulated an antisymmetric instability leading to
the streamwise streak breakdown in a ZPG flat-plate boundary layer. The DNS of Brandt
et al. (2004) described in detail the varicose and sinuous instabilities of low-speed streaks,
and also suggested that the low-speed and high-speed streaks interactions are important
to the breakdown. This was further assessed in Brandt & Lange (2008), where sinuous
and varicose breakdowns were produced directly due to streak collisions and interactions,
without any external disturbances. Mans (2007) reported in his experimental work that
the breakdown leading to turbulent spots was initiated by sinuous and varicose modes,
and that the critical amplitude of the latter was higher. The relevance of the sinuous
secondary instability mechanism for turbulent spots generation was further demonstrated
by Schlatter et al. (2008). Hoepffner, Brandt & Henningson (2005) observed that the
breakdown of subcritical streaks (with respect to the linear secondary instability theory)
can occur by non-modal transient growth, and reported that the spanwise shear participates
in the growth of both sinuous and varicose disturbances, whereas varicose perturbations
are driven by the action of the wall-normal shear. In such cases, as noted by Durbin
(2017), secondary streak instability could therefore take the form of combined sinuous
and varicose modes.

Including the leading edge of the flat plate in their simulations to reproduce the
T3A and T3B benchmark cases (Roach & Brierley 1992), Nagarajan et al. (2007) also
observed that the transition occurs through low-speed streak secondary instabilities for
sharp leading edge and low Tu, but interestingly, with increasing FST intensity and
bluntness, breakdown is initiated by wavepacket-like disturbances in the boundary layer.
Another type of streak instability was discovered by Vaughan & Zaki (2011). These authors
studied secondary instability of idealized streaks, extending the work of Andersson et al.
(2001) to an unsteady base flow. They identified two unstable modes: inner (varicose)
and outer instabilities, named after their vertical position inside the boundary layer. The
outer mode, which corresponds to the previously identified sinuous instability (Andersson
et al. 2001), can take the form of a combination of sinuous and varicose instabilities in
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the case of unsteady streaks. Even if they were not located on a low-speed streak, the
near-wall wavepackets spot precursors reported by Nagarajan et al. (2007) were linked to
the inner mode described by Vaughan & Zaki (2011). Hack & Zaki (2014) then compared
in detail secondary instabilities of streaks using DNS, either by directly tracking the streak
inside the boundary layer or by comparing with two-dimensional (2-D) linear analyses in
a cross-section, confirming the theoretical conclusions of Vaughan & Zaki (2011). Nolan
& Zaki (2013) identified the inner instability in their simulations and demonstrated that
this mode was promoted by a strong adverse pressure gradient. Finally, Bose & Durbin
(2016a) identified a helical inner mode in their simulations, resulting from the interaction
between Tollmien–Schlichting (TS) waves and streaks.

In some other studies, the turbulent spots are not necessarily associated with streak
destabilization. Using a numerical set-up similar to that of Nagarajan et al. (2007), but
with an integral length scale three times larger, Ovchinnikov et al. (2008) found an
alternative transition mechanism. While the transition was initiated by streak instabilities
in their low-ReLf simulation, the authors reported that for large-scale FST (high ReLf ),
the breakdown was driven by low-speed �-shaped structures that did not originate
from TS waves and that were formed upstream of laminar streaks. Such low-speed �
structures were associated with � vortices, originating from a spanwise vortex filament
stretched in the streamwise and wall-normal directions by the boundary-layer mean shear.
Similarly, Wu et al. (2017) observed that the same � vortices formation mechanism was
responsible for the turbulent spot formation in their DNS, and that the low-speed streaks
forming downstream were not involved in turbulent breakdown. In a recent review about
turbulent spots, Wu (2023) reported that the paths to turbulent spot inception were likely
to be classified in two categories: if Tu ≤ 2 %, then the breakdown occurs by laminar
streaks instabilities, whereas for Tu > 2.5 %, the breakdown is driven by oblique vortices
interacting with a �-shaped low-speed patch underneath. The �-shaped low-speed patch,
shown in their supplementary movies available at https://doi.org/10.1017/jfm.2024.567,
are analogous to the � low-speed structures reported in Ovchinnikov et al. (2008), which
appeared by varying the incoming turbulence scale only.

1.3. Scope of the present study
In the present study, we are interested in investigating the influence of high integral length
scales (Lf ) on the bypass transition on a flat plate for different turbulent intensities (Tu),
with specific focus on configurations of interest for ORC turbomachinery. In particular,
two different integral length scales, which differ by a factor of seven, are considered at
different FST intensities. The linear stability and natural transition of a high-subsonic
ZPG flat-plate boundary layer of Novec649 was studied recently by Gloerfelt, Bienner &
Cinnella (2023). The flow conditions were selected as representative of the CLOWT, with
M = 0.9, temperature 100 ◦C, and pressure 4 bar. The influence of the thermo-physical
models was analysed, and DNS results were compared with LES with or without implicit
time marching, demonstrating the suitability of the latter for further FST studies. The
stability of the laminar boundary layer was found to be weakly affected by the gas nature
in the high-subsonic and low-supersonic velocity range, while dramatic differences were
predicted for high-supersonic and hypersonic flow speeds compared with a perfect gas.
The main reason for such deviations is that temperature fluctuations are absorbed by the
internal degrees of freedom of the complex organic gas, so that boundary-layer thickening
due to heat friction is almost absent, and boundary-layer velocity profiles remain close to
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the incompressible limit. Furthermore, the natural transition triggered by a pair of oblique
TS modes was studied by means of DNS and LES. The transition pattern was found to be
similar to oblique transition in air flows, while the velocity mean and fluctuating profiles
in the turbulent state are almost superimposed with the ones from incompressible DNS,
even at the high-subsonic conditions. Inspection of thermo-physical properties essentially
showed that the thermal mode is drastically reduced in the dense gas. However, unusual
density variations were observed, correlated with pressure ones, thus showing that genuine
compressibility effects are still present. For instance, the acoustic mode is not reduced but
slightly reinforced compared with air flows. Since the vortical mode is weakly affected by
the gas thermodynamic behaviour, it is expected that non-ideal gas effects should play a
minor role on FST-induced transition (at least at the considered flow speeds), and that FST
transition is driven mainly by the interactions of the large-scale, high-Reynolds-number
incoming turbulence with the very thin boundary layer. To prove that, for selected cases,
we compare the Novec649 at M = 0.9 with air flows at the same Mach number and at
nearly incompressible conditions (M = 0.1). Furthermore, the two cases in air allow us
to investigate potential effects of compressibility in the FST-induced transition, which
have been addressed in only a relatively small number of studies. Specifically, Klebanoff
streaks were found to be slightly stabilized in the compressible boundary layer due to
enhanced temperature fluctuations and reduced streamwise velocity fluctuations (Ricco &
Wu 2007; Marensi, Ricco & Wu 2017). This conclusion was also obtained by applying
the optimal perturbation theory to the compressible boundary layer (Tumin & Reshotko
1984), showing that the threshold to destabilize laminar streaks is increased. The onset of
bypass transition is thus delayed by increasing the Mach number (Ohno et al. 2023). In the
context of Görtler vortices, the Mach number was found not only to affect the strength of
the streaks but also to impact the secondary instability process (Ren & Fu 2015).

The present paper is organized as follows. The numerical set-ups are described in § 2.
The effects of changing FST properties (Lf and Tu) of the gas nature (air versus Novec649)
and of compressibility (M = 0.1 and 0.9) are highlighted in § 3. Two competing transition
scenarios are analysed in § 4, namely the destabilization of laminar streaks and the
generation of � vortices close to the inlet. The existence of these linear and nonlinear
routes to turbulence is discussed in § 5, and the main conclusions are summarized in § 6.
Appendices A to E give further implementation details and validation cases.

2. Numerical set-up and flow configuration

2.1. Flow solver
The compressible Navier–Stokes equations are solved. They are supplemented with the
Peng–Robinson–Stryjek–Vera (PRSV) equation of state (Stryjek & Vera 1986) and the
Chung–Lee–Starling model (Chung et al. 1988) for the transport properties for Novec649
vapour. The ideal gas law and Sutherland’s model are used for air flows.

The in-house finite-difference code MUSICAA is used to solve the governing equations.
The inviscid fluxes are discretized by means of tenth-order centred differences, whereas
fourth-order finite differences are used for the visco-thermal fluxes. For a prescribed
dispersion error of 5 × 10−4, the accuracy limit of the finite-difference scheme is 5.25
points per wavelength. A tenth-order selective filtering is applied to eliminate fluctuations
at wavenumbers greater than the finite-difference scheme resolvability. The filter also
acts as an implicit LES model, a strategy that has been demonstrated to be effective
(Gloerfelt & Cinnella 2019). A four-stage low-storage Runge–Kutta algorithm is used

997 A56-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.567


Influence of large-scale FST on bypass transition

for time integration. To enlarge its stability limit and allow the use of larger time
steps, a fourth-order implicit residual smoothing (IRS) method (Cinnella & Content
2016) is applied. The high-order IRS acceleration, with modifications to enhance
robustness (Bienner et al. 2023), has been shown to be very efficient in terms of savings
of computational time while maintaining a similar accuracy as the explicit method.
Periodicity is enforced in the spanwise direction, and adiabatic no-slip conditions are
applied at the wall. The non-reflecting conditions of Tam & Dong (1996) are imposed
at the inlet, top and outflow boundaries. Finally, a sponge zone combining grid stretching
and a Laplacian filter is added at the outlet.

The solver MUSICAA has already been used in previous studies of wall-bounded flows
of a heavy fluorocarbon (PP11) in compressible channel flows (Sciacovelli, Cinnella &
Gloerfelt 2017) and supersonic boundary layers (Sciacovelli et al. 2020). More recently, the
LES strategy and time implication have been assessed carefully for the spatial development
of TBLs of Novec649 (Gloerfelt et al. 2023). In particular, the fourth-order IRS yielded
results in good agreement with the DNS and slightly better than the time-explicit LES,
thanks to the less frequent application of the numerical filter.

2.2. Inlet synthetic turbulence
To create turbulent inlet conditions, we use a synthetic flow field based on random Fourier
modes (RFMs) (Béchara et al. 1994). A homogeneous isotropic turbulent velocity field is
generated as the sum of N independent RFMs:

u′
in(x, t) =

N∑
n=1

ûn cos(kn(x − ūt)+ ωnt + ψn)an. (2.1)

Given a logarithmic distribution for the wavenumbers kn = |kn|, the mode amplitude
ûn = √

2E(kn)�kn is prescribed from a von Kármán spectrum with Saffman viscous
dissipation function and a bottleneck correction (Kang, Chester & Meneveau 2003):

E(k) = 1.453
(u′

rms)
2k4/k5

e

exp(17/6 log(1 + (k/ke)2))
× exp(−1.5cK(kη)2)

×
[

1 + 0.522
(

1
π

arctan(10 log10(kη)+ 12.58)+ 1
2

)]
(2.2)

with ke = 0.747/Lf , cK = 1.613, and η the Kolmogorov viscous scale. In (2.1), the phase
term ψn, the wavenumber orientation kn/kn and the velocity direction an are random
variables with given probability density functions. An unfrozen turbulent field is obtained
by incorporating the convection velocity ū and the pulsation ωn, accounting for the
temporal evolution of the perturbations. In the present simulations, we use N = 100 RFMs.
More details on the generation of RFMs can be found in Appendix A. This stochastic
velocity u′

in is windowed by a van-Driest-type damping function to mimic the exponential
damping of continuous Orr–Sommerfeld modes in the boundary layer. We use the function
proposed by Pinto & Lodato (2019), defined as

σdamp( y) = (1 − exp(−y/(0.137 × h)))1000, (2.3)

where h corresponds to the height where the coefficient is equal to 0.5, and needs to be
prescribed by the user. The synthetic turbulence is also damped at the upper corner of
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Figure 1. (a) Damping function σdamp, identical among cases, and (b) initial kinetic energy spectra for the inlet
synthetic turbulence. Low Lf at Tu = 2.5 % ( ), 4 % ( ) and 6.6 % ( ); high Lf at Tu = 2.5 %
( ) and 4 % ( ).

Gas M∞ U∞ c∞ p∞ T∞ ρ∞ μ∞ Γ∞ δ∗in
(m s−1) (m s−1) (bar) (◦C) (kg m−3) (Pa s) (μm)

Air 0.1 34.6 346.1 1.01 25 1.18 1.8371 × 10−5 1.2 79
0.9 311.5 346.1 1.01 25 1.18 1.8371 × 10−5 1.2 9.5

Novec649 0.9 76.2 84.7 4.0 100 48.5 1.2835 × 10−5 0.84 0.61

Table 1. Thermodynamic and aerodynamic free-stream conditions (subscript ∞): M denotes the Mach
number, U the velocity, c the sound speed, p the pressure, T the temperature, ρ the density, μ the dynamic
viscosity and Γ the fundamental derivative of gas dynamics.

the inlet to prevent it from being injected too close to the upper boundary condition. It
is entered using a modified Tam–Dong boundary condition (see Appendix in Gloerfelt
et al. 2023). The T3A benchmark case (Roach & Brierley 1992) is used in Appendix B
to validate the strategy based on synthetic turbulence. In particular, the injection height
h is a free parameter that can influence the precise location of transition. Nonetheless,
FST-induced transition is well reproduced as long as the turbulence is injected above δ99,in.
Thereafter, h is kept equal to 1.21δ99,in, for all cases (see figure 1a).

2.3. Operating conditions
The operating conditions are given in table 1. The selected configuration for Novec649
vapour corresponds to nominal operating conditions of the CLOWT facility (Reinker
et al. 2016), which is a continuously running a pressurized closed-loop wind tunnel using
Novec649 in the high subsonic speed range. Two flow speeds are chosen for simulations
with air: a low subsonic speed (M = 0.1) to reproduce an incompressible-like case, and
a high subsonic speed (M = 0.9) corresponding to the Mach number used for Novec649.
The fundamental derivative of gas dynamics, defined as Γ = 1 + (ρ/c)(∂c/∂ρ)s (s being
the entropy) governs the nonlinear thermodynamic behaviour of dense gases. It is equal to
(γ + 1)/2 for a perfect gas. At the conditions chosen for Novec649, Γ has a value below 1,
meaning that the flow operates in the dense-gas thermodynamic region, often encountered
in ORC applications. A preliminary study of oblique transition of a Novec649 boundary
layer was carried out for the same thermodynamic conditions (Gloerfelt et al. 2023), and
assessed the use of PRSV/Chung–Lee–Starling models to describe the fluid behaviour.
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Case Flow Tu,in ReLf ,t ReLf ,c ReFST Points Resolution Legend
(%) Theo. Calc. Calc. Nx × Ny × Nz �x+ ×�y+

w ×�z+

Low Lf , low Tu Novec 2.5 1728 2150 54 1410 × 280 × 400 9 × 0.7 × 8
High Lf , low Tu Novec 2.5 17 280 13 600 340 1800 × 480 × 800 27 × 0.9 × 10
Low Lf , high Tu Novec 4.0 1728 1950 78 1280 × 280 × 400 13 × 1.0 × 11

Air0.1 4.0 1728 2200 88 1410 × 280 × 400 13 × 1.0 × 11
Air0.9 4.0 1728 2100 84 1410 × 280 × 400 11 × 0.8 × 9

High Lf , high Tu Novec 4.0 17 280 13 250 530 1800 × 480 × 800 28 × 0.9 × 10
Air0.1 4.0 17 280 14 350 574 704 × 480 × 800 26 × 0.9 × 10
Air0.9 4.0 17 280 14 000 560 704 × 480 × 800 21 × 0.8 × 9

Low Lf , vhigh Tu Novec 6.6 1728 1850 122 4096 × 320 × 400 14 × 1.0 × 11

Table 2. Computational grid and FST properties of the simulations.

2.4. Set-up of LES
Simulations are initialized with similarity solutions of the compressible laminar boundary
layer with zero pressure gradient. The Reynolds number at the inlet is taken as
Rex,in = 104. In the Novec cases, five different FST conditions are analysed. For the
lowest value of the integral length scale (hereafter referred to as ‘low-Lf ’), three turbulent
intensities (2.5 %, 4 % and 6.6 %) are tested. The ‘high-Lf ’ cases consider an integral
length scale target multiplied by a factor of ten for two values of Tu,in (2.5 % and 4 %). For
simulations in air, the low-Lf and high-Lf cases are reproduced at Tu = 4 % for two values
of the Mach number (0.1 and 0.9). The different LES are summarized in table 2, with the
corresponding grids and line legends. For the low-Lf cases, the Reynolds number based on
the integral length scale, ReLf , is the same as that used to reproduce the T3A experiment
in Appendix B, and it is of similar magnitude to that used in most published FST transition
experiments (Mans 2007; Mandal, Venkatakrishnan & Dey 2010) and simulations (Brandt
et al. 2004; Nagarajan et al. 2007; Pinto & Lodato 2019). The effective integral length
scale Lf at the inlet is determined by integration of the temporal autocorrelation function
f of the velocity signal:

Lf = U∞
∫ t

0
f (τ ) dτ, (2.4)

where the upper limit of integration is set as the first zero crossing of f (Kurian &
Fransson 2009). The Reynolds number based on the integral length scale is defined as
ReLf = Lf U∞ρ∞/μ∞. For the high-Lf cases, the target value ReLf ,t has been multiplied
by ten to investigate the effect of large incoming disturbances. The calculated value is
ReLf ,c ∼ 14 000, corresponding in the end to a factor of seven. The differences in turbulent
scales are clearly visible in figure 2. Following Fransson & Shahinfar (2020), we also
introduce an FST Reynolds number, ReFST = Tu × ReLf , given in table 2.

The computational grid resolution needs to comply with two major constraints. The
first concerns the resolution of the near-wall boundary-layer flow, for which a target
resolution in wall units �x+ ×�y+

w ×�z+ ∼ 30 × 1.0 × 11 has been determined in a
previous study (Gloerfelt et al. 2023). The second constraint is the resolution of the
free-stream disturbances, which is driven by the values of the RFM wavenumber bounds
kmin and kmax. In the high-Lf simulations, kmin is such that the crossflow dimensions Ly
and Lz are at least ∼10Lf , which leads to Ly/δ

∗
in = 1100 and Lz/δ

∗
in = 980. The obtained
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Figure 2. Snapshot of the streamwise velocity in the mid-span plane. Colour scale between 0.9U∞ (blue) and
1.1U∞ (red) for (a) low-Lf and (b) high-Lf Novec cases at Tu = 4 %. For the high-Lf , high-Tu case in (b), only
half of the domain height is shown.

Lz is halved in the low-Lf simulations, yielding Lz ∼ 50Lf . In particular, in the low-Lf
simulations, Lz/δ

∗
in = 490 and Ly/δ

∗
in = 270. We then choose kmax ≥ 7kLf , which gives a

maximal value for the grid spacings to accurately resolve the injected modes (based on
the resolvability limit of the current numerical scheme). The resulting resolutions given
in table 2 are typical of wall-resolved LES. The streamwise resolution �x+ ∼ 13–14 for
the low-Lf cases is dictated by the FST, as shown by the inlet spectra in figure 1(b).
On the contrary, when the integral length scale is relatively large, the boundary-layer
resolution constraint is more restrictive and the streamwise spacing is �x+ ∼ 27–28.
These resolutions have been shown to be sufficient to accurately capture a modal transition
and the fully turbulent state of the boundary layer (Gloerfelt et al. 2023). To make sure
that the receptivity to FST is not affected by grid resolution, the high-Lf , high-Tu case at
M = 0.9 in air has been simulated on a grid with a DNS resolution�x+ ×�y+

w ×�z+ ∼
10.5 × 0.8 × 4.3, keeping the same RFM wavenumber bounds as the LES. Although
transition occurs a little earlier (as also observed e.g. in Sayadi & Moin 2012), the results,
reported in Appendix C, remain nearly superimposed with DNS in the transitional region,
which validates the present LES resolution. Furthermore, a second run of DNS has been
performed with kmax increased to match the limit imposed by the DNS grid to investigate
the influence of an increase of the high-frequency content of the FST on the breakdown.
The results are perfectly superimposed on the first DNS, validating the choice kmax ≥ 7kLf

used for the LES study. The sensitivity to the choice of kmin has also been checked in
Appendix D.

After the initial transient has been discarded, span- and time-averaged quantities are
collected over 70 000 time steps for the cases at M = 0.9, and 300 000 time steps for
those at M = 0.1. The evolutions of the averaged FST intensity are compared for the
five Novec cases in figure 3(a). As expected, when Lf is increased, the decay slope
of the FST evolution is decreased. Therefore, in the high-Lf cases, the turbulence
intensity remains greater than 3 % and 2 % for the high- and low-Tu cases, respectively,
whereas the turbulence intensities for the low-Lf cases are rapidly below 2 %. In order to
estimate the homogeneity of the FST, Tu evolutions are plotted in figure 3(b) at three
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Figure 3. Evolution of the turbulence intensity for the different Novec cases: (a) low Lf at Tu = 2.5 %
( ), 4 % ( ) and 6.6 % ( ); high Lf at Tu = 2.5 % ( ) and 4 % ( ). FST homogeneity
(b) and isotropy (c) of the Novec low-Lf , high-Tu case. Here, Tu =

√
(u′2 + v′2 + w′2)/3/U∞,

Tu,x =
√

u′2/U∞, Tu,y =
√
v′2/U∞ and Tu,z =

√
w′2/U∞.

wall-normal locations in the free stream and compared with the averaged one for the
low-Lf , high-Tu Novec case. The curves match perfectly, meaning that good homogeneity
is obtained for the injected synthetic turbulence. Furthermore, to assess the turbulence
isotropy, Tu evolutions for the three velocity components are reported in figure 3(c). Slight
discrepancies can be observed close to the inlet, but the intensity of the three velocity
components stays within 7 % of Tu, so the FST can be considered as approximately
isotropic.

3. Influence of flow conditions on transition location

First, the influence of the FST characteristics on the bypass transition is analysed for the
organic vapour flows. Then for Tu = 4 %, the Novec boundary layers are compared with
air flows in an incompressible-like (M = 0.1) and compressible (M = 0.9) configuration
in order to quantify dense-gas and compressibility effects on the FST-induced transitions.

3.1. Influence of FST characteristics
The friction coefficient evolutions in the dense-gas boundary layers are reported in
figure 4. All the flows transition to a fully turbulent state in the computational domain,
except for the low-Lf , low-Tu case. Here, onset of transition denotes the location of
minimal friction coefficient, and the end of the transition is the location of maximal
friction coefficient. As expected, an increase of the inlet turbulence intensity always
leads to a faster onset and termination of the transition, for both high- and low-Lf cases.
Similarly to Fransson & Shahinfar (2020), a double effect is observed by changing Lf . For
Tu = 2.5 %, an increase of the integral length scale moves the transition region upstream,
whereas for Tu = 4 %, an increase of Lf extends the transition region. For Tu = 4 %, the
slope of the Cf rise in the transition region with a high Lf is smoother than with a low Lf ,
so that even if the transition onset occurs earlier, the end of the transition region is shifted
downstream.

The streamwise evolutions of the maximum of urms, in figure 5(a), are often correlated
with the streak growth. For the low-Lf , high-Tu case, a fast increase of urms,max is observed
in the pre-transitional region, i.e. prior to the minimum of skin friction (at Reθ ≈ 220), and
can be associated with the transient energy growth in the early streak development. The
growth rate then slows down before a secondary growth phase, associated with the eruption
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Figure 4. Distribution of the friction coefficient for the different cases with Novec649 vapour: low Lf at Tu =
2.5 % ( ), 4 % ( ) and 6.6 % ( ); high Lf at Tu = 2.5 % ( ) and 4 % ( ). The black
solid line shows laminar correlation Cf ,lam = 0.664/

√
Rex.

of turbulent spots (Nolan & Zaki 2013), yields the peak at approximately Reθ = 340.
A slower growth of urms,max in the pre-transitional region is obtained for the low-Lf ,
low-Tu boundary layer, in accordance with the lower FST intensity. An inflection point
is visible near Reθ ∼ 120 for the low-Lf cases with Tu = 2.5 % and 4 %. For the low-Lf
case with Tu = 6.6 %, the growth is so fast that no inflection is noticeable before the
main peak. For the high-Lf cases, a first peak is visible in the pre-transitional region,
just prior to the location of the inflection point of the low-Lf cases. This first local
maximum is not linked to the laminar streak growth, and is also present in the results
extracted from the database of Wu et al. (2017). In their simulation, homogeneous isotropic
turbulence (HIT) is injected at a height equal to 15δ99,in with an inlet Reθ = 80, explaining
the offset with our curves. As their simulation was characterized by the appearance of
low-speed �-shaped structures prior to laminar streaks, the early secondary peak can be
associated with the growth of these structures, which could also be present in the high-Lf
simulations. In figure 5(b), the height for the maximum of urms is approximately the same
for all cases. The location y(urms,max) moves from values approximately 1.2δ∗–1.4δ∗ in
the pre-transitional region, as predicted by the optimal perturbation theory (Andersson,
Berggren & Henningson 1999; Luchini 2000), towards a low level in the TBL, associated
with the near-wall turbulent streaks. The evolutions are also in agreement with low-speed
airflow results of Wu et al. (2017), except for a slightly lower altitude in the laminar region.

Instantaneous top views of the streamwise velocity fluctuations at y/δ∗in = 3.1 are shown
in figure 6, using the same streamwise and spanwise extents to provide an overview of
the structures present inside the boundary layer and a first qualitative comparison of the
Klebanoff streaks. The streak formation and the presence of turbulent spots are clearly
revealed for each case, except for the case Tu = 6.6 %, which is highly disturbed. A first
important observation is that the scales associated with Klebanoff modes are different
between the low-Lf and high-Lf cases. At constant Lf and to a lesser degree, the spanwise
distribution of the laminar streaks is also affected by the FST intensity, in particular for the
low-Lf boundary layers. In the low-Lf , low-Tu case, the spanwise scale of the Klebanoff
modes increase as the boundary layer thickens. Moreover, the presence of low-speed
�-shaped structures is clearly revealed in the instantaneous snapshots for the high-Lf
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Figure 5. Evolution of (a) urms,max/U∞ and (b) its height y(urms,max)/δ
∗. Low Lf at Tu = 2.5 % ( ), 4 %

( ) and 6.6 % ( ); high Lf at Tu = 2.5 % ( ) and 4 % ( ).

cases, as highlighted by the grey circles in the figure. These �-shaped structures bear
a strong resemblance to the quasi-periodic spanwise structures described by Ovchinnikov
et al. (2008), and the �-shaped structures in Wu et al. (2017). As in Ovchinnikov et al.
(2008), they are located prior to laminar streaks. For Tu = 2.5 %, a � structure begins to
emerge at the location (x/δ∗in, z/δ∗in) = (75, 125), at approximately Reθ = 100, where the
first peak was identified in figure 5. The low-Lf , Tu = 6.6 % case, in figure 6(c) also seems
to show several similar structures close to the inlet, but as this case is very disturbed, this
is difficult to observe clearly. For the low-Lf cases in figures 6(a,b), the visualizations do
not clearly reveal similar structures near the inlet. This point is discussed in details at the
end of § 4.2.

3.2. Compressibility and dense-gas effects
For Tu = 4 %, additional simulations are carried out at the same conditions (same
resolution) with air at Mach numbers M = 0.1 and 0.9, to sort out compressibility and
non-ideal gas effects on the FST-induced transition. The friction coefficient evolutions
show the same trend for low (figure 7a) and high (figure 7b) integral length scales. First,
comparing air boundary layers at the two flow speeds, an increase of the Mach number
tends to slightly delay the transition and reduces the friction value in the turbulent state
due to the friction heating at the wall. As reported by Marensi et al. (2017) and Ohno
et al. (2023), temperature fluctuations are enhanced by compressibility, and streamwise
velocity fluctuations are consequently reduced. This can be seen in figure 8, where thermal
streaks present in the air boundary layer at M = 0.9 (figure 8a) have an intensity Trms,max
(∼3 %T∞) significantly higher than at M = 0.1 (figure 8b). Note that thermal fluctuations
for the dense-gas flow at M = 0.9 are very low due to the high thermal capacity of the
organic vapour. As a consequence, the Cf levels of Novec649 simulations in the fully
turbulent state collapse on those of air boundary layers at M = 0.1 or of incompressible
simulations (as noted in previous studies such as Gloerfelt et al. 2023). However, the Cf
curves of Novec simulations in the transitional region show that the use of an organic
vapour delays the transition even more than the effects of compressibility. This can be
explained by the excitation of internal degrees of freedom of the complex Novec649
molecules, that further reduces streamwise velocity fluctuations. This stabilizing effect
is of the same nature as that due to the increase in thermal fluctuations, but is more
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Figure 6. Instantaneous streamwise fluctuations in a wall-parallel plane at y/δ∗in = 3.1. Low-Lf cases (a) Tu =
2.5 %, (b) Tu = 4 % and (c) Tu = 6.6 %; and high-Lf cases (d) Tu = 2.5 % and (e) Tu = 4 %. The vertical
dashed lines mark the location where Reθ = 100. Some occurrences of �-shaped structures are marked by
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shows laminar correlation Cf ,lam = 0.664/
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Figure 8. (a) Instantaneous temperature fluctuations T ′/T∞ at y/δ∗in = 3.1 in the low-Lf , high-Tu air M = 0.9
case. (b) Evolution of Trms,max/T∞ for the low-Lf cases at Tu = 4 %, for Novec at M = 0.9 ( ) and for air
at M = 0.1 ( ) and 0.9 ( ).

significant. It was also noted in the boundary layer stability of Gloerfelt et al. (2023),
where the neutral curve for Novec649 at M = 0.9 is contained in that for the same
boundary layer in air. The evolutions of urms,max for low and high Lf are reported in
figures 9(a,b), respectively. The hierarchy observed for transition onset is respected, i.e.
velocity fluctuations in air at M = 0.1 are slightly reduced in air at M = 0.9, and further
reduced in Novec at M = 0.9 for both FST length scales. The curves are, however, very
close for a given Lf , meaning that the compressibility and non-ideal gas effects are present
but secondary compared with the effects of the FST length scale. It can be concluded that
the observations made in § 3.1 about the influence of Lf on transition are the same in the
air and organic vapour flows.

The similarities between the various flows is shown further by the instantaneous views
of u′ in a wall-parallel plane in figure 10 (see supplementary movies). At a given free
stream Lf , the laminar streaks retain at first sight similar spanwise distributions and are
weakly affected by compressibility or non-ideal gas effects (this will be quantified in § 4.1).
For high-Lf cases, the same �-shaped structures are observed in air flows, meaning that
their presence is linked to the FST characteristics rather than dense-gas or compressibility
effects. Overall, at the selected thermodynamic conditions, the FST-induced transition is
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Figure 9. Evolution of urms,max/U∞ for the (a) low-Lf , high-Tu and (b) high-Lf , high-Tu cases, for Novec649

at M = 0.9 (circles) and for air at M = 0.1 (diamonds) and 0.9 (triangles).

only slightly modified by the high-subsonic regime or the organic vapour thermo-physical
properties.

4. Paths to transition

In all the simulations, laminar low-speed streaks, which are a key element in the formation
of turbulent spots in FST-induced transitions, are generated inside the boundary layer.
In the high-Lf cases, low-speed �-shaped structures are also observed. As reported by
several authors (Ovchinnikov et al. 2008; Wu et al. 2017), these �-shaped structures can
play an important role in the generation of turbulent spots. Therefore, their participation
in the transition process is investigated in this section. First, laminar streaks and �-shaped
structures are further characterized, and then the competition between these two transition
paths is analysed.

4.1. Laminar streaks
As some variability in the streamwise streak sizes was observed in figure 6, the influence
of the FST characteristics on their spanwise scale is investigated. The distance lz that
corresponds to a minimum of the spanwise correlation of the streamwise velocity, Ruu,
can be related to the spanwise half-wavelength of the streaks (Fransson & Shahinfar 2020).
Here, Ruu is evaluated in the transitional region at the height of the maximum urms, and
time averaged. The evolution of λz = 2lz for the Novec649 cases, estimated using a cubic
interpolation, is reported in figure 11(a). Some important differences between the cases are
observed during transition, before all the curves tend to similar values in the TBL, except
for the low-Lf , low-Tu case, which does not fully transition in the domain. In particular,
the latter case exhibits a significant increase in λz from the inlet, with a spanwise scale
eventually larger than the high-Lf , high-Tu case. Figure 11(b) compares the Novec cases
with air flows at M = 0.1 and 0.9 for Tu = 4 %. The results show that a similar spanwise
scale is achieved for a given Lf , indicating that compressibility and dense-gas effects are
of secondary importance.

As the minima of the correlation functions vary greatly across the transitional boundary
layer for the different cases, the region considered for the evaluation of λz is restricted
between the location of Cf ,min and the location at 60 % between Cf ,min and Cf ,max. This
region includes the locations where the intermittency function γpeak is 10 % and 50 % for
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Figure 10. Comparison of air and Novec transitional flows at Tu = 4 % with (a,c,e) low Lf and (b,d, f ) high
Lf , for (a,b) Novec, (c,d) air M = 0.1, and (e, f ) air M = 0.9. Instantaneous streamwise fluctuations in a
wall-parallel plane at y/δ∗in = 3.1.

the Tu = 4 % cases (see § 4.3 for the definition of γpeak), as used in Fransson & Shahinfar
(2020). Along this region, the spanwise distance between streaks remains relatively
constant, except for the high-Lf , high-Tu case, which exhibits significant variations due to
the appearance of�-shaped structures prior to the laminar streaks. The hierarchy between
the different cases is more apparent when restricted to this region. At constant Lf , an
increase of Tu leads to a decrease of λz, as in Fransson & Alfredsson (2003). Conversely,
at constant Tu, an increase of Lf leads to an increase of λz. Fransson & Shahinfar (2020)
showed that λz varies monotonically not with Tu and Lf , but rather with a combination
of these two FST parameters. They proposed an empirical correlation for the spanwise
length, which was fitted to their extensive database and was given by

λz,FS = Lf Tu(D1 Re−1/
√

2
FST + D2)

2, (4.1)
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Figure 11. (a) Evolution of spanwise wavelength of the streamwise streaks in the transitional region for the
Novec649 cases, and (b) comparison between Novec and Air cases at Tu = 4 %. Novec cases: low Lf at
Tu = 2.5 % ( ), 4 % ( ) and 6.6 % ( ); high Lf at Tu = 2.5 % ( ) and 4 % ( ). Air
M = 0.1 cases: low Lf ( ) and high Lf ( ). Air M = 0.9 cases: low Lf ( ) and high Lf ( ).
The colours are lighter outside the transition region between Cf ,min and 60 % of Cf ,max − Cf ,min. In (a), crosses
denote the positions γpeak = 0.1 and 0.5 for the Novec cases at Tu = 4 %.

with (D1,D2) = (186, 0.8) to match at ±10 % the measured values. The estimator λz,FS
is plotted as a function of ReFST = Tu × ReLf in figure 12, along with the experimental
results of Fransson & Shahinfar (2020) at ReFST between 135 and 561 (evaluated at an
intermittency level γpeak of 10 %). The measurements from Mamidala et al. (2022), which
contain lower ReFST values (down to 57) and were obtained with an experimental set-up
similar to that used by Fransson & Shahinfar (2020), are also reported. The mean values
of λz along the evaluation region in the current simulations are also displayed. As noted
earlier, the length scale varies with x for the high-Lf , high-Tu cases, so to observe its
influence on the results, λz values are plotted with their variations in the inset. Values
from other experimental or numerical studies of FST-induced transition are also reported.
In the high-ReFST range shown in the inset of figure 12, even taking into account the large
λz variations, the present high-Lf results are in good agreement with the estimator λz,FS
for incompressible-like air flows but also for the air and organic vapour boundary layers at
M = 0.9. The results of Ovchinnikov et al. (2008) are also in fair agreement (∼−35 %),
showing that the estimator works well for large ReFST , at least for the data considered. The
majority of data in the literature are concentrated around lower ReFST (≤150) and lower
ReLf (≤3000). In this region, containing only one point from the Fransson & Shahinfar
data, the comparison is less convincing. The increase of λz/(Lf × Tu) as ReFST decreases is
captured correctly by the estimator, but λz values predicted by (4.1) are twice the spanwise
distance obtained in our low-Lf cases. Our results are, however, in good agreement with
the more recent experiment of Mamidala et al. (2022). Despite some scatter in the results
from the literature, the general trend indicates that the correlation is less accurate for low
ReFST .

Turbulent breakdowns due to low-speed streak instabilities are observed in all the
simulations. As the FST levels are relatively high, the streaks rapidly become distorted,
making it difficult to distinguish clearly between the sinuous and varicose modes. Also,
knowing that the symmetric and antisymmetric modes have been shown to combine in the
case of streak transient growth (Hoepffner et al. 2005) or unsteady base streaks (Vaughan
& Zaki 2011), no attempt has been made to classify the streak instabilities. An example
of each mode is given below for the high-Lf , low-Tu Novec case to show that despite
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Figure 12. Spanwise wavelength of the streamwise streaks as a function of ReFST . Novec cases: low Lf at
Tu = 2.5 % (red square), at Tu = 4 % (blue circle) and at Tu = 6.6 % (olive triangle); high Lf at Tu = 2.5 %
(yellow square) and at Tu = 4 % (purple circle) cases. At Tu = 4 %, air M = 0.1 for low-Lf (blue diamond)
and high-Lf (magenta diamond) cases, and air M = 0.9 for low-Lf (blue down triangle) and high-Lf (purple
down triangle) cases. Regarding the literature results, λz was either directly available (Jacobs & Durbin 2001;
Brandt et al. 2004; Mans 2007; Ovchinnikov et al. 2008; Fransson & Shahinfar 2020; Mamidala, Weingärtner
& Fransson 2022) or evaluated from Ruu profiles (Mandal et al. 2010; Muthu et al. 2021). The vertical bars in
the inset show the variability in the transition region.

the competition with another breakdown mechanism and relatively wider streaks, both
modes are active with the larger FST length scale. An example of a sinuous breakdown
is illustrated in figure 13 using three successive three-dimensional (3-D) views of the
low-speed streak before the breakdown. In the first view, two quasi-streamwise vortices
are observed on each side of the low-speed streak. In particular, the streak is flanked
by a high-speed streak on only one side. This is similar to the one-sided sinuous mode
described in Brandt et al. (2004), where a high-speed streak approaches a low-speed region
on one side. In figure 13(c), the low-speed streak begins to be fully disrupted, prior to
the emergence of a turbulent spot. A varicose-like breakdown is shown in figure 14. In
figure 14(a), vortices, identified by the Q-criterion, are characterized by alternating V and
� structures joining in the middle of the low-speed streak, as described by Brandt et al.
(2004). The � vortices evolve into hairpin vortices in figure 14(b), and the low-speed
streak is disrupted symmetrically relative to the centre of the streak.

4.2. �-shaped structures
An important difference between the low-Lf and high-Lf cases is the presence of
low-speed�-shaped structures in the latter. The formation of these�-shaped structures is
illustrated in figure 15 through 3-D views in the high-Lf , low-Tu Novec case. First, several
quasi-spanwise vortices appear close to the wall due to the interaction of the boundary
layer with the FST. Similarly to Ovchinnikov et al. (2008), these structures are stretched in
the streamwise direction, leading to the formation of � vortices. The strong � vortex in
the upper right corner is associated with a low-speed patch of velocity that evolves further
downstream in the � structure. The � vortex in the bottom of the images is linked to a
one-leg �, whose head then connects to a downstream low-speed streak.

The breakdown of a low-speed � structure is illustrated in figures 16(a,c,e). The �
vortex, flanking the low-speed structures, evolves into a hairpin vortex, the tips of which
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t∗ = 0

t∗ = 234

t∗ = 569

(a)

(b)

(c)

Figure 13. Observation of a sinuous-like breakdown in the high-Lf , low-Tu case at three successive times
(t∗ = (t − t0)U∞/δ∗in, with t0 the time of the first snapshot). Isosurfaces of the streamwise velocity fluctuations:
u′ = 0.16U∞ (white), −0.16U∞ (green). Isosurfaces of the Q-criterion are also depicted in light brown.

t∗ = 0

t∗ = 117

(a)

(b)

Figure 14. Observation of a varicose-like breakdown in the high-Lf , low-Tu case at two successive times
(t∗ = (t − t0)U∞/δ∗in, with t0 the time of the first snapshot). Isosurfaces of the streamwise velocity fluctuations:
u′ = 0.16U∞ (white), −0.16U∞ (green). Isosurfaces of the Q-criterion are also depicted in light brown.

turn into the characteristic� shape. As observed in figures 16(b,d, f ) in an xy-plane located
in the middle of the low-speed structure, the breakdown imprints both the spanwise and
wall-normal velocity components in the upper half region of the boundary layer, consistent
with the observations in Ovchinnikov et al. (2008) or more generally with descriptions in
the literature of horseshoe vortices evolution and breakdown (see e.g. Bake, Meyer & Rist
2002).
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(c) (d )

Low-speed �

One-leg �

� vortices

� vortices

t∗ = 0 t∗ = 191

t∗ = 358 t∗ = 472

Figure 15. The � structure formation in the high-Lf Novec case with Tu = 2.5 % at four successive times
(t∗ = (t − t0)U∞/δ∗in, with t0 the time of the first snapshot). Isosurfaces of the streamwise velocity fluctuations
(u′ = 0.12U∞ in white, −0.12U∞ in green), and isosurface of the Q-criterion in light brown.

Interestingly, these structures are often organized obliquely in an xz-plane, as shown in
figure 17(a). A similar organization can be observed in figure 16 of Ovchinnikov et al.
(2008) (not commented by the authors). As the � structures break down into turbulence,
an oblique turbulent band may form eventually. In the high-Lf , high-Tu case, on a total
of nine relatively well-defined oblique bands, the angle is estimated between 25◦ and 40◦,
with an average value at approximately 30◦. This point is discussed further in § 5.

As reported in § 3, a first peak marks the evolution of urms,max (see figure 5) in
the large-scale FST simulations around the position where � structures emerge, which
is related to their development. Similarly, the inflection points, observed on urms,max
evolution for the low-Lf cases at Tu = 2.5 % and 4 %, are an indication that similar
structures may also be present in these simulations. However, no low-speed �-shaped
structures are observed by inspection of snapshots of the streamwise fluctuations (e.g.
figure 6). A more careful examination of 2-D and 3-D visualizations of the low-Lf , high-Tu
case also failed to reveal the presence of low-speed�-shaped structures, but did reveal the
presence of spanwise and � vortices close to the inlet, such as in figure 18. Relative to the
high-Lf simulations, the vortices are smaller and may not be strong enough to be associated
with the low-speed � structures.
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Figure 16. (a,c,e) Observations of a� structure undergoing turbulent breakdown in the high-Lf , high-Tu case,
with z/δ∗in ∈ [−11, 1], at three successive times (t∗ = (t − t0)U∞/δ∗in, with t0 the time of the first snapshot).
Isosurfaces of the streamwise velocity fluctuations (u′ = 0.2U∞ in white, −0.2U∞ in green), and isosurface of
the Q-criterion in light brown. (b,d, f ) Wall-normal (upper images) and spanwise (lower images) components
of velocity fluctuations at the z position denoted by the transparent white plane on the associated images
(a,c,e), with levels ±0.07U∞ from black to white, and x- and y-axes aspect ratios 1.4, 1.2 and 1.0 for (b,d,f ),
respectively.

4.3. Competition between the two breakdown mechanisms
To get more insights into the competition between these two breakdown scenarios, a
laminar–turbulent discrimination is applied on the low-Lf and high-Lf cases in Novec
at Tu = 4 % over the transitional region, to identify turbulent spot inception locations.
The discrimination algorithm is adapted from Durovic (2022) and applied on volume
snapshots, allowing the spatial separation into laminar and turbulent regions in the
boundary layer. A detailed description is provided in Appendix E. In particular, the peak
of the intermittency distribution inside the boundary layer at each streamwise location
can be retrieved, as plotted in figure 19(a). The intermittency function corresponds to the
probability of the flow being turbulent at a given location. A dimensionless streamwise
coordinate ξ = (x − xtr)/�xtr (xtr being the position where γpeak = 0.5, and �xtr being
the distance between xγpeak=0.1 and xγpeak=0.9) is used as in Fransson & Shahinfar (2020).
The intermittency curves are in relatively good agreement with the correlation of Fransson
& Shahinfar (2020), despite the presence of the two competing mechanisms in the high-Lf ,
high-Tu case. The conditioned urms,max evolution is plotted in figure 19(b) for the low-Lf ,
high-Tu case, and in figure 19(c) for the high-Lf , high-Tu case. The laminar-conditioned
curve in the low-Lf , high-Tu case is initially coincident with the unconditioned statistics
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Figure 17. Observation of� structures in the high-Lf , high-Tu Novec case: (a) organized in a oblique manner,
and (b) leading to a turbulence band. Wall-normal velocity fluctuations (v′ = ±0.01U∞ , from black to white).
Isolines of the Q-criterion projection around the wall-normal position of the plane plotted in red.

(a)

(b)

Figure 18. Comparison of � structures between (a) low-Lf and (b) high-Lf cases at Tu = 4 % for x/δ∗in ∈
[33, 181] and z/δ∗in ∈ [−230, 230]. Isosurfaces of the streamwise velocity fluctuations (u′ = 0.22U∞ in white,
−0.22U∞ in green), and isosurface of the Q-criterion in light brown.

before deviating around Reθ ∼ 250. It does not exhibit the secondary growth observed in
the unconditioned curve, related to the eruption of turbulent spots (Nolan & Zaki 2013). By
contrast, in the high-Lf , high-Tu case, the laminar-conditioned urms quickly deviates from
the unconditioned data. This early deviation can be attributed to the turbulent breakdown
of low-speed �-shaped structures near the inlet, which is consistent with the earlier
transition onset reported on the Cf evolution in figure 4 and the extension of the transitional
region. While characterizing turbulence in transitional boundary layers with inlet Tu of
2.5 % and 3 %, Marxen & Zaki (2019) reported for the standard-averaged urms,max a peak
larger than both the laminar- and turbulent-averaged values that the authors linked to the
contribution of the change in mean velocity to the total stress. Peaks were also present
in the different simulations of Nolan & Zaki (2013) with Tu of 3 %, except for their case
that transitioned the fastest. Interestingly, such peak is, however, absent in figure 19, but is
present on the high-Lf , low-Tu case (not shown here for brevity), which corresponds to a
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Figure 19. (a) Peak intermittency evolutions for the low-Lf , high-Tu (solid blue) and high-Lf , high-Tu
(dashed purple) cases, and correlation of Fransson & Shahinfar (2020) ( ). Evolution of urms,max/U∞
for unconditioned and conditioned statistics for (b) low-Lf , high-Tu and (c) high-Lf , high-Tu cases in Novec.

lower Tu = 2.5 %. This could be a consequence of the higher Tu in our low-Lf , high-Tu and
high-Lf , high-Tu simulations, and/or the fact that these cases transition relatively quickly.

Based on the laminar–turbulent discrimination, the turbulent spots are tracked in the
Novec cases with Tu = 4 %. First, using a snapshot of the xz-plane from the binary
segmentation, an estimation of the xz location is obtained for each spot. Then the evolution
of the spot footprint in the different directions is reconstructed, and the 3-D locations of
the spots are determined. A total of Ns = 327 and 381 spots are counted for the low-Lf ,
high-Tu and high-Lf , high-Tu cases, respectively. When divided by the spanwise extent of
the computational domain, the comparison of Ns/Lz clearly shows a more intense turbulent
spot production in the low-Lf , high Tu case, consistent with its shorter transition length.
The streamwise and wall-normal histograms of spot inception locations are reported in
figure 20. The histograms are normalized so that the sum of the bins is equal to 100 %.
The standard shape for spot nucleation rate is recovered for the streamwise distributions
of the low-Lf simulation (Kreilos et al. 2016; Dellacasagrande et al. 2021). Increasing Lf
gives a more spread distribution, in line with the smoother and wider transition length
in the high-Lf case. Interestingly, the streamwise distribution in the high-Lf case has two
maxima, one of which is very close to the inlet and contributes to the spreading of the
transition region. The second maximum can be related to the turbulent breakdown of
laminar streaks, while the first is due to the presence of�-shaped turbulent spot precursors.
Due to their large number, spots are not directly categorized as being linked to streak
instability or � structures. Instead, the first three bars of the spot inceptions streamwise
location in the high-Lf case, which encompass the first peak and represent spots associated
mostly with �-shaped turbulent spot precursors, are represented in orange. Conversely,
the spots in green are mostly associated with streak instability. Overall, we observe that �
precursors account for about a third of the total number of spots. No significant differences
are observed between the simulations for their wall-normal distribution (figure 20b).
The maxima of the distributions, associated with streak instabilities, are located at
approximately y/δ99 ∼ 0.4–0.5, i.e. slightly lower than the value (∼0.55) in the ZPG
case of Nolan & Zaki (2013). This reveals that the outer instability is dominant in the
simulations, and that increasing Lf does not tend to promote inner instabilities (Vaughan
& Zaki 2011). Similarly, the location of the peak of the wall-normal distribution of the
orange spots, associated with � structures in the high-Lf , high-Tu case, is located in the
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Figure 20. Normalized distributions of (a) streamwise and (b) wall-normal positions of the spot inceptions.
The solid lines in (a) represent the intermittency function, and the horizontal dashed lines in (b) denote the
boundary-layer thickness δ99. In the high-Lf , high-Tu case, the first three bars of the spot inceptions streamwise
location in (a), which are associated with the first peak, are represented in orange in order to observe their
vertical position in the boundary layer in (b).

outer region (∼0.6), which is consistent with the observations of Ovchinnikov et al. (2008)
and the turbulent breakdown mechanism described in figure 16.

The competition between these two mechanisms is analysed further by looking at the
distribution of the laminar streaks amplitude. Using a detection algorithm (Nolan & Zaki
2013), the streamwise streaks are identified in the laminar region (see Appendix E), and
represented as a collection of points, each characterized by a position and a value of u′.
In figure 21, the repartitions of the streak amplitude u′ along the streamwise direction,
smoothed by a 2-D kernel density estimator and normalized by the integral, are shown for
the Tu = 4 % Novec cases. A distribution similar to that in Nolan & Zaki (2013) is obtained
for the low-Lf , high-Tu case, where only the classical streak instability mechanism is
present. The distribution of streak amplitudes spreads out quickly in the pre-transitional
region to reach high intensities, which then remain relatively constant. In the two cases,
very intense low-speed and high-speed streaks are present, with the 1 % most intense
streaks (marked by the 99 % line) reaching amplitudes as high as 40 % of U∞. Even if
the values of urms,max (represented by the cyan dashed line) generally underestimate the
low-speed streak amplitudes (Nolan & Zaki 2013), the median distribution and the urms,max
evolution are in fairly good agreement. The amplitudes of the low-speed and high-speed
streaks in closest proximity of the turbulent spot locations (see figure 20) are identified
by black circles in figure 21. In the low-Lf case, the turbulent spots are associated with
streak amplitudes u′/U∞ ∼ 0.2–0.4, consistent with the values found in Nolan & Zaki
(2013). The vast majority of the associated streaks lie within the median and the 99th
percentile of the streak population, well above the laminar-conditioned urms,max evolution,
which peaks at approximately 0.15 (see figure 19). The same observations can be made
in the high-Lf simulation for the turbulent spots located beyond Rex = 80 × 103, which
are mainly associated with streak instabilities. Closer to the inlet, however, the amplitude
distribution shows a different shape in the high-Lf case. The median distribution of the
low-speed streaks (denoted by 50 %) quickly reaches a first level and then rises to a
second level along the transition region. As the low-speed � shapes are captured by the
detection algorithm, the initial small peak in the pre-transitional region is reflected in the
median amplitude distribution. This gives an indication of how intense the low-speed �
structures leading to turbulent breakdowns can be, as the turbulent spots located below
Rex = 80 × 103 are associated with amplitudes greater than 0.4U∞ for a non-negligible
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Figure 21. The 2-D density function of the streak amplitude, plotted between the inlet and the station where
γpeak = 90 %. Darker colours denote higher density; colour levels between 0 and 3 × 10−7 (low-Lf , high-Tu)
and 2.6 × 10−7 (high-Lf , high-Tu). Black circles indicate the positive and negative streak amplitudes in closest
vicinity to the turbulent spot inception locations.

fraction. Moreover, while ≈10 % of turbulent spots can be linked to the most extreme 1 %
of streak population amplitudes in the low-Lf , high-Tu case, this percentage increases to
16 % in the high-Lf , high-Tu case, mostly due to the � structures, which tend to favour
such events.

5. Discussion about linear and nonlinear transition mechanisms

Two competing scenarios emerge from the previous analysis. The classical one, sometimes
referred to as ‘bypass transition in the narrow sense’ (Wu 2023), occurs preferentially
when the incoming turbulence intensity is moderate (typically Tu < 2–4 %), and has been
described in a lot of studies (Jacobs & Durbin 2001; Matsubara & Alfredsson 2001;
Brandt et al. 2004; Durbin & Wu 2007; Mans, de Lange & van Steenhoven 2007; to
cite a few). The classical scenario can be summarized as the linear non-modal growth
of streaks, which then experience secondary instabilities (sinuous or varicose) and lead to
the generation of turbulent spots. The second scenario is characterized by the appearance
of �-shaped structures, which are further stretched to hairpin vortices before breaking
down to turbulence. This alternative route was first described by Ovchinnikov et al.
(2008), who simulated large-scale incoming turbulence impinging a flat plate with an
elliptic leading edge to reproduce T3B experiments. The same phenomenology, called
a �-shaped structure, was obtained in the DNS of Wu et al. (2017), who excited a flat
plate by the periodic passage of a cube of HIT at high intensity. In his recent review,
Wu (2023) reports that the classical scenario is found with the same set-up by reducing
the intensity of the incoming turbulence (Tu ∼ 1.5 %), which is supported by the present
observations. He thus proposed a sub-categorization of bypass transition as a function of
the incoming turbulence intensity. In the present study, we show that the integral length
scale also contributes in the definition of an upper bound for the classical scenario (or,
at least, in determining what we refer to as high turbulence intensity). In this section, we
discuss the alternative routes of bypass transition in view of earlier works. Even if the
conditions of the previous experimental, numerical or theoretical studies are different, a
number of common features can be identified through a qualitative comparison.
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Spot inceptions due to �-shaped/�-shaped/hairpin vortices can occur at earlier
locations than the streak growth of the classical scenario. We are then faced with
a competition between bypass transition in the narrow sense, and nonlinear response
mechanisms that ‘bypass’ this route. Depending on the FST parameters (Tu, Lf ) and the
set-up (shape of the leading edge, presence of pressure gradients), either the transition is
already achieved due to the nonlinear response, or it is partially realized, and the streak
growth and breakdown then take over. At the lower bound of the classical scenario, in the
overlapping range 0.5 % < Tu < 1.5 %, a similar competition has been described. This
competition, between natural (orderly transition due to TS waves) and bypass transition
in the narrow sense, referred to as ‘mixed mode transition’ (Durbin & Wu 2007; Bose
& Durbin 2016b), can lead to complex interactions. The present high-Lf , high-Tu case
represents a competing scenario for the upper bound of the classical scenario. Even for the
higher Tu and Lf conditions, only approximately one-third of transitional spots are due to
the �-shaped events, the rest being due to streaks.

As discussed in § 4.2, a striking feature observed when � structures are generated close
to the inlet is their oblique arrangement, which is reminiscent of the laminar–turbulent
bands described in the context of subcritical turbulence. This intriguing patterning has
excited the curiosity of numerous researchers (see the reviews of Manneville 2017;
Tuckerman, Chantry & Barkley 2020). It appears clearly in flows that are linearly stable,
meaning that another mechanism, namely a nonlinear response due to the intrinsic
nonlinearity of the Navier–Stokes operator, is responsible for the onset of turbulence.
The first configuration where band turbulence has been observed is the annular Couette
flow. Such banded patterns have also been obtained in wall-bounded turbulence on plane
surfaces, namely plane Couette and Poiseuille flows (see Manneville 2017; Tuckerman
et al. 2020; Wu 2023). In linearly stable flows, the main analysis approach consists in
decreasing the Reynolds number from a fully turbulent state. For instance, in channel flow,
the fully turbulent flow gives rise to a patterning regime with turbulent bands exhibiting
an almost constant angle of 25◦ with respect to the mean flow direction (Kashyap, Duguet
& Dauchot 2020). In the present nonlinear transition, an angle of approximately 30◦ has
been obtained, even if the bands are less marked since the flow is inhomogeneous in the
streamwise direction. In order to shed light on the reasons for such a pattern, Xiao & Song
(2020a,b) have studied the dynamics of the turbulent bands in large channel domains. They
found that the downstream end of the band displays fast streak growth, whereas streaks at
the upstream end tend to decay. This asymmetry is responsible for the transverse growth
of the band (Duguet & Schlatter 2013).

The task is more complex for boundary layers, which can develop unstable TS waves
above a low supercritical Re and thus present a less marked subcritical character. Many
routes, corresponding to the multiplicity of solutions in phase state, are then possible,
depending on the characteristics of the inflow. The main way of studying subcritical
response of boundary layers consists in finding the disturbance that experiences the largest
energy growth at a certain time level, called nonlinear optimal disturbance because a
nonlinear optimization problem is solved. For instance, Cherubini et al. (2011b) studied
the boundary-layer transition induced by such nonlinear optimal perturbations, which
consists of vortices inclined in the streamwise direction surrounding a region of intense
streamwise disturbance velocity. This ‘minimal seed’ triggers nonlinear effects that lead to
the formation of � vortices rapidly breaking down into turbulent spots. The methodology
has been applied to the FST-induced transition in Cherubini, Robinet & De Palma (2014),
yielding the same sub-categorization as found in the present simulations. For weak
inlet perturbations (low Tu and low Lf ), the optimal disturbances are laminar streaks
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corresponding to linear transient growth (the classical scenario). For high Tu and high
Lf , the response is dominated by nonlinear structures that are� vortices turning to hairpin
vortices in their more mature phase. The search for edge states, which are sitting on the
laminar–turbulent boundary in a phase-space perspective, is another step to find the most
probable germs able to drive the transition (Cherubini et al. 2011a; Biau 2012; Duguet et al.
2012). Duguet et al. (2012) obtained the edge state structure as combination of localized
streaks and hairpin-like structures that can be self-sustained by a Waleffe-type mechanism
(Waleffe 1997). Kerswell (2018) summarizes these approaches as ‘nonlinear non-modal
stability’, as a counterpoint to the linear non-modal theory of transient growth (Schmid
2007).

In all scenarios in which nonlinearity plays the essential role,�- or hairpin-like vortices
are present in the boundary layer. More generally, the response of a laminar shear layer
to large-amplitude localized disturbances is through the formation of hairpin vortices (see
Suponitsky, Cohen & Bar-Yoseph (2005), and references therein). The latter show that
the ubiquitous character of streaks and hairpin vortices in boundary layers is due to the
wall shear. Using various shapes of initial disturbances, their results demonstrate that ‘a
small-amplitude initial disturbance (linear case) eventually evolves into a streaky structure
independent of its initial geometry and orientation, whereas, a large-amplitude disturbance
(strongly nonlinear case) evolves into a hairpin vortex (or a packet of hairpin vortices)
independent of its geometry over a wide range of the initial disturbance orientations’
(Suponitsky et al. 2005, p. 96).

Alternative bypass scenarios also fall into the category of nonlinear response to intense
localized disturbances. For instance, depending on the leading edge bluntness of a flat
plate, Nagarajan et al. (2007) described wavepacket events that break down into turbulent
spots before the development of streak instabilities. In their case, the initial seed is
a streamwise vortex due to the stretching/tilting effect at the leading edge (Goldstein
2014). Ovchinnikov et al. (2008) considered that this route is different from the one with
�-shaped structure (as found in the present study) for several reasons: (i) the seed for
� vortices is a spanwise vorticity perturbations rather than a streamwise one; (ii) the
wavepackets are characterized by wall-normal rather than spanwise velocity fluctuations
in Nagarajan et al. (2007); (iii) the wavepacket growth is not confined to the inner part
of the boundary layer. In fact, the different nonlinear evolutions are due to different
germs: a spanwise vorticity ωz = ∂v/∂x − ∂u/∂y amplifies wall-normal disturbances,
significant away from the wall, whereas a streamwise vorticity ωx ∼ ∂w/∂y highlights
spanwise fluctuations at the wall vicinity. The nonlinear response in Nagarajan et al.
(2007) is due not to intense large-scale events in the FST but to the intensification of FST
in the leading edge region, amplifying spanwise fluctuations. A motive for the present
research being the transition in turbomachinery, and in particular ORC turbines, it is
interesting to mention some earlier studies in that context. Zhao & Sandberg (2020)
also reported various routes of bypass transition for a high-pressure turbine blade. For
low Tu and low Lf , the streak instability mechanism prevails, whereas for high Tu
and high Lf , the spot inceptions occur upstream due to intense streamwise vortices
generated at the thick rounded leading edge. A wavepacket scenario is found, close to the
observations of Nagarajan et al. (2007), where near-wall spanwise disturbances precede
the breakdown. As in Nagarajan et al. (2007), the distortion at the leading edge is essential
in creating the transition germ. The wavepacket then evolves in a reverse �-shaped
structure. In the context of transition on compressor blades, Mao et al. (2017) found that
the nonlinear development of high-amplitude disturbances on the pressure side generates
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� structures, which are further stretched to hairpin vortices before breaking down to
turbulence.

A link may also be drawn with the presence of �-shaped structures in wake-induced
transition. For instance, Kyriakides et al. (1999) provided experiments of the interaction
between a cylinder wake and a flat-plate boundary layer, and they observed the formation
of secondary vortical structures in the near-wall region. The authors reported that these
structures took a characteristic � shape. Pan et al. (2008), in a similar configuration,
reported similar structures, which were due to the deformation of initially 2-D spanwise
vortices generated inside the boundary layer in response to the von Kármán vortex street
and which lead to the formation of a turbulent spot. The same conclusions were drawn
in the experimental study of Mandal & Dey (2011) (see their figure 4). The low-speed
�-shaped structures observed in the present study also originate from the interaction with
large scales present in the free stream, as in the case of cylinder wakes. This further
stresses the importance of FST scales in the generation of such structures. In the case
of a high-pressure turbine stage, due to the interaction of incoming periodic wakes with
the suction side, this breakdown mechanism already competes with streak breakdown for
the generation of turbulent spots (Wang et al. 2023).

6. Conclusions

The influence of large-scale disturbances on free-stream-induced transitions has been
investigated by means of LES, for perfect and non-ideal gas boundary layers. The integral
length scale Lf is increased by one order of magnitude between the low- and high-Lf cases,
which represent a large variation compared with what has been done in the literature.
Dense-gas simulations are carried out using the organic vapour Novec649 in conditions
representative of ORC applications (T∞ = 100 ◦C, p∞ = 4 bar), at Mach number 0.9 and
for various FST intensities. A direct comparison with air flows in low- and high-subsonic
conditions (M = 0.1 and 0.9, respectively) is performed to sort out dense-gas and
compressibility effects on the FST-induced transition. The results show that increasing
the inlet turbulent intensity always promotes transition, and as in Fransson & Shahinfar
(2020), a double effect is observed for the integral length scale. For Tu = 2.5 %, increasing
Lf accelerates the transition, whereas it delays transition for FST intensity 4 %. The FST
scales also influence the extent of the transition region and the size of the laminar streaks.
By comparing boundary layers in air at M = 0.1 and 0.9, we observe that compressibility
slightly delays the transition onset due to the generation of near-wall thermal streaks by
friction heating. This compressibility effect is absent in Novec649 flows due to the high
thermal capacity of the organic vapour, which severely attenuated the thermal fluctuations.
The transition in the dense-gas boundary layers at M = 0.9 is nonetheless further delayed
with respect to air boundary layers. This somewhat paradoxical effect is the result of the
excitation of internal degrees of freedom of the complex vapour molecules, which induces
a slight attenuation of the velocity fluctuations. However, compared with the influence of
the scales of the incoming turbulence, the non-ideal gas and compressibility effects appear
to be largely of secondary importance, so that the main outcomes are robust for perfect and
non-ideal gas boundary layers.

In all cases, laminar streaks are produced within the boundary layer, as expected
for FST-induced transitions. For the high Lf cases, low-speed �-shaped structures are
generated in the boundary layer prior to the formation of laminar streaks, in both air and
Novec flows. These structures, previously observed by other researchers (Ovchinnikov
et al. 2008; Wu 2023), are found to be promoted not only by high Tu but also by high

997 A56-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.567


A. Bienner, X. Gloerfelt and P. Cinnella

Lf of external turbulence. Their trace appears as a first secondary peak in the streamwise
evolution of urms,max near the inlet. They can lead to early turbulent breakdowns, thus
competing directly with streak instability mechanisms in the generation of turbulent spots.
This is particularly noticeable in the Tu = 4 % cases, where the increase of the integral
scale results in a double-peaked distribution of the turbulent spots in the streamwise
direction. The first peak near the inlet is related to the eruption of � structures, while
the second represents the later breakdowns due to laminar streak destabilization. However,
even in the high-Lf , high-Tu case, the majority of turbulent breakdowns still occur via
laminar streak instabilities (sinuous or varicose). As noted by Fransson & Shahinfar
(2020), the spanwise spacing of the laminar streaks is also affected by both the FST
intensity and integral length scale. The spanwise distance between streaks varies little
between air and Novec flows, meaning that the streak growth is little affected by the
compressibility or dense-gas effects. A laminar streak detection reveals that the amplitude
distribution of the laminar streaks is also affected by the integral length scale, due to the
emergence of the intense � structures near the inlet for the high-Lf , high-Tu case.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.567.
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Appendix A. Generation of synthetic turbulence based on RFMs

For homogeneous turbulence, the 3-D Fourier transform in space of the fluctuating
velocity field can be defined as

u′(x) =
∫

û(k) exp(ik · x) dk, (A1)

where k denotes the wavenumber vector. The incompressibility condition yields
û(k) · k = 0. The wavenumber k is plotted in the k-space in figure 22. Introducing
the local frame (k̃1, k̃2, k̃3) corresponding to the spherical coordinates (k, θ, φ), since
k̃3 is aligned with k, the normality condition deduced from the continuity constraint
indicates that the vector û is necessarily in the (k̃1, k̃2) plane. In this frame, we note
û = ûa = û(cosα, sinα), with the angle α defined in figure 22(b). The turbulent inlet
field is generated as the sum of N independent RFMs whose amplitudes ûn are determined
from a turbulent kinetic energy spectrum. The fluctuating velocity field is then expressed
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Figure 22. (a) Local frame (k̃1, k̃2, k̃3) in the k-space. (b) Representation of the Fourier component ûa.

as a Fourier series:

u′(x, t) =
N∑

n=1

2ûn cos(kn(x − ūt)+ ωnt + ψn) an, (A2)

where ψn, kn, an are random variables with given probability density functions. Isotropy
is obtained by choosing the random variables in the following way. For each mode, the
wavenumber vector k is picked on a sphere of radius k. In the Cartesian coordinate system,
the three unit vectors of the local frame are

k̃1 =
⎛
⎝cos θ cosφ

cos θ sinφ
− sin θ

⎞
⎠ , k̃2 =

⎛
⎝− sinφ

cosφ
0

⎞
⎠ , k̃3 =

⎛
⎝sin θ cosφ

sin θ sinφ
cos θ

⎞
⎠ . (A3)

The wavenumber vector is simply k = kk̃3, and the isotropy requires that

dS
4πk2 = k sin θ dφ k dθ

4πk2 = p(θ) dθ p(φ) dφ. (A4)

The probability density functions are taken to be p(θ) = sin θ/2 and p(φ) = 1/(2π).
The unit vector an is

an = cosα k̃1 + sinα k̃2 =
⎛
⎝cosα cos θ cosφ − sinα sinφ

cosα cos θ sinφ + sinα cosφ
− cosα sin θ

⎞
⎠ , (A5)

with α being distributed uniformly between 0 and 2π, thus p(α) = 1/(2π). The turbulent
kinetic energy is given by

k̄ =
u′

iu
′
j

2
= 1

2

N∑
n=1

û2
n. (A6)

We use here a von Kármán spectrum with Saffman viscous dissipation function and a
bottleneck correction proposed by Kang et al. (2003) (see (2.2)). Thus the amplitude of
the nth Fourier mode is provided by ûn = √

2E(kn)�kn, where �kn is the discretization
step in the Fourier space. A logarithmic distribution of the N modes is used to correctly
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represent the turbulent energy spectrum for low wavenumbers as well as for larger ones.
Assuming that kmin and kmax are given, with n = 1, . . . ,N, we let

kn = exp[ln k1 + (n − 1)�k] and �k = (ln kmax − ln kmin)/(N − 1). (A7a,b)

The temporal evolution in (A2) is set by means of a convection velocity u = U∞ (Taylor’s
hypothesis) and a turbulence evolution pulsation ωn, deduced from Kolmogorov’s theory,
ωn = ε1/3k2/3

n (ε being the dissipation rate).

Appendix B. Validation of the synthetic turbulence for the T3A benchmark case

The inlet synthetic turbulence strategy is validated against the T3A benchmark experiment
(Roach & Brierley 1992). The flow is simulated in air at M = 0.5, and the free-stream
thermodynamic quantities are p∞ = 101 300 Pa and T∞ = 298.15 K. As the integral
length scale Lf is not characterized in the experiment, the FST characteristics are
determined thanks to preliminary simulations of spatially decaying HIT, in order to
match the evolution of the FST intensity in the T3A experiment, as recommended by
Pinto & Lodato (2019), who also used synthetic turbulence for this benchmark case. The
selected values are ReLf ,in = 1728 and Tu,in = 3.9 %, consistent those found by Pinto &
Lodato (2019) (ReLf = 1950, Tu = 3.5 %). The turbulence intensity evolution, plotted in
figure 23(a), is in fair agreement with the experimental Tu decay. The Reynolds number
at the inlet is Rex,in = 104, and the simulation is initialized with the similarity solution
of a laminar boundary layer. The computational domain used is Nx × Ny × Nz = 1920 ×
204 × 62 and has resolution �x+ ×�y+

w ×�z+ = 13 × 1.1 × 13, which is equivalent to
the resolutions of the low-Lf cases considered in this paper. One major flaw of the method,
as discussed in Pinto & Lodato (2019), is the value of the injection height h in (2.3),
which is a tunable parameter that may influence the onset of transition. Three different
injection heights, corresponding to h/δ99,in = 1.35, 1.69 and 2.22, have been tested, all
chosen to inject synthetic turbulence above δ99,in (see figure 23b). The Cf distributions,
in figure 23(c), show that when the injection height is increased, the onset of transition
is delayed. However, the slope of the Cf rise and the transition region length are very
close. The injection height h = 1.69δ99,in is the one that better reproduces the location of
the transition region of the T3A experiment. The streamwise fluctuating velocity profiles
along the transition region are reported in figure 24. The profiles are scaled by a factor 0.1
and displayed with an offset corresponding to their streamwise position Rex. To be able
to compare the different cases, the streamwise coordinate Rex is scaled by the beginning
(Rex(Cf ,min)) and the end (Rex(Cf ,max)) of the transitional region. The profiles are in good
agreement with the experimental ones for the intermediate height. With the scaling of the
streamwise coordinates by the transition region length, the streamwise fluctuating velocity
profiles for the two other cases are also in good agreement. Therefore, the parameter h can
influence the location of the transition region, but the present strategy can be used to study
the transitional region and in particular the effects of the FST characteristics over it (as
long as the injection height is kept constant between cases and the synthetic turbulence is
injected above the boundary layer).

Appendix C. Influence of the grid resolution

To assess the LES resolution and its influence on the FST-induced transition, the high-Lf ,
high-Tu air M = 0.9 configuration is simulated on a finer computational mesh, obtained
by taking the LES domain with the same Ly and Lz dimensions, and reducing by two
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Figure 23. (a) Turbulence intensity Tu evolution, (b) damping function σdamp, and (c) friction coefficient Cf
evolution, for the three cases: h/δ99,in = 1.35 (dashed red line), 1.69 (solid green line) and 2.22 (dotted blue
line). Comparison with the T3A experiment is shown by �.

200

150

100y+

50

0
–0.03 0.43 0.66 1.14 1.63 2.12

Rex – Rex(Cf,min)

Rex(Cf,max) – Rex(Cf,min)

Figure 24. Streamwise fluctuating velocity
0.1 × urms/uτ + (Rex − Rex(Cf ,min))/(Rex(Cf ,max)− Rex(Cf ,min)). Legend as in figure 23.

Case Flow Nmodes Tu,in ReLf ,t Points Resolution
(%) Theo. Nx × Ny × Nz �x+ ×�y+

w ×�z+

LES Air0.9 100 4.0 17 280 704 × 480 × 800 21 × 0.8 × 9
DNS1 Air0.9 100 4.0 17 280 1120 × 840 × 1600 10.5 × 0.8 × 4.4
DNS2 Air0.9 116 4.0 17 280 1120 × 840 × 1600 10.5 × 0.8 × 4.4

Table 3. Computational grid and FST properties of the high-Lf , high-Tu air M = 0.9 case with LES and
DNS resolutions.

�x and �z. The grid step at the wall, �yw, is kept equal, but the stretching in the
y-direction is reduced to keep �y ≤ �x, resulting in a total of 840 points (see table 3)
and a DNS-like resolution, with �x+ ×�y+

w ×�z+ = 10.5 × 0.8 × 4.4 in the TBL. The
RFM discretization and number of modes are kept the same as in the LES. Looking at
the friction coefficient Cf evolution (figure 25a), the transition is slightly shifted upstream
in the DNS compared with the LES, but remains overall very close to the LES. The urms
profiles in the transitional region (figure 25b) are almost superimposed, with only slight
deviations observed at the last two stations.
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Figure 25. (a) Friction coefficient evolution and (b) streamwise fluctuating velocity 50 × urms/uτ + Reθ , for
the high-Lf , high-Tu air M = 0.9 configuration with LES resolution with N = 100 modes (dashed purple line),
and DNS resolution with N = 100 (dotted black line) and N = 116 (solid grey line) RFMs.

Case Flow Nz Tu,in ReLf ,t ReLf ,c ReFST Resolution
(%) Theo. Calc. Calc. �x+ ×�y+

w ×�z+

Large Novec 400 4.0 1728 1950 78 13 × 1.0 × 11
Narrow Novec 80 4.0 1728 1900 76 13 × 1.0 × 11

Table 4. Computational grid and FST properties of the low-Lf , high-Tu Novec case with the large and narrow
computational domains.

Using the same grid, DNS are run with kmax increased to match the DNS resolution limit
in the free-stream region, resulting in N = 116 RFMs, in order to investigate the influence
of the selected upper bound for RFMs. Both Cf evolution and urms profiles of the two
DNS collapse perfectly, providing a first validation of the choice of the RFM wavenumber
bounds. This is also an indication that the excitation at high frequencies does not influence
the transition. The RFM discretization strategy is further assessed in Appendix D.

Appendix D. Influence of the discretization of RFM wavenumbers

To further assess the influence of the RFM discretization, the low-Lf , high-Tu Novec case
is performed on a computational domain with a spanwise extent reduced by a factor 5, with
Nz = 80 rather than 400, which corresponds to Lz ∼ 10Lf (see table 4). The grid resolution
is kept identical. Using the same number of RFMs (N = 100), kmin, and therefore the
discretization of RFM wavenumbers, are modified to match the spanwise extent of the
narrow domain, leading to the inlet energy spectrum target in figure 26. The increase of
kmin between the large and narrow domains results in a better discretization of the spectra
in the narrow case. This leads to an estimated ReLf ,c that is slightly different and closer to
the target, at 1900 instead of 1950.

The Cf distributions shown in figure 26(b) are in almost perfect agreement, with
slight differences at the end of the transition. Streamwise fluctuating velocity profiles
in the transition region and in the TBL shortly after the end of transition are shown in
figure 27. The profiles match perfectly, except for a slight discrepancy at Reθ = 300. This
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Figure 26. (a) Inlet energy spectra target, with a marker every 1 discrete mode out of 10.
(b) Friction coefficient evolution for the low-Lf , high-Tu Novec configuration with large (solid blue line) and
narrow (dashed purple line) spanwise extent.

120

100

80

60

40

y+

20

100 200 300 400 500

Reθ
600 700 800

0

Figure 27. Streamwise fluctuating velocity 50 × urms/uτ + Reθ . Legend as in figure 26.

comparison demonstrates that as long as the RFMs are relatively well discretized around
the maximum peak of the spectrum, the discretization of the RFMs has negligible effect
on the transition.

Appendix E. Laminar–turbulent discrimination and laminar streak detection

The laminar–turbulent discrimination algorithm is adapted from Durovic (2022). We first
interpolate the field on a coarser mesh, reducing by a factor two the number of points in
the spanwise and wall-normal directions. The number of points in the streamwise direction
is divided by two only for the low-Lf simulations, so that similar resolution is obtained on
the interpolated grid for all cases. The interpolation acts as a low-pass filter, in addition
to reducing the cost of the procedure. For each wall-parallel plane of a volume snapshot,
the 2-D scalar field of the spanwise velocity fluctuations w′, denoted sw′(x), is first used
to define sextr,w′ containing the local extrema of w′. The same extraction is realized for
the wall-normal velocity fluctuations v′ to obtain sextr,v′ . A 3-D scalar field sextr,3-D is
reconstructed from the 2-D extractions sextr = sextr,v′ + sextr,w′ , and a smoothing S is
applied on it. As the distance from the extrema increases, S(x) decreases exponentially.
Therefore, the smoothing is applied over a cubic domain D3 restricted to the locations
where S(x) ≤ 0.025, limiting the computational cost. An extrema density scalar field
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fextr,3-D weighted by the extrema values is computed as

fextr,3-D(x) =
∑

xs∈D3

S
(

xs − x
rs

)
× sextr,3-D(xs), (E1)

where the parameter rs adjusts the radius of the spherical smoothing. This parameter,
which depends on the numerical set-up and the particular configuration, is determined
by testing its influence on the detection of the turbulent regions and spots. Once fixed,
rs is taken equal across the cases.This parameter is determined by trial and error, and is
taken equal to 0.8�xinterp, where �xinterp is the streamwise spacing in the interpolated
grid. The weighting has been shown to improve the distinction between the TBL and the
FST, at least for the considered turbulence intensities. The density scalar field fextr,3-D is
then interpolated back on the computational grid, and a binary segmentation is realized
using the method of Otsu (1979). A threshold is obtained at each wall-normal location
independently, and levels are smoothed in the wall-normal direction to ensure continuity
in the discrimination. The discrimination is applied for each case using 4220 sub-volumes
saved during ∼68 000 time iterations.

The output of the laminar–turbulent discrimination algorithm inside the boundary
layer for one snapshot is shown in semi-transparent green in figure 28 for the high-Lf ,
high-Tu Novec case. We observe that the discrimination can identify the turbulent
state, populated with turbulent streaks, and several turbulent spots are captured (at
x/δ∗in ∼ 450 or 600). Discriminated statistics can be defined: the laminar-conditioned
(resp. turbulent-conditioned) statistics correspond to the statistics obtained while
averaging in time and in the spanwise direction the laminar (resp. turbulent) regions
detected by the algorithm. An example for the low-Lf , high-Tu case is given in
figures 29 and 30. The time-averaged profiles in figure 29(a) evolve from a laminar state
towards a fully turbulent profile. The laminar-conditioned profiles (figure 29b) exhibit
the shape characteristic of laminar state, but the profiles are distorted by the presence
of laminar streaks. On the contrary, the turbulent profiles reach rapidly a self-similar
behaviour corresponding to the fully turbulent state, represented here by the time-averaged
solution at the last station. The evolution of the unconditioned Reynolds shear stresses
in figure 30(a) highlights the rapid amplification during transition. The laminar- and
turbulent-conditioned data (figure 30a) show that the laminar part has limited growth, with
maximal levels below the unconditioned data at γpeak = 0.1. The turbulent-conditioned
profiles exhibit large fluctuations with respect to the time-averaged data, that gradually
decrease along the transitional region, while remaining above the unconditioned profile
γpeak = 0.9. Finally, the laminar-conditioned friction coefficient (figure 30b) increases
due to the laminar streaks, while the turbulent contribution initially exhibits lower friction
levels than a fully turbulent state due to the calming effect of the turbulent spot periphery
(Schubauer & Klebanoff 1955).

The streaks are identified in the laminar region by the local extrema of the streamwise
velocity u in each yz-plane. First, the detection is limited to the boundary layer by rejecting
extrema found above δ such that uδ = 0.95U∞. When two extrema in a yz-plane are
separated by a distance smaller than a threshold value �x, only the more intense one
is kept. Then extrema are connected to form streaks by scanning the streamwise direction
with the following criteria: extrema separated by a distance lower than 2�x belong to the
same streak, and streaks shorter than 8�x are rejected. A population of streaks is then
obtained for each of the volumes, each streak being a collection of points characterized by
a position and a streamwise fluctuation velocity. An example of the streak detection output
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Figure 28. Wall-normal snapshot of the streamwise fluctuations at y/δ99,in = 1.11 in the high-Lf , high-Tu
Novec case. The turbulent region is displayed in semi-transparent green, and the low-speed (high-speed) streaks
detected are also represented in blue (red).
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Figure 29. Discriminated statistics for the low-Lf , high-Tu Novec case: (a) time-averaged,
(b) laminar-conditioned and (c) turbulent-conditioned mean streamwise velocity profiles between γpeak = 0.1
and 0.9 every 0.1 for the low-Lf , high-Tu case. The time-averaged profile at γpeak = 0.9 is kept in (b) and (c).
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Figure 30. Discriminated statistics for the low-Lf , high-Tu Novec case. (a) Time-averaged Reynolds shear
stresses and conditioned Reynolds shear stresses for increasing Reθ values, where the unconditioned
time-averaged profiles at γpeak = 0.1 and 0.9 are displayed for comparison. (b) Skin friction distributions
for unconditioned and conditioned statistics, with laminar (dotted grey line) and turbulent (solid grey line)
correlations.

is given in figure 28. It is worth noting that the streak identification does not distinguish
between streamwise streaks and �-shaped vortices. An example of a � structure detected
by the algorithm is circled in orange in the figure.
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