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From , we haveV ′ (r) = Vr + h′ (r) Vh

V″ (r) = Vrr + h′ (r) Vrh + h′ (r) [Vrh + h′ (r) Vhh] + h″ (r) Vh

=
S2

h (ShVrr − VhSrr) + 2SrSh (VhSrh − ShVrh) + S2
r (ShVrr − VrShh)

S3
h

,

on substituting for  and .h′ (r) h″ (r)
In the same way, for the case , fixed, we obtainV (r, h˜ (r)) = V0

S″(r) =
−[V2

h (ShVrr − VhSrr) + 2VrVh(VrSrh − ShVrh) + V2
r (ShVrr − VrShh)]

V3
h

.

These are general calculations. If we evaluate at the optimising value of

 for which the Key Equation  holds, we obtain ,

as stated in the paragraph before Example 1.

r
Sr

Sh
=

Vr

Vh

V″(r)
S″(r)

= −
Vh

Sh
= −

Vr

Sr
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107.19 A quadratic harmonic approximation

Introduction
Some eight hundred years ago the French archbishop Nicholas Oresme

developed his beautiful proof that the -th harmonic number:n

Hn = 1 +
1
2

+
1
3

+  …  +
1
n

satisfies the following growth inequality:

H2k > 1 +
k
2

,

and thereby presented the first example in the history of mathematics, and
the first seen by countless generations of calculus students, of an infinite

series  which diverges although its -th term decreases to zero.∑
∞

n = 1

1
n

n

Unfortunately  has no (known) simple closed formula representation
and so its further study demanded that mathematicians find suitable

Hn
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approximation formulas. The great Leonhard Euler applied his famous
Euler–Maclaurin sum formula to obtain the following asymptotic formula:

Hn ∼ ln n + γ +
1
2n

−
1

12n2
+

1
120n4

−
1

252n6
±  … (1)

where  is Euler's constant. If one truncates this expansion after
 terms, then the error  one commits in using the truncated series as an

approximation to  is less than the first term truncated and has the same
sign.

γ ≈ 0.577…
n En

Hn

There is considerable interest in proving simplified versions of (1)
without using the heavy analytical machinery employed by Euler. For
example, Robert M. Young [1] used an elegant geometrical argument to
prove the linear approximation:

Hn = ln n + γ +
1

2 (n + θn)
 (0 < θn < 1) .

In this Note we will modify his argument to prove the following
quadratic approximation.

Theorem 1.

Hn = ln n + γ +
1
2n

−
1

12n2
+ εn where  0 < εn <

1
4n3

.

Admittedly, the error in Euler's formula satisfies
which is much sharper; but all known proofs require much more difficult
analysis than ours, while our method still gives the dominant quadratic term

 and so is not too bad. The interest of our Note is the simplicity of
method to obtain a rather difficult result.

0 < E4 < 1 / 120n4

−1 / 12n2

Geometrical proof
We let  be the trapezoid with base the line segment  to

 on the -axis, sides the lines  and  and slanted
top the line segment joining the point  to the point . We
decompose  into three parts, shown in Figure 1.

Tn (n,  0)
(n + 1, 0) x x = n x = n + 1

(n, 1
n) (n + 1, 1

n + 1)
Tn

• The rectangle , with vertices , ,
; and area .

rn (n, 0) (n + 1, 0)
(n + 1, 1

n + 1) ,  (n, 1
n + 1) 1

n + 1

• The curvilinear right-angled triangle with base the top of the
rectangle  and side the segment joining  to  and
curved ‘hypotenuse’ the portion of the curve  joining the point

 to the point . We call its area .

rn (n, 1
n + 1) (n, 1

n)
y = 1

x
(n, 1

n) (n + 1, 1
n + 1) δn

• The ‘sliver’ bounded below by the arc of  and above by the
top of the trapezoid. We call its area .

y = 1
x

σn
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• •

•

••

(n, 1
n)

σnδn

(n, 1
n + 1) (n + 1, 1

n + 1)

rn

(n,0) (n + 1,0)

FIGURE 1

We define

γn = Hn − ln n.
Then, as is well known [1] (see also [2]),

∑
∞

p = n
δp = γn − γ.

In the interest of completeness we reproduce Young's nice proof:

∑
N

p= n
δp = ⎡⎢⎣∫

n+ 1

n

1
x

 dx −
1

n + 1
⎤⎥⎦ + ⎡⎢⎣∫

n+ 2

n+ 1

1
x

 dx −
1

n + 2
⎤⎥⎦ +  …  + ⎡⎢⎣∫

N

N − 1

1
x

 dx −
1
N

⎤⎥⎦

= ∫
N

n

1
x

 dx − ∑
N − n

r =1

1
n + r

= ∫
N

n

1
x

 dx − ⎡
⎢
⎣∑

N

r =1

1
r

− ∑
n

r =1

1
r

⎤
⎥
⎦

= ⎡
⎢
⎣
lnN − ∑

N

r =1

1
r

⎤
⎥
⎦

− ⎡
⎢
⎣
lnn − ∑

n

r =1

1
r

⎤
⎥
⎦
.

Now we let  in the last expression and use the definitions of  and
 to obtain

N → ∞ γn
γ

∑
∞

p = n
δp = −γ + γn = γn − γ,

as asserted. But the area of the right-angled triangle at the top of the
trapezoid equals

1
2 (1

n
−

1
n + 1) = δn + σn,

and summing from  to infinity we obtainn

1
2n

= Hn − ln n − γ + ∑
∞

p = n
σp,

that is,

Hn = ln n + γ +
1
2n

− ∑
∞

p = n
σp.
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Since  is the area of the trapezoid decreased by the area under the curve
, we obtain
σn

y = 1
x

σn =
1
2 (1

n
+

1
n + 1) − ∫

n + 1

n

1
x

dx =
1
2n

+
1

2n (1 + 1
n) − ln (1 +

1
n)

=
1
2n

+ ( 1
2n

−
1

2n2
+

1
2n3

−
1

2n4
±  … ) − (1

n
+

1
2n2

−
1

3n3
+

1
4n4

∓  … )
= (1

2
−

1
3) 1

n3
− (1

2
−

1
4) 1

n4
+ (1

2
−

1
5) 1

n5
− (1

2
−

1
6) 1

n6
±  …

=
1

6n3
−

2
8n4

+
3

10n5
−

4
12n6

±  …

which is an alternating series whose terms decrease monotonically to zero.
A well-known theorem due to Leibniz states that if

S = a1 − a2 + a3 − a4 ±…
is an alternating series such that  and  decreases monotonically to
0, then the series converges to a sum ; and if

an ≥ 0 an
S

Sn = a1 − a2 + a3 − a4 ±  … + (−1)n − 1 an

is the -th partial sum, then the absolute value of the remainder  satisfies:n Rn

|Rn| = |S − Sn| ≤ an + 1,
and the sign of  is . Therefore, by this Leibniz error estimate,Rn (−1)n

1
6n3

−
1

4n4
< σn <

1
6n3

.

The standard estimate for the remainder from the integral test is:

∫
∞

n + 1
f (x) dx < Rn < ∫

∞

n
f (x) dx

where  is the remainderRn

Rn = f (n + 1) + f (n + 2) +  …

in the series . If we apply it to the series  and  we

obtain

∑
∞

n = 1

f (n) ∑
∞

n = 1

1
6n3 ∑

∞

n = 1

1
4n4

1
12 (n + 1)2

−
1

12n3
< ∑

∞

n = 1

σn <
1

12n2
.

But,

1
12(n + 1)2

−
1

12n3
=

1
12n2

− 2
1

12n3
+ 3

1
12n4

− 4
1

12n5
+ 5

1
12n6

∓… −
1

12n3

=
1

12n2
− 3

1
12n3

+ 3
1

12n4
− 4

1
12n5

+ 5
1

12n6
∓…
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=
1

12n2
−

1
4n3

+ 3
1

12n4
∓…

>
1

12n2
−

1
4n3

since the series is alternating and the terms converge monotonically to zero.
Therefore, if we define

εn =
1

12n2
− ∑

∞

n = 1

σn

we conclude that

0 < εn <
1

4n3

as stated in the theorem. This completes the proof.

Concluding remarks
Our method does not lead to an error term  since the terms of order

 for  do not cancel. It would be desirable to modify this geometric
reasoning to achieve such a cancellation (perhaps using telescopic
cancellation, if necessary).

O ( 1
n4)

1
n3 σn

We are grateful to the anonymous referee for helpful and constructive
criticism, and to Joseph C. Várilly for assistance with the figure.
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107.20 Euler's constant and the speed of convergence

Introduction
Inspired in part by [1, 2], we present an elementary and unified

approach to defining Euler's constant , and to obtaining bounds on the
associated speed of convergence. These bounds give a modest refinement
(with entirely different proof) of those obtained in the much-cited paper [3].
See the Proposition below.

γ
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