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An arithmetic property of intertwining
operators for p-adic groups
A. Raghuram
Abstract. The main aim of this article is to show that normalised standard intertwining operator
between induced representations of p-adic groups, at a very specific point of evaluation, has an
arithmetic origin. This result has applications to Eisenstein cohomology and the special values of
automorphic L-functions.

1 Introduction

If one proposes to use the theory of Eisenstein cohomology to prove algebraicity
results for the special values of automorphic L-functions as in my work with Harder
[8], or its generalizations in my recent papers: Raghuram [18], with Bhagwat [3]
and Krishnamurthy [12], then in a key step, one needs to prove that the normalized
standard intertwining operator between induced representations for p-adic groups
has a certain arithmetic property. The principal aim of this article is to address this
particular local problem in the generality of the Langlands–Shahidi machinery; the
main result of this article is invoked in [3, 12], and I expect that it will be useful in
future investigations on the arithmetic properties of automorphic L-functions.

Let F be a p-adic field, that is, a nonarchimedean local field of characteristic 0 with
finite residue field kF . Let G be a connected reductive group defined over F; assume
that G is quasi-split over F. Fix a choice of Borel subgroup B of G defined over F .
Write B = TU, where T is a maximal torus, and U the unipotent radical of B; both
defined over F . Suppose P is a maximal parabolic subgroup of G defined over F,
assumed to be standard, i.e., containing B, and with Levi decomposition P = MN. Let
A denote the maximal central split torus of M. The F-points of G, B, T, U, P, M, N, and
A are denoted by G , B, T , U , P, M , N , and A, respectively. To emphasize the depen-
dence on P, we also denote M = MP , N = NP , and A = AP . Let π be an irreducible
admissible representation of MP . (In the applications we have in mind, π will be a
local component of a global cuspidal automorphic representation of cohomological
type.) Let IG

P (s, π) be the induced representation as in the Langlands–Shahidi theory
[23]; the precise definitions are recalled in the main body of this article; for the
introduction suffice it to say that it is obtained by normalized parabolic induction
from P to G of π with the complex variable s introduced in a delicate manner. Let
Π be the set of simple roots of G with respect to B and αP the unique simple root
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84 A. Raghuram

corresponding to P, and w0 the unique element in the Weyl group of G such that
w0(Π/{αP}) ⊂ Π and w0(αP) < 0; we also denote by w0 a representative element in
G. Let Q be the parabolic subgroup of G associate to P, and w0 π the corresponding
representation of MQ . We denote Tst(s, π) ∶ IG

P (s, π) → IG
Q (−s, w0 π) for the standard

intertwining operator. There is a choice of measure implicit in the integral that defines
the intertwining operator. Consider the Langlands dual groups: let LP○ = L M○L N○ be
the Levi decomposition of the parabolic subgroup LP○ of LG○ corresponding to P.
We write Ln = ⊕m

j=1r j for the decomposition of Ln under the adjoint action of L M○; it
is a multiplicity free direct sum. Given π and r j , the local aspects of the Langlands–
Shahidi machinery attach a local L-factor L(s, π, r̃ j) when π is generic, i.e., admits a
Whittaker model. Denote by k the point of evaluation, which, by definition, is the point
such that

IG
P (s, π)∣s=k = aIndG

P (π),

where the right-hand side is the algebraic (un-normalized) parabolic induction of π
to a representation of G; see Definition 2.1.1. For brevity, let I = IG

P (k, π) = aIndG
P (π)

and Ĩ = IG
Q (−k, w0 π).

Now, we impose an arithmetic context: suppose E is a “large enough” finite Galois
extension of Q, and suppose there is a smooth absolutely irreducible admissible rep-
resentation (σ , Vσ ,E ) of MP on an E-vector space Vσ ,E such that for some embedding
ι ∶ E → C we have ι σ ≅ π. The induced modules I0 = aIndG

P (σ) and Ĩ0 = IG
Q (−k, w0 σ)

give E-structures on I and Ĩ, i.e., the canonical I0 ⊗E , ι C → I and Ĩ0 ⊗E , ι C → Ĩ

are isomorphisms. For the parabolic subgroup P, assume (i) the local Langlands
correspondence to be known for MP ; this is a serious condition which is met in a lot
of examples, and widely expected to hold in all generality with prescribed desiderata,
and (ii) that P satisfies an integrality property: ρP ∣AP ∈ X∗(AP) – see Section 2 for
notations not defined in the introduction. For the representation ι σ , motivated by
global considerations, assume (i) ι σ to be unitary up to a half-integral Tate twist, (ii)
ι σ to be essentially tempered, (iii) the point of evaluation s = k to be “on the right
of the unitary axis” (Definition 2.4.3) that guarantees absolute convergence of the
integral defining the standard intertwining operator at s = k and (iv) ι σ is generic.
The first main result (Theorem 3.3.7) of this article is an arithmeticity result for the
standard intertwining operator at the point of evaluation s = k, i.e., there is an E-linear
G-equivariant map Tarith ∶ I0 → Ĩ0 such that

Tst(s, ι σ)∣s=k = Tarith ⊗E , ι C.

The proof involves keeping track of arithmeticity in the proof of a rationality result for
the standard intertwining operator for p-adic groups due to Waldspurger [25, Theorem
IV.I.I].

The integrality property on P seems to tie up remarkably with motivic considera-
tions; this is already very interesting in the example (see Section 5.1) of G = GL(N) and
P maximal such that MP = GL(n) × GL(n′), in which case this integrality translates to
nn′ ≡ 0 (mod 2) which is exactly the condition in [8] imposed therein due to motivic
considerations.
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Consider the normalized standard intertwining operator defined as:

Tnorm(s, π) =
⎛
⎝

m
∏
j=1

L( js, π, r̃ j)
L( js + 1, π, r̃ j)

⎞
⎠

−1

Tst(s, π), R(s) ≫ 0.(1.0.1)

Continuing with all the hypotheses as above, at the point of evaluation s = k, the
local L-values L( jk, ι σ , r̃ j) and L( jk + 1, ι σ , r̃ j) are finite; and hence Tnorm(s, π)∣s=k
is convergent. We impose a “criticality” condition on s = k that imposes a half-
integrality property on k and is entirely a function of the parabolic subgroup P and the
ambient group G. This condition has a global motivation in that the corresponding
global L-values at s = k are critical values in the sense of Deligne [6], and like the
integrality condition on P it restricts the scope of global applications; see, for example,
the interesting case of G = Sp(2n) and MP = GL(n) in Section 5.3 that involves
the exterior square L-functions for GL(n). The arithmeticity result on local critical
L-values for Rankin–Selberg L-functions [17, Proposition 3.17] gives the impetus to
hypothesize that

L(s j , ι σ , r̃ j) ∈ ι(E), s j ∈ { jk, jk + 1},

and furthermore this L-value is Galois equivariant; see Hypothesis 4.2.1. Under such
a hypothesis, which can be verified in many examples such as when G is a classical
group, the main result in Theorem 3.3.7 can be strengthened to Theorem 4.3.1 that
gives an arithmeticity result for the normalized standard intertwining operator at the
point of evaluation.

The results of this article (Theorems 3.3.7 and 4.3.1) say that if we use Eisenstein
cohomology to give a cohomological interpretation of Langlands’s constant term
theorem, and so attempt to prove a rationality result for ratios of critical values of
automorphic L-functions, then at any given finite place, we do not pick up any possibly
transcendental period. Suppose π is an unramified representation, i.e., has a vector
fixed under the hyper-special maximal compact subgroup of MP , then both I and Ĩ

are also unramified; suppose f0 ∈ I (resp., f̃0 ∈ Ĩ) is the normalized spherical vector;
then Langlands’s generalization of the classical Gindikin–Karpelevic formula says that
Tnorm( f0) = f̃0 . This implies the theorem because the E-structures are generated by
these normalized spherical vectors. The real content of the theorem is that it works
for any π whether or not it is unramified. Whereas the global theory of Eisenstein
cohomology and the special values of automorphic L-functions provides the context,
this article is purely local (p-adic) in nature, and does not need the reader to be familiar
with such global aspects.

2 Local aspects of the Langlands–Shahidi machinery

2.1 Induced representations and “the point of evaluation”

Let δP be the modulus character of P; it is trivial on NP and on MP it is given by:

δP(m) = ∣ det(AdNP (m))∣, m ∈ MP ,
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where AdNP ∶ MP → GL(Lie(NP)) is the adjoint representation of MP on the Lie
algebra of NP , and ∣ ∣ is the normalized absolute value on F. Let Z(MP) be the
center of MP , AP the maximal split torus in Z(MP). Let X∗(AP) = Hom(AP , F∗)
and X∗(MP) = Hom(MP , F∗) denote the group of rational characters of AP and MP .
Restriction from MP to AP gives an inclusion X∗(MP) ↪ X∗(AP), which induces an
isomorphism X∗(MP) ⊗Z Q ≅ X∗(AP) ⊗Z Q. The modulus character δP is naturally
an element of a∗P ∶= X∗(AP) ⊗Z R. Fix a Weyl group invariant inner product (,) on
X∗(AP) ⊗Z R.

Let ΔG be the set of all roots which are naturally in X∗(T); for the choice of the
Borel subgroup B, let Δ+G be the set of positive roots, and ΠG the set of simple roots.
Let ρP be half the sum of all positive roots whose root spaces are in Lie(NP); via the
restriction from T to AP we have ρP ∈ X∗(AP) ⊗Z Q. We have the equality:

∣2ρP(m)∣ = δP(m), ∀m ∈ M .

Let aP = Hom(X∗(AP),R) = Hom(X∗(MP),R) denote the real Lie algebra of
AP , and HP ∶ MP → aP denote the Harish-Chandra homomorphism defined by:

exp⟨χ, HP(m)⟩ ∶= ∣χ(m)∣, ∀χ ∈ X∗(AP), ∀m ∈ M .

In particular, taking χ = ρP , we get:

exp⟨ρP , HP(m)⟩ = δP(m)1/2 , ∀m ∈ M .

Let (π, Vπ) be an irreducible admissible representation of MP ; the representation
space Vπ is a vector space over C. For ν ∈ a∗P ⊗R C, define the induced representation

I(ν, π) ∶= IndG
P (π ⊗ exp(⟨ν, HP( )⟩) ⊗ 1U ),

where Ind means normalized parabolic induction. The representation space V(ν, π)
is the vector space of all smooth (i.e., locally constant) functions f ∶ G → Vπ such that

f (mng) = π(m) exp(⟨ν + ρP , HP(m)⟩) f (g), ∀g ∈ G , m ∈ M , n ∈ N .

Recall that P is a maximal parabolic subgroup, defined by a simple root αP which is
the unique simple root whose root space is in Lie(NP). Set ⟨ρP , αP⟩ = 2 (ρP ,αP)

(αP ,αP)
and

put

γP ∶= α̃P ∶= 1
⟨ρP , αP⟩ ρP .

In the Langlands–Shahidi machinery the notation α̃ is commonly used; elsewhere in
the arithmetic theory of automorphic forms the notation γP is commonly used; it is
the fundamental weight corresponding to the simple root αP . For s ∈ C, define νs as:

νs ∶= sα̃P = s
⟨ρP , αP⟩ ρP .

Let I(s, π) ∶= I(sα̃P , π), whose representation space V(s, π) ∶= V(sα̃P , π) consists of
all locally constant functions f ∶ G → Vπ such that

f (mng) = π(m) δP(m)
1
2+

s
2⟨ρP ,αP ⟩ f (g), ∀g ∈ G , m ∈ M , n ∈ N .
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Definition 2.1.1 (Point of evaluation) Define the point of evaluation k as

k ∶= −⟨ρP , αP⟩,

which depends only on P and G, and has the property that I(k, π) = aIndG
P (π)

which is the algebraic (i.e., un-normalized) parabolic induction from P to G of the
representation π.

The point of evaluation k is half-integral, i.e., k ∈ Z or k ∈ 1
2 + Z, or more succinctly

2k ∈ Z, since ⟨β, αP⟩ = 2(β, αP)/(αP , αP) ∈ Z for any root β. In general, k can be
integral or a genuine half-integer; for example, if G = GL(N) with N ≥ 2, and P is
any maximal parabolic subgroup, then k = −N/2; see Section 5.1.

2.2 The standard intertwining operator: definition and analytic properties

For the maximal parabolic subgroup P = PΘ , where Θ = Π/{αP}, recall that w0 is
the unique element in the Weyl group such that w0(Θ) ⊂ Π and w0(αP) < 0; let
Q = Pw0(Θ) be the maximal parabolic subgroup associate to P. Then MQ = w0MPw−1

0 ,
and let w0 π be the representation of MQ given by conjugation.

Let f ∈ IG
P (s, π) and g ∈ G. Suppose there exists a vector v in the inducing rep-

resentation of IG
Q (−s, w0 π), such that for all v̌ in the contragredient of this inducing

representation the integral ∫NQ
⟨ f (w−1

0 ng), v̌⟩dn converges absolutely to ⟨v , v̌⟩ then
define ∫NQ

⟨ f (w−1
0 ng) dn = v . If this is verified for all f ∈ IG

P (s, π) and all g ∈ G then
define an intertwining operator for G-modules

Tst(s) ∶ IG
P (s, π) �→ IG

Q (−s, w0 π)
by the integral

Tst(s)( f )(g) = ∫
NQ

f (w−1
0 ng) dn; f ∈ V(s, π), g ∈ G .(2.2.1)

Assume, here and henceforth, that the measures in such intertwining integrals are
chosen to be Q-valued. The operator Tst(s) is denoted as A(s, π, w0) in Shahidi [23,
Section 4.1] (see also Kim [11, Section 4.3]). That Tst(s)( f ) ∈ IG

Q (−s, w0 π) is verified in
loc.cit. The following convergence statement is a special case of [23, Proposition 4.1.2]:

Proposition 2.2.2 If R(s) ≫ 0 then Tst(s)( f )(g) converges absolutely for all g ∈ G
and all f ∈ V(s, π).

If Tst(s)( f )(g) converges absolutely for all g ∈ G and all f ∈ V(s, π), then we will
simply say that Tst(s) converges absolutely. One can be more specific about the domain
of convergence in the tempered case.

Proposition 2.2.3 If π is a tempered (unitary) representation, then the standard
intertwining operator Tst(s) converges absolutely for R(s) > 0.

The above convergence statements are contained in Harish-Chandra’s work on
harmonic analysis on p-adic reductive groups; the reader is referred to [19, Section
2.2] and the references therein; see also [11, Proposition 12.3].

Without worrying about convergence, let us see the shape of the standard inter-
twining operator at the point of evaluation s = k. The domain of Tst(s)∣s=k , as noted
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above, is I(k, π) = aIndG
P (π). The codomain is IG

Q (−s, w0 π) ∶= I(−sα̃Q , w0 π), whose
representation space consists of all locally constant functions f ′ ∶ G → Vw0 π = Vπ such
that

f ′(m′n′g′) = w0 π(m′) ∣δQ (m′)∣
1
2−

s
2⟨ρQ ,αQ ⟩ f ′(g′), ∀g′ ∈ G , m′ ∈ MQ , n′ ∈ NQ ,

where w0 π(m′) = π(w−1
0 m′w0). Put s = k = −⟨ρP , αP⟩; since ⟨ρQ , αQ ⟩ = ⟨ρP , αP⟩ we

get:

f ′(m′u′g′) = w0 π(m′) δQ (m′) f ′(g′).

Hence, at the point of evaluation, in terms of un-normalized induction we get:

Tst(s)∣s=k ∶ aIndG
P (π) �→ aIndG

Q (w0 π ⊗ δQ ).(2.2.4)

2.3 Local factors and the local Langlands correspondence

A defining aspect of the Langlands program is Langlands’s computation [14, Section
5] of the constant term of an Eisenstein series, which at a local unramified place
boils down to computing the standard intertwining operator on “the” spherical vector
which is a scalar multiple of the spherical vector on the other side, and this scalar
multiple is an expression denoted M(s) in loc.cit. Langlands says that Tits pointed out
to him how to express M(s) in a more convenient form. This is now an important
ingredient in the Langlands–Shahidi machinery; see [20, Section 2].

Let LG○ be the complex reductive group which is the connected component of
the Langlands dual LG of G; see [4, I.2]; and let LP be the parabolic subgroup of LG
corresponding to P, and LN its unipotent radical. The Levi quotient LM○ of LP○ acts
on the Lie algebra Ln of LN○ by the adjoint action. There is a positive integer m such
that the set {⟨α̃P , β⟩} – as β varies over positive roots such that the root space Lg(β∨)
of the dual root β∨ is in Ln – is {1, . . . , m}. For each 1 ≤ j ≤ m put

Vj = span of L
g(β∨) for β such that ⟨α̃P , β⟩ = j.(2.3.1)

Then the action of LM○ on Ln stabilizes each Vj and furthermore acts irreducibly on Vj.
Denote r j the action of LM○ on Vj , and Ln = ⊕m

j=1r j is a multiplicity free decomposition
as an LM○-representation. Let r̃ j denote the contragredient of r j .

Given a smooth irreducible admissible representation π that is generic, i.e., has
a Whittaker model, and for 1 ≤ j ≤ m, the local aspects of the Langlands–Shahidi
machinery attaches a local L-factor L(s, π, r̃ j) (see [21]) which is the inverse of a
polynomial in q−s of degree at most d j ∶= dim(Vj); when π is unramified this degree
is d j .

Let WF be the Weil group of F, and W ′
F = WF × SL2(C) the Weil–Deligne group.

The local Langlands correspondence for G says that to π corresponds its Langlands
parameter which is an admissible homomorphism ϕπ ∶ W ′

F → LMP ; see Borel [4,
Section 8] for the requirements on the parameter ϕπ . Composing with r̃ j gives r̃ j ○ ϕπ ∶
W ′

F → LGLd j , an admissible homomorphism which parametrizes, via the local Lang-
lands correspondence for GLd j (F), a smooth irreducible admissible representation of
GLd j (F) that we denote r̃ j(π). As in Shahidi [24, p. 3] we will impose the working
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hypothesis:

L(s, π, r̃ j) = L(s, r̃ j(π)),(2.3.2)

that is known in a number of instances; see the references in loc.cit.

2.4 The notion of being on the right of the unitary axis

Recall that π is a smooth irreducible admissible representation of MP , which is to be a
local component of a globally generic cuspidal automorphic representation (needed by
the context in which we can evoke the Langlands–Shahidi machinery), and keeping
the generalized Ramanujan conjecture in the back of our minds (see, for example,
[22]), we will impose the condition that π is essentially tempered, i.e., tempered mod
the center.

Let M1
P = ⋂χ∈X∗(MP)Ker(∣χ∣F ), the subgroup of MP generated by all compact

subgroups. For the split center of MP , say AP ≅ F∗ × ⋯ × F∗, and η i ∶ AP → F∗ is
the projection to the ith copy. Define A1

P ⊂ AP similar to M1
P ; we have A1

P = AP ∩
M1

P . Let X(MP) = Hom(MP/M1
P ,C∗); similarly, X(AP). Restricting from MP to

AP gives an isomorphism X(MP) ≅ X(AP). Given z = (z1 , . . . , z l ) ∈ Cl , we get an
unramified character AP → C∗ given by ∣η1∣z1 ⊗ ⋯ ⊗ ∣η l ∣z l , and via X(MP) ≅ X(AP)
an unramified character of MP which we will denote as ηz . Given π as above, tempered
modulo the center means that there exists an l-tuple of exponents e = (e1 , . . . , e l ) ∈ Rl

and a smooth irreducible unitary tempered representation π t such that π ≅ π t ⊗ ηe .
(Keeping global applications in mind, we will impose later a hypothesis that the
exponents e i are [half-]integral.) The representation r̃ j(π) of GLd j (F), obtained
by functoriality, is also tempered modulo its center. A few words of explanation
might be helpful. There is an exponent f̃ j = f (r̃ j , e1 , . . . , e l ) ∈ R, that depends on the
representation r j and the exponents e1 , . . . , e l , such that

r̃ j(π) ≅ r̃ j(π)t ⊗ ∣ det ∣ f̃ j

with r̃ j(π)t = r̃ j(π t) being a unitary tempered irreducible representation of GLd j (F).
Local functoriality preserves temperedness, by the desiderata in [4, 10.4, (4)], and the
one has to keep track of the central characters for which consider the diagram:

W ′
F

ϕπ �� LM○P
r̃ j �� L(GLd j )○ = GLd j (C)

LA○P
��

��

�� L(Z(GLd j ))○ = C∗
��

��
(2.4.1)

Since the representation r̃ j is irreducible, the center LA○P ≅ (C∗)l of LM○P acts via
scalars, explaining the bottom horizontal arrow. The unramified character ηe of
AP corresponds to its Satake parameter ϑηe in LA○P ; we get r̃ j(ϑηe ) ∈ C∗, which
corresponds to an unramified character ∣ ∣ f̃ j of F∗, or the character ∣ det ∣ f̃ j of GLd j (F),
for some exponent f̃ j which, a priori, lives in C, but since e j ∈ R and r̃ j is an algebraic
representation, it is clear that f̃ j ∈ R.
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Lemma 2.4.2 With notations as above we have f̃ j = j ⋅ f̃1 .

Proof The proof follows from the definition of Vj in (2.3.1) which is the represen-
tation space for r j . (It is instructive to see this detail in the example discussed in
Section 5.3.)

Definition 2.4.3 Let π be a smooth irreducible admissible generic representation of
MP that is tempered modulo the center with exponents e1 , . . . , e l ∈ R. We say π is on
the right of the unitary axis with respect to the ambient group G, if

−⟨ρP , αP⟩ + f̃1 > 0.

By Lemma 2.4.2 it follows that for each 1 ≤ j ≤ m we have: − j⟨ρP , αP⟩ + f̃ j > 0.

Corollary 2.4.4 Let π be a smooth irreducible admissible generic representation of MP
that is tempered modulo the center with exponents e1 , . . . , e l ∈ R, and which is on the
right of the unitary axis with respect to the ambient group G, then the local L-values

L( jk, π, r̃ j) and L( jk + 1, π, r̃ j)
are finite for each 1 ≤ j ≤ m, where, recall that k = −⟨ρP , αP⟩ is the point of
evaluation.

Proof If π is a unitary tempered representation of GLd (F) then the standard local L-
factor L(s, π) is finite ifR(s) > 0; this follows from Jacquet’s classification of tempered
representations of GLd (F) and the well-known inductive recipe for local L-factors that
is succinctly summarized in [13]. The proof follows from the equalities: L( jk, π, r̃ j) =
L( jk, r̃ j(π)) = L( jk + f̃ j , r̃ j(π)t). ∎

The condition of being on the right of the unitary axis is tailor-made to appeal to
Shahidi’s tempered L-functions conjecture that is now a theorem after the work of
many authors (see [23, p. 147]) culminating in [9].

3 An arithmetic variation on a rationality result of Waldspurger

In this section, we recall a rationality result of Waldspurger [25, Theorem IV.1.1], and
show how to reformulate it so that the statement works at an arithmetic level. Before
that let us clarify some terminology that apparently causes some confusion.

3.1 Digression on the adjectives: rationality, algebraicity, and arithmeticity

First of all, even among experts, there seems to be no universal agreement on the
precise meaning of these adjectives. In this article, all three words are used, and
it might help the reader to clarify their meanings. The word rationality has two
meanings and the context usually makes it clear. First of all, a result of the form
“(L − value)/(periods) ∈ Q” is often called a rationality result for L-values. Then there
is a common abuse of terminology and a result of the form “(L − value)/(periods) ∈
Q” is also called a rationality result. We will refer to the latter as an algebraicity result
for L-values. A second usage of rationality, as in the context of Waldspurger’s result,
comes from algebraic geometry and means that some function or operator at hand is a
rational function on an algebraic variety. To explain our usage of the word arithmetic,
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suppose we have an L-value at hand, which is the value at s = s0 of the L-function
L(s, π) attached to some object π defined over C, for example, π can be the finite part
of a cuspidal automorphic representation. We may set up our context for the object
π to have an arithmetic origin, i.e., there is an object σ defined over some coefficient
field E, such that for some embedding of fields ι ∶ E → C, the base-change ι σ of σ via
ι is the object π. In such a context, a result of the form “L(s0 , ι σ)/(periods) ∈ ι(E)" is
given the appellation of an arithmetic result for L-values. With this explanation of the
words, the purpose of this section is to show that Waldspurger’s rationality result for
intertwining operator has an arithmetic origin. We will use the word arithmeticity for
the behaviour of an arithmetic result upon changing ι, or equivalently, by replacing ι by
τ ○ ι for any τ ∈ Gal(Q̄/Q); this is compatible with the usage of arithmeticity as in [7].

3.2 A rationality result of Waldspurger

In this subsection, we will adumbrate the presentation in [25, IV.1]. Recall the nota-
tions M1

P , A1
P , X(MP), and X(AP) from Section 2.4. When P is fixed we drop the

subscript P from MP , AP , etc.
Note that X(M) has the structure of an algebraic variety over C; denote by B

the C-algebra of polynomial functions on X(M). Let (π, V) be a smooth admissible
representation of M on a C-vector space V, and let OC = {π ⊗ χ ∶ χ ∈ X(M)}. A
function f ∶ OC → C is a polynomial if there exists b ∈ B such that f (π ⊗ χ) = b(χ).
For an open set U ⊂ OC, a function f ∶ U → C is a rational function if there exists
b1 , b2 ∈ B such that b1(χ) f (π ⊗ χ) = b2(χ) for all χ ∈ X(M) with π ⊗ χ ∈ U and
b1(χ) ≠ 0.

Let IG
P (π ⊗ χ) be the normalized parabolically induced representation. Restriction

from G to its maximal compact subgroup K sets up an isomorphism IG
P (π ⊗ χ) ≅

IK
K∩P(π). Let P′ be a maximal parabolic subgroup of G that has the same Levi subgroup

M = MP′ = MP . For each π ⊗ χ ∈ OC suppose we are given a G-equivariant operator
A(π ⊗ χ) ∶ IG

P (π ⊗ χ) → IG
P′(π ⊗ χ) that depends only on the equivalence class of

π ⊗ χ. We say that the operator A(π ⊗ χ) is a polynomial if for all f ∈ IK
K∩P(π) there

exist finitely many f1 , . . . , fr ∈ IK
K∩P′(π) and b1 , . . . , br ∈ B such that A(π ⊗ χ)( f ) =

∑r
i=1 b i (χ) f i for all χ ∈ X(M). Furthermore, we say A(π ⊗ χ) is rational if there exists

b ∈ B, such that for all f ∈ IK
K∩P(π) there exist finitely many f1 , . . . , fr ∈ IK

K∩P′(π) and
b1 , . . . , br ∈ B such that

b(χ)A(π ⊗ χ)( f ) =
r

∑
i=1

b i (χ) f i , for all χ ∈ X(M) with b(χ) ≠ 0.(3.2.1)

Rationality of the intertwining operators may be formulated in another way that
is used in the proof of [25, Theorem IV.1.1], and which will allow us to descend the
statement and proof to an arithmetic level to give us Theorem 3.3.7. For m ∈ M,
let bm ∈ B be defined as bm(χ) = χ(m). Define VB = V ⊗C B on which M acts as:
πB(m)(v ⊗ b) = π(m)v ⊗ bmb. For χ ∈ X(M), let Bχ be the maximal ideal {b ∈ B ∶
b(χ) = 0}. Then the action of M on VB ⊗ B/Bχ is the representation π ⊗ χ. Similarly,
IG

P (VB) = IG
P (V) ⊗C B. Let spχ ∶ πB → πB ⊗ B/Bχ = π ⊗ χ denote the specializa-

tion map; same notation also for spχ ∶ IG
P (πB) → IG

P (π ⊗ χ). The collection {A(π ⊗
χ)}π⊗χ∈OC

of operators is polynomial if and only if there exists a G-equivariant
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homomorphism of B-modules AB ∶ IG
P (πB) → IG

P′(πB) such that the following dia-
gram commutes

IG
P (πB) AB ��

spχ

��

IG
P′(πB)

spχ

��
IG

P (π ⊗ χ)
A(π⊗χ) �� IG

P′(π ⊗ χ)

(3.2.2)

for all χ, i.e., spχ ○ AB = A(π ⊗ χ) ○ spχ . Similarly, the collection {A(π ⊗ χ)}π⊗χ∈OC

of operators is rational if and only if there exists AB as above and an element b ∈ B
such that

A(π ⊗ χ) ○ spχ ○ (1 ⊗ b) = spχ ○ AB .(3.2.3)

Suppose f̃ ∈ IG
P (πB) and AB( f̃ ) = ∑i f̃ i ⊗ b i , and if spχ maps f̃ to f, and similarly, f̃ i

to f i , then (3.2.3) becomes b(χ)A(π ⊗ χ)( f ) = ∑i b i (χ) f i as in (3.2.1). We may and
shall talk about the collection {A(π ⊗ χ)}χ∈U of operators being rational on an open
subset U ⊂ X(M).

Let N ′ be the unipotent radical of P′. Let f ∈ IG
P (V) and g ∈ G. Suppose, there

exists v ∈ V such that for all v̌ ∈ V̌—the representation space of the contragredient π̌
of π—the integral ∫N ′∩N/N ′⟨ f (n′g), v̌⟩dn′ converges absolutely to ⟨v , v̌⟩ then define
∫N ′∩N/N ′ f (n′g) dn′ = v . If this is verified for all f ∈ IG

P (π ⊗ χ) and all g ∈ G then
define an intertwining operator for G-modules J(π ⊗ χ) ∶ IG

P (π ⊗ χ) → IG
P′(π ⊗ χ) as:

J(π ⊗ χ)( f )(g) = ∫
N ′∩N/N ′

f (n′g) dn′ .(3.2.4)

Note the similarities and differences between the integrals in (2.2.1) and (3.2.4).
Let Σ(AP) denote the set of roots of AP in Lie(G); identify Σ(AP) with a subset of

a∗M . Denote by Σ(P) the subset of Σ(AP) of those roots whose root spaces appear in
Lie(P). For P′ with the same Levi as P, let P̄′ denote its opposing parabolic subgroup.
(This P̄′ is the Q from before.) The following theorem is contained in [25, Theorem
IV.1.1].

Theorem 3.2.5 Suppose π is an irreducible admissible smooth representation of M.
Then there is an open cone U = {χ ∈ X(M) ∶ ⟨R(χ), α⟩ > 0, ∀α ∈ Σ(P) ∩ Σ(P̄′)} of
X(M) such that J(π ⊗ χ) is defined by the convergent integral (3.2.4) for χ ∈ U. The
collection of intertwining operators {J(π ⊗ χ)}χ∈U on this cone is rational.

It is the rationality assertion in the above theorem that we are particularly interested
in, since convergence in our context is already guaranteed by Proposition 2.2.2. We
summarize the key steps of its proof, and refer the reader to [25, IV.1] for all the details
and also for some of the notations used below even if not defined here because it would
take us too far to systematically define them.
(1) (Reduction step.) We need a G-equivariant homomorphism of B-modules

JB ∶ IG
P (πB) → IG

P′(πB)
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as in (3.2.2), that satisfies the requirement of (3.2.3). Frobenius reciprocity for
Jacquet modules and parabolic induction gives:

HomG ,B(IG
P (πB), IG

P′(πB)) = HomM ,B(IG
P (πB)P′ , πB),

where, IG
P (πB)P′ is the Jacquet module of IG

P (πB) with respect to P′ on which
the action of M is the canonical action twisted by δ−1/2

P′ to account for normalized
parabolic induction. It suffices then to construct

jB ∈ HomM ,B(IG
P (πB)P′ , πB)

such that the associated map JB via Frobenius reciprocity satisfies (3.2.3).
(2) (Exponents in the Jacquet module of an induced representation.) By the well-known

results of Bernstein and Zelevinskii [2, 2.12] (see also [25, I.3]), the Jacquet module
IG

P (πB)P′ is filtered by (M ,B)-submodules {Fw ,P′}w∈P′W P , indexed by a certain
totally ordered set P′W P of representatives in the Weyl group, such that for the
successive quotients we have an isomorphism

qw ∶ Fw ,P′/Fw+ ,P′ → IM
M∩w⋅P(w ⋅ VB,M∩w−1 ⋅P′),

the right-hand side being a parabolically induced module of M. Consider these
successive quotients for the action of the split center AP of M; and let Ex pw be the
set of exponents, which are characters AP → B×, that appear in the (co-)domain
of qw . We may suppose that 1 ∈ P′W P ; the image of q1 is VB. For any w ∈ P′W P ,
if w ≠ 1 then Ex pw ∩ Ex p1 = ∅; see [25, p. 280].

(3) (Killing all subquotients except one.) Using the theory of resultants, Wald-
spurger constructs R ∈ B[AP] and b ∈ B such that R maps the Jacquet module
IG

P (πB)P′ into F1,P′ and on each of the generalized eigenspace for μ ∈ Ex p1
appearing in F1,P′/F1+ ,P′ ⊗ Frac(B) it acts as homothety by the element b.
The required element jB as in (1) is the composition of R followed by F1,P′ →
F1,P′/F1+ ,P′

q1�→ VB .

3.3 An arithmetic variant of Theorem 3.2.5

Let E be a “large enough” finite Galois extension of Q. The meaning of large
enough will be explained in context. Let XE (M) = Hom(M/M1 , E∗); similarly,
XE (A). Restriction from M to A gives an isomorphism XE (M) ≅ XE (A). If A =
F∗ × ⋯ × F∗, l-copies, then A/A1 = ϖZ

F × ⋯ × ϖZ

F , with ϖZ

F being the multiplicative
infinite cyclic group generated by the uniformizer ϖF . Also, XE (A) = E∗ × ⋯ × E∗,
where t = (t1 , . . . , t l ) ∈ E∗ × ⋯ × E∗ corresponds to the character χt that maps a =
(a1 , . . . , a l ) ∈ A to ∏ tordF(a i)

i . An embedding of fields ι ∶ E → C, gives a map ι∗ ∶
XE (M) → XC(M) where ι∗χ = ι ○ χ. The following diagram might help the reader:

XC(A) = Hom(A/A1 ,C∗) �� C∗ ×⋯ ×C∗ C/(Z ⋅ 2πi
log(q)) × ⋯ ×C/(Z ⋅

2πi
log(q))

��

XE(A) = Hom(A/A1 , E∗) ��

ι∗

��

E∗ ×⋯ × E∗

ι×⋯×ι

��
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For s = (s1 , . . . , s l ) ∈ C/(Z ⋅ 2πi
log(q)) × ⋯ × C/(Z ⋅ 2πi

log(q)) put w ∶= qs , i.e.,
w = (w1 , . . . , w l ) = (qs1 , . . . , qs l ) ∈ C∗ × ⋯ × C∗ that corresponds to the
character χw of A given by a ↦ ∏i wordF(a i)

i . Note that XE (M) has the
structure of an algebraic variety over E; denote by BE (M) the E-algebra of
polynomial functions on XE (M); then BE (M) = E[t1 , t−1

1 , . . . , t l , t−1
l ]. Similarly,

BC(M) = C[w1 , w−1
1 , . . . , w l , w−1

l ] = C[qs1 , q−s1 , . . . , qs l , q−s l ]. Base-change via the
embedding ι gives: BE (M) ⊗E , ι C = BC(M). To homogenize with the notations of
Waldspueger [25] as used in Section 3.2, abbreviate XC(M) and BC(M) as X(M)
and B, respectively.

Hypotheses we impose on a representation in the main result have an
arithmetic origin

Let (σ , Vσ ,E ) be a smooth absolutely irreducible admissible representation of M over
an E-vector space Vσ ,E . For an embedding of fields ι ∶ E → C, we have the irreducible
admissible representation ι σ of M on the C-vector space Vι σ ∶= Vσ ,E ⊗E , ι C. We
may apply the considerations of Section 2 to (ι σ , Vι σ ). We explicate below all the
hypotheses we impose on the representation ι σ in the main result Theorem 3.3.7;
these hypotheses are motivated by our global applications, and are expected to have
an arithmetic origin.

The global context of a cohomological cuspidal automorphic representation sug-
gests, via purity considerations, the following hypothesis on σ . Recall that for expo-
nents e = (e1 , . . . , e l ) ∈ Rl , by ηe ∈ X(A) = X(M) defined as: ηe (a) = ∏i ∣a i ∣e i for
a = (a1 , . . . , a l ) ∈ A.

Hypothesis 3.3.1 (Arithmeticity for half-integral unitarity) Let (σ , Vσ ,E ) be a smooth
absolutely irreducible admissible representation of a reductive p-adic group M over
an E-vector space Vσ ,E . If for one embedding ι ∶ E → C, there exists an l-tuple of
integers w = (w1 , . . . ,wl ) such that the representation ι σ ⊗ ηw/2 is unitary then for
every embedding ι ∶ E → C, the representation ι σ ⊗ ηw/2 is unitary.

It makes sense to call a σ satisfying the above hypothesis as half-integrally unitary.

Hypothesis 3.3.2 (Arithmeticity for essential-temperedness) Let (σ , Vσ ,E ) be a
smooth, absolutely irreducible, admissible, half-integrally unitary representation of a
reductive p-adic group M over an E-vector space Vσ ,E . If for one embedding ι ∶ E → C

the representation ι σ is essentially tempered, then for every embedding ι ∶ E → C the
representation ι σ is essentially tempered.

Proof of Hypothesis 3.3.2 for GLn(F) For GLn(F) this follows from the considera-
tions in Clozel [5] while using Jacquet’s classification of tempered representations [10];
such a proof is well-known to experts and so we will just sketch the details. The reader
is also referred to [16, Section 9.2] for a summary of the classification of tempered
representations that we will use below. For a representation π of GLn(F) and t ∈ R,
π(t) denotes π ⊗ ∣ ∣t .
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(1) Any tempered representation π of G = GLn(F) is fully induced from discrete
series representations; it is of the form:

π = IndG
Pn1 ,.. . ,nr (F)(π1 ⊗ ⋯ ⊗ πr),

where π i is a discrete series representation of GLn i (F); ∑i n i = n; Pn1 , . . . ,nr (F) is
the parabolic subgroup of G with Levi subgroup GLn1 (F) × ⋯ × GLnr (F).

(2) A discrete series representation π i of GLn i (F) is of the form

π i = Q(Δ(σi , b i )),

where n i = a i b i , with a i , b i ∈ Z≥1; σi is a supercuspidal representation of GLa i (F)
such that σi ( b i−1

2 ) is unitary, and Q(Δ(σi , b i )) is the unique irreducible quotient
of a parabolically induced representation:

IndGLni (F)
Pbi , . . . ,bi (F)

(σi ⊗ σi (1) ⊗ ⋯ ⊗ σi (b i − 1)) ↠ Q(Δ(σi , b i )).

In both the steps, the parabolic induction used is normalized induction which is
not, in general, Galois equivariant. As in [5], we may force Galois equivariance by
considering a half-integral Tate twisted version of induction. Using the notations of (1),
but letting for the moment π i be any irreducible admissible representation of GLn i (F),
define:

T IndG
Pn1 ,. . . ,nr (F)(π1 ⊗ ⋯ ⊗ πr)

∶= IndG
Pn1 ,. . . ,nr (F) (π1(

1 − n1

2
) ⊗ ⋯ ⊗ πr( 1 − nr

2
)) ( n − 1

2
) .

Suppose τ ∈ Aut(C); then one may verify that
τ(T IndG

Pn1 ,.. . ,nr (F)(π1 ⊗ ⋯ ⊗ πr)) = T IndG
Pn1 ,. . . ,nr (F)(

τπ1 ⊗ ⋯ ⊗ τπr).

Define a quadratic character of F∗ as ετ ∶= (τ ○ ∣ ∣1/2)/∣ ∣1/2; it is trivial if and only if τ
fixes q1/2 , where q is the cardinality of the residue field of F. Then:

τIndG
Pn1 ,.. . ,nr (F)(π1 ⊗ ⋯ ⊗ πr) = IndG

Pn1 ,.. . ,nr (F)((π1 ⊗ εn−n1
τ ) ⊗ ⋯ ⊗ (πr ⊗ εn−nr

τ )).

Similarly, using Lemma 3.2.1 and the few lines following that lemma in [5], we have:

τQ(Δ(σi , b i )) = Q(Δ(τσi ⊗ εa i(b i−1)
τ , b i )).

Of course each τσi is supercuspidal and so also is any of its quadratic twists; fur-
thermore, (τσi ⊗ εa i(b i−1)

τ )( b i−1
2 ) is unitary. Hence, the τ-conjugate of the tempered

representation π is tempered.
Using the notations in the hypothesis, take π = ι σ , and if ι′ ∶ E → C is any other

embedding then take τ ∈ Aut(C) such that ι′ = τ ○ ι. By assumption π = π t ⊗ ∣ ∣w/2 for
a unitary tempered representation and an integral exponent w. Then

τπ = τπ t ⊗ (τ ○ ∣ ∣w/2) = (τπ t ⊗ εwτ ) ⊗ ∣ ∣w/2 .(3.3.3)

By the above argument τπ t is tempered, and hence so also is τπ t ⊗ εwτ . ∎
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Remarks on the proof of Hypothesis 3.3.2 for classical groups For classical groups,
using a similar argument as in the case of GLn(F), and also the result for GLn(F),
a proof follows from Mœglin and Tadic’s classification [15] for discrete series and
tempered representations. The proof is tedious. We will sketch the argument for even-
orthogonal groups.

Consider G = O2n(F) = {g ∈ GL2n(F) ∶ t g ⋅ J ⋅ g = J} the split even orthogonal
group of rank n, where J i , j = δ(i , 2n − j + 1). Suppose n = a1 + ⋯ + aq + n0, with
a1 , . . . , aq ≥ 1 and n0 ≥ 0, and P(a1 , . . . ,aq ;n0) is the parabolic subgroup of O2n(F) with
Levi subgroup

M(a1 , . . . ,aq ;n0) = GLa1 (F) × ⋅ ⋅ ⋅ × GLaq (F) × O2n0 (F).

Let π0 be a discrete series representation of O2n0 (F) and θ j an essentially discrete
series representation of GLa j (F). For brevity, let

θ1 × ⋯ × θq ⋊ π0 ∶= IndG
P(a1 ,. . . ,aq ;n0)

(θ1 ⊗ ⋯ ⊗ θq ⊗ π0).

This induced representation is a multiplicity-free direct sum of tempered represen-
tations (see Mœglin–Tadic [15, Theorem 13.1] and Atobe–Gan [1, Desideratum 3.9,
(6)]). Suppose π is one such tempered representation: π ↪ θ1 × ⋯ × θq ⋊ π0. Suppose
mh1 , . . . ,hq ,x ∈ M with h j ∈ GLa j (F) and x ∈ O2n0 (F), then the absolute-value of the
determinant of the adjoint action of mh1 , . . . ,hq ,x on the Lie algebra of the unipotent
radical of P is given by:

δP(mh1 , . . . ,hq ,x ) = (∣ det(h1)∣2n−2a1 ∣ det(h2)∣2n−2(a1+a2)⋯∣ det(hq)∣2n0 ) ⋅
⋅ (∣ det(h1)∣a1−1∣ det(h2)∣a2−1⋯∣ det(hq)∣aq−1) .

Using this, for τ ∈ Aut(C), one may verify that:

τπ ↪ τ(θ1 × ⋯ × θq ⋊ π0) = (τθ1 ⊗ εa1−1
τ ) × ⋯ × (τθq ⊗ εaq−1

τ ) ⋊ τπ0 .(3.3.4)

By appealing to the above proof for GLn0 (F), we know that each τθ j , and so also
its quadratic twist τθ1 ⊗ εa1−1

τ , is an essentially discrete series representation. Hence,
proof of arithmeticity for tempered representation of O2n(F) boils down to proving
arithmeticity for discrete series representation of O2n0 (F).

For the discrete series representation π0 of O2n0 (F), there exist a and n1 such that
n0 = a + n1, and there exist an essentially discrete series representation θ of GLa(F)
and a discrete series representation π1 of the smaller even-orthogonal group O2n1 (F)
such that π0 is one of two possible subrepresentations of θ ⋊ π1; and both these sub-
representations are in the discrete series; this being the crux of [15]. Then, as above
τπ ↪ τθ ⊗ εa−1

τ ⊗ τπ1. An induction argument (see [15, p. 721]) concludes the proof
as the reduction to a smaller even-orthogonal group ends with the case of π1 being a
supercuspidal representation (in loc.cit. called the weak cuspidal support of π0), and
clearly conjugation by τ preserves supercuspidality as it leaves the support of a matrix
coefficient unchanged.

It is an interesting problem to prove this for a general p-adic group. Assuming that
Hypothesis 3.3.2 is true, we can then formulate another hypothesis:
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Hypothesis 3.3.5 (Arithmeticity for being on the right of the unitary axis) Let
(σ , Vσ ,E ) be a smooth, absolutely irreducible, admissible, half-integrally unitary, essen-
tially tempered representation of a reductive p-adic group M over an E-vector space Vσ ,E .
If for one embedding ι ∶ E → C the representation ι σ is to the right of the unitary axis,
then for every embedding ι ∶ E → C the representation ι σ is to the right of the unitary
axis.

For GLn(F) this follows from (3.3.3) since the exponent for π and τπ are equal.
Similarly, the above hypothesis will follow from Hypothesis 3.3.2 that the half-integral
exponents w/2 for ι σ are independent of ι; in particular the exponent f1 of r̃1(ι σ)
would be independent of ι.

Lemma 3.3.6 (Arithmeticity for genericity) Let (σ , Vσ ,E ) be a smooth absolutely
irreducible admissible representation of a reductive quasi-split p-adic group M over an
E-vector space Vσ ,E . If for one embedding ι ∶ E → C the representation ι σ is generic, then
for every embedding ι ∶ E → C the representation ι σ is generic.

Proof Suppose � ∶ ι σ → C is a Whittaker functional with respect to a character ψ ∶
U → C∗ (that is nontrivial on all the root spaces corresponding to simple roots). Given
another embedding ι′ ∶ E → C, there exists τ ∈ Aut(C) such that ι′ = τ ○ ι. Then τ ○ �
is a Whittaker functional for ι′σ with respect to the character τ ○ ψ of U. ∎

After the above hypotheses and lemma, it makes sense to say that a smooth
absolutely-irreducible admissible representation (σ , Vσ ,E ) of a reductive p-adic group
M is half-integrally unitary, essentially tempered, to the right of the unitary axis, or
generic, if for some, and hence any, embedding ι ∶ E → C the representation ι σ is half-
integrally unitary, essentially tempered, to the right of the unitary axis, or generic,
respectively. The first main theorem of this article is the following result.

An arithmetic variant of Theorem 3.2.5

Theorem 3.3.7 Let P = MN be a maximal parabolic subgroup of a connected reductive
p-adic group G . Let (σ , Vσ ,E ) be a smooth absolutely-irreducible admissible representa-
tion of M over an E-vector space Vσ ,E . Assume that E is large enough to contain the values
of the exponents of A that appear in the Jacquet module of aIndG

P (σ) with respect to the
associate parabolic subgroup Q. Assuming Hypotheses 3.3.1, 3.3.2, and 3.3.5, we suppose
that σ is half-integrally unitary, essentially tempered, to the right of the unitary axis,
and generic. Suppose that P satisfies the integrality condition: ρP ∣AP ∈ X∗(AP), then
so does Q and the modular character δQ takes values in Q∗ . There exists an E-linear
G-equivariant map

Tst ,E ∶ aIndG
P (σ) �→ aIndG

Q (σ ⊗ δQ )

such that for any embedding ι ∶ E → C we have:

Tst,E ⊗E , ι 1C = Tst, ι ,

where Tst, ι = Tst(s, ι σ)∣s=k ∶ aIndG
P (ι σ) → aIndG

Q (ι σ ⊗ δQ ) is the standard intertwining
operator at the point of evaluation.
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Proof Fix an ι ∶ E → C. For χ ∈ X(M), we have the standard intertwining operator

Tst(ι σ , χ) ∶ IG
P (ι σ ⊗ χ) → IG

Q (w0 (ι σ ⊗ χ))

given by an integral where it converges. We will ultimately specialize to the point χk
corresponding to the point of evaluation k = −⟨ρP , αP⟩; note that χk = −ρP ; at this
point our hypotheses guarantee convergence. Consider Theorem 3.2.5 with the small
variation that we take the associate parabolic Q and not P′ which required MP′ = MP ;
for Q we have MQ is the w0-conjugate of MP . This causes no problem as long as we
use the correct integral, i.e., we use (2.2.1) instead of (3.2.4). From Theorem 3.2.5 we
get a (G ,B)-module map

TB ∶ IG
P (ι σ ⊗C B) �→ IG

Q (w0 ι σ ⊗C B)

that satisfies (3.2.3) with a homothety element b ∈ B.
The main steps in the proof of Theorem 3.2.5 ((i) reduction via Frobenius reci-

procity, (ii) Jacquet module calculation, and (iii) construction of an M-equivariant
map using an element R in the group ring of A via the theory of resultants) are all
purely algebraic in nature. The same proof, but now working with modules over E,
gives us an E-linear map of (G ,BE )-modules:

TB,E ∶ IG
P (σ ⊗E BE ) �→ IG

Q (w0 σ ⊗E BE )

with a homothety b0 ∈ BE such that for any ι ∶ E → C we have: TB,E ⊗E , ι C = TB , and
b0 ⊗E , ι 1 = b. Specialize at the point of evaluation in (3.2.3), i.e., take χ = χk = −ρP ∈
XE (A); hence, b(χk) = b0(−ρP) ∈ E∗; note that we have used ρP ∣AP is an integral
weight. We have:

ι(b0(−ρP))Tst(ι σ , χk) = spχk
○ (TB,E ⊗E , ι 1C).

For χ0 ∈ XE (A), if spχ0 ,E ∶ BE → E denotes the specialization map at an arith-
metic level, then clearly, spχ0 ,E ⊗E , ι 1C = spχ0

. Hence, Tst(ι σ , χk) = (b0(ρP)spχk ,E ○
TB,E ) ⊗E , ι 1C . ∎

4 Arithmeticity of local critical L-values

The purpose of this section is to formulate an arithmeticity hypothesis on local critical
L-values for automorphic L-functions. It is a generalization of [17, Proposition 3.17]
which was in the context of Rankin–Selberg L-functions and was a crucial ingredient
in the proof of the main theorem of that article. Using this hypothesis, we may
strengthen Theorem 3.3.7 to give an arithmeticity result for the normalized standard
intertwining operator.

4.1 Criticality condition on the point of evaluation

In the context of Rankin–Selberg L-functions one takes MP = GLn × GLn′ as a Levi
subgroup of an ambient G = GLN , where N = n + n′. The integrality condition on
P forces nn′ to be even. For an inducing data π × π′ of MP , the critical set for the
L-function L(s, π × π′v) consists of integers if n ≡ n′ (mod 2) and consists of half-
integers, i.e., elements of 1

2 + Z if n /≡ n′ (mod 2); see [8, Definition 7.3]. The purpose
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of this subsection is to formalize such parity constraints in the context of Langlands–
Shahidi machinery.

Suppose A i = η i (A) = F∗ and A is the internal product A1 × ⋅ ⋅ ⋅ × A l ; correspond-
ingly, suppose M = M1⋯M l an almost direct product of reductive subgroups, with A i
in the center of M i . Let ρM i be half the sum of positive roots for M i . If ρM i is integral,
then put εM i = 0. If ρM i is not integral, then necessarily 2ρM i is integral, and put
εM i = 1. Fix an unramified character χεP/2

P ∈ Hom(M/M1 ,C∗) = Hom(A/A1 ,C∗),
defined by

χεP/2
P (a1 , . . . , a l ) ∶= ∣a1∣εM1 /2 . . . ∣a l ∣εMl /2 , (a1 , . . . , a l ) ∈ A = F∗ × ⋯ × F∗ .

Let ϑP ∈ LA○P be the Satake parameter of χεP/2
P . Using (2.4.1), there exists h j ∈ 1

2Z such
that r̃ j(ϑP) = q−h j or that r̃ j(χεP/2

P ) = ∣ ∣h j . Let π be an irreducible admissible half-
integrally unitary, essentially tempered, generic representation of MP . Consider π ⊗
χεP/2

P ; we have:

L(s, π, r̃ j) = L(s − h j , π ⊗ χεP/2
P , r̃ j).

The idea is that given π, we algebrize it by considering the twist π ⊗ χεP/2
P . For GLn this

is equivalent to replacing π by π ⊗ ∣ ∣εn/2, where εn ∈ {0, 1} and εn ≡ n − 1 (mod 2).
Any point of evaluation of a global L-function attached to an algebraic data (think of
a motivic L-function) should be an integer for the L-value to be critical in the sense
of Deligne [6]. This motivates the following definition which is independent of π and
depends only on (G , P).
Definition 4.1.1 Let G be a connected reductive p-adic group and P a maximal
parabolic subgroup. We say that P is critical for G if the point of evaluation k =
−⟨ρP , αP⟩ satisfies the condition:

jk ∈ h j + Z, ∀ 1 ≤ j ≤ m.

4.2 Hypothesis on local critical L-values

We can now formulate the arithmeticity hypothesis for local critical L-values.
Hypothesis 4.2.1 Let G be a connected reductive p-adic group and P a maximal
parabolic subgroup. Assume that P satisfies the following two conditions:
(i) the integrality condition: ρP ∣AP ∈ X∗(AP) and

(ii) the criticality condition: P is critical for G.
Let σ be a smooth, absolutely irreducible, half-integrally unitary, essentially-tempered,
admissible, generic representation of MP over a field of coefficients E. Let k = −⟨ρP , αP⟩
be the point of evaluation, and let s j ∈ { jk, jk + 1} for any 1 ≤ j ≤ m. Then for any
embedding ι ∶ E → C we have:
(1) L(s j , ι σ , r̃ j) ∈ ι(E), and furthermore
(2) for any τ ∈ Gal(Q̄/Q) we have τ(L(s j , ι σ , r̃ j)) = L(s j , τ○ι σ , r̃ j).

As already mentioned, this hypothesis can be verified in various concrete examples
of interest. We briefly mention two examples below; these contexts are amplified in
Section 5; the reader will readily appreciate that such examples may be generalized.
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Example 4.2.2 (Local L-functions for GLn(F)) If π is an irreducible admissible
representation of GLn(F) then it follows from Clozel [5, Lemma. 4.6] that for any
k0 ∈ Z and any τ ∈ Aut(C) one has:

τ (L(k0 + 1−n
2 , π)) = L(k0 + 1−n

2 , τπ).

The reader can check that Hypothesis 4.2.1 follows from this Galois equivariance
after appealing to the details in Section 5.1. Such a Galois equivariance can be
reformulated as

τ (L(k0 , π)) = L(k0 , τπ ⊗ εn−1
τ ),

which is useful in other situations; see the next example below.

Example 4.2.3 (Local L-functions for O2n(F)) Suppose π is an irreducible tempered
representation of O2n(F) as in the proof of Hypothesis 3.3.2 for orthogonal groups;
in particular, π ↪ θ1 × ⋯ × θq ⋊ π0, with notations as therein. Then, the L-parameters
are related as: ϕπ = ϕθ 1 + ⋯ + ϕθq + ϕπ0 + ϕv

θ 1
+ ⋯ + ϕv

θq
(see [1, Desideratum 3.9]).

In particular, for L-functions, evaluating at s = k ∈ Z (see Section 5.2 for the fact that
the point of evaluation is an integer), we get: L(k, π) = L(k, θ1)⋯L(k, θq) ⋅ L(k, π0) ⋅
L(k, θv

1 )⋯L(k, θv
q). Apply τ ∈ Aut(C) to both sides while using Example 4.2.2 to get

τ(L(k, π)) is equal to

L(k, τθ1 ⊗ εa1−1
τ )⋯L(k, τ θq ⊗ εaq−1

τ ) ⋅ τ(L(k, π0))
⋅ L(k, τθv

1 ⊗ εa1−1
τ )⋯L(k, τθv

q ⊗ εaq−1
τ ).

Now, use (3.3.4) for τπ; then take its L-function evaluated at s = k to get:

τ(L(k, π)) = L(k, τπ),

assuming by induction that τ(L(k, π0)) = L(k, τ π0) holds for a discrete series
representation π0 of O2n0 (F). The proof for a discrete series representation follows
the same reduction strategy as in the proof of Hypothesis 3.3.2 for even orthogonal
groups.

I expect that a proof of Hypothesis 4.2.1 in the general case should come from an
arithmetic-analysis of Shahidi’s theory of local factors.

4.3 An arithmetic variant of Theorem 3.2.5 for normalized intertwining operator

We can now strengthen Theorem 3.3.7 for the normalized intertwining operator.

Theorem 4.3.1 Let the notations and hypotheses be as in Theorem 3.3.7. Assume
furthermore that Hypothesis 4.2.1 holds. Let Tnorm = Tnorm(s, ι σ)∣s=k be the normalized
standard intertwining operator (see (1.0.1)) at the point of evaluation s = k. Then there
exists an E-linear G-equivariant map

Tnorm,E ∶ aIndG
P (σ) �→ aIndG

Q (σ ⊗ δQ )

such that for any embedding ι ∶ E → C we have:

Tnorm,E ⊗E , ι 1C = Tnorm .
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5 Examples

5.1 Rankin–Selberg L-functions

See case (AN−1) in [23, Appendix B].
α1● ⋯ αn−1● ○ αn● ⋯

αn+n′−2●
(1) Ambient group: G = GL(N)/F with N ≥ 2.
(2) Maximal parabolic subgroup: take N = n + n′ and let P be the maximal parabolic

subgroup with Levi MP = GL(n) × GL(n′); the deleted simple root αP = en −
en+1 .

(3) The integrality condition ρP ∈ X∗(AP) holds if and only if nn′ ≡ 0 (mod 2).
The set of roots with roots spaces appearing in the Lie algebra nP of the unipo-
tent radical of P is {e i − e j ∶ 1 ≤ i ≤ n, n + 1 ≤ j ≤ n + n′}. Hence ρP = n′

2 (e1 +
⋅ ⋅ ⋅ + en) − n

2 (en+1 + ⋅ ⋅ ⋅ + en+n′). Whence, ρP as a character of AP is given by:
diag(t1n , t′1n′) ↦ (tt′)nn′/2 , which is integral if and only if nn′ is even. It is
curious that this very condition was imposed in [8] due to motivic considerations
(the tensor product motive therein needed to be of even rank).

(4) At the level of dual groups, LM○P ≅ GLn(C) × GLn′(C) acts irreducibly on the Lie
algebra LnP ≅ Mn×n′(C) of LNP ; m = 1.

(5) Inducing data consists of π and π′ which are essentially tempered irre-
ducible generic representations of GLn(F) and GLn′(F) then L(s, π ⊗ π′ , r̃1) =
L(s, π × πv) is the local Rankin–Selberg L-function attached to GLn(F) ×
GLn′(F).

(6) The point of evaluation is k = −⟨ρP , αP⟩ = −N/2.
(7) P is critical for G: M = M1M2 with M1 = GLn(F) and M2 = GLn′(F); εM1 = εn

and εM2 = εn′ (recall: εn ∈ {0, 1} by εn ≡ n − 1 (mod 2)); h1 = (εn − εn′)/2; and
k ∈ h1 + Z.

5.2 L-functions for orthogonal groups

See case (Dn , i ) in [23, Appendix A]; the corresponding global context is studied
in [3].

αn●

○ α1● ⋯ αn−2●

��������

��
��

��
��

αn−1●

(1) Ambient group G = O(n + 1, n + 1) = {g ∈ GL2n+2(F) ∶ t g ⋅ J2n+2 ⋅ g = J2n+2},
where J2n+2(i , j) = δ(i , 2n + 3 − j); this is the split even orthogonal
group of rank n + 1; the maximal torus consists of all diagonal matrices
diag(t0 , t1 , . . . , tn , t−1

n , . . . , t−1
1 , t−1

0 ).
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(2) Let P be the maximal parabolic subgroup described by the above Dynkin diagram;
deleted simple root αP = e0 − e1; Levi subgroup is

MP =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

mt ,h =
⎛
⎜
⎝

t
h

t−1

⎞
⎟
⎠

∶ t ∈ GL1(F), h ∈ O(n, n)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

;

clearly, AP = {mt ,1 ∈ MP ∶ t ∈ GL1}; the unipotent radical of P is:

NP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uy1 , y2 , . . . , y2n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 y1 y2 . . . y2n 0
1 −y2n

1 −y2n−1
⋱ ⋮

⋱ −y1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∣ y1 , . . . , y2n ∈ F

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3) The integrality condition on ρP holds for all n. The set of roots with root spaces
in the Lie algebra of NP is {e0 − e1 , e0 − e2 , . . . , e0 − e2n}. Hence

ρP = ne0 − 1
2 (e1 + e3 + ⋅ ⋅ ⋅ + e2n);

from the maximal torus one has en+1 = −en , en+2 = −en−1 , . . . , e2n = −e1 from
which it follows that ρP = ne0. Whence, ρP ∣AP is the integral character
t = mt ,1 ↦ tn .

(4) At the level of dual groups, LM○P = {mt ,h ∶ t ∈ C∗ , h ∈ O(n, n)(C)} acts irre-
ducibly on the Lie algebra LnP of LN○P ; m = 1 and r1 is the standard representation
of O(n, n)(C) twisted by the C∗ in the obvious way.

(5) Inducing data is of the form χ ⊗ π for a character χ ∶ F∗ → C∗, and a tem-
pered, irreducible, generic representation π of O(n, n)(F). The local L-function
L(s, χ ⊗ π, r̃1) is the local Rankin–Selberg L-function L(s, χ ⊗ r̃1(π)) for GL1 ×
GL2n .

(6) The point of evaluation is k = −⟨ρP , αP⟩ = −n.
(7) P is critical for G, since M = M1M2 with M1 = GL1(F) and M2 = O(n, n)(F); ρM i

is integral; h1 = 0; k ∈ Z.

5.3 Exterior square L-functions

See case (Cn−1, i i ) in [23, Appendix A].

α1● α2● ⋯ αn−1● �� ○

(1) Ambient group G = Sp2n(F) = {g ∈ GL2n(F) ∶ t g ⋅ ( Jn
−Jn

) ⋅ g = ( Jn
−Jn

)} ,

where Jn(i , j) = δ(i , r − j + 1) and t g is the transpose of g.
(2) Maximal parabolic subgroup as depicted by the above Dynkin diagram has

Levi subgroup: MP = {(h
(t)h−1) ∶ h ∈ GLn(F)} where (t)h = Jn ⋅ t h ⋅ Jn is the

“other-transpose” of h defined by ((t)h)i , j = hn− j+1,n−i+1 . The deleted simple root
αP = 2en .
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(3) The integrality condition ρP ∈ X∗(AP) holds if and only if n ≡ 0, 3 (mod 4).The
Lie algebra of the unipotent radical of P is of the form

nP = {(0n X
0n 0n

) ∶ X ∈ Mn(F), (t)X = X} .

The set of roots with root spaces appearing in nP is {e1 − en+1 , . . . , e1 − e2n , e2 −
en+1 , . . . , e2 − e2n−1 , . . . , en − en+1}. Keeping in mind that e j = −e2n− j+1 we get

ρP = n + 1
2

(e1 + ⋯ + en).

Whence, ρP ∣AP is given by: diag(t1n , t−11n) ↦ tn(n+1)/2 , which is integral if and
only if n(n + 1)/2 is even, i.e., n ≡ 0 or 3 (mod 4).

(4) Dual groups: LG○ = SO(2n + 1,C) = {g ∈ SL2n+1(F) ∶ t g ⋅ J2n+1 ⋅ g = J2n+1} ,

LM○P =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

mg =
⎛
⎜
⎝

g
1
(t)g−1

⎞
⎟
⎠

∶ g ∈ GLn(C)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≅ GLn(C);

L
nP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ny ,X =

⎛
⎜
⎝

0n y X
01×n 0 −t yJn
0n 0n×1 0n

⎞
⎟
⎠

∶ y ∈ Mn×1(C), X ∈ Mn×n(C), (t)X =−X
⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

The adjoint action of LM○P on LnP is the direct sum of two irreducible repre-
sentations with representation spaces V1 = {ny ,0 ∈ LnP} and V2 = {n0,X ∈ LnP} of
dimensions n and n(n − 1)/2, respectively; r1 is the standard representation and
r2 is the exterior square representation; m = 2. The center LA○P of LM○P consists of
elements at = mt⋅In for t ∈ C×; then at acts on V1 by the scalar t and on V2 by the
scalar t2.

(5) The inducing data is a half-integrally unitary, irreducible, essentially tempered,
generic representation π of GLn(F); for the L-functions we have:
(a) L(s, π, r̃1) = L(s, π), the standard L-function for GL(n) and
(b) L(s, π, r̃2) = L(s, π, ∧2), the exterior square L-function for GL(n).

(6) The point of evaluation is k = −⟨ρP , αP⟩ = − n+1
2 .

(7) P is critical for G. Since εM = εn , h1 = εn/2, and h2 = εn ; hence jk ∈ h j + Z holds
for j = 1, 2.

5.4 Explicit intertwining calculation for the case of GL(2)

Some essential features of main results are already visible for the example of GL(2)
from first principles; although the reader is warned of the well-known dictum that
GL(2) is misleadingly simple and it is difficult to carry out a straightforward general-
ization of such calculations.

Let E/Q be a finite extension, and for i = 1, 2, let χ i ∶ F× → E× be a smooth
character, and χ○i its restriction to O×F . Let ι ∶ E → C be an embedding of fields,
and ι χ i = ι ○ χ i be the corresponding C-valued character of F× . Let G = GL2(F),
K = GL2(OF ), and for m ≥ 0 let K(m) be the principal congruence subgroup of K of
level m; K(0) = K . The standard intertwining operator Tst(s) at the point of evaluation
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s = −1 between the K(m)-invariants of algebraically induced representations has the
shape:

Tst(s)∣s=−1 ∶ aIndG
B (ι χ1 ⊗ ι χ2)K(m) �→ aIndG

B (ι χ2(1) ⊗ ι χ1(−1))K(m).

The standing assumptions that ι χ i is half-integrally unitary, essentially tempered, and
π = ι χ1 ⊗ ι χ2 is on the right of the unitary axis with respect to G implies that T ∶=
Tst(s)∣s=−1 is finite. A function in aIndG

B (ι χ1 ⊗ ι χ2)K(m) is completely determined by
its restriction to K. This gives us the following diagram:

aIndG
B (ι χ1 ⊗ ι χ2)K(m)

f↦ f ∣K
��

T �� aIndG
B (ι χ2(1) ⊗ ι χ1(−1))K(m)

f↦ f ∣K
��

aIndK
K∩B(ι χ○1 ⊗ ι χ○2)K(m) T○ �� aIndK

K∩B(ι χ○2 ⊗ ι χ○1 )K(m)

Working with K(m)-invariants is not strictly necessary; it has the virtue of making
the spaces finite-dimensional and G-action is replaced by action of the Hecke-algebra
C∞c (G//K(m)). Let f ○ ↦ f̃ ○ denote the inverse of f ↦ f ∣K . Let f ∈ aIndG

B (ι χ1 ⊗
ι χ2)K(m) and for brevity let f ○ = f ∣K . Since T( f ) is determined by its restriction to K,
we have:

T○( f ○)(k) = T( f )(k) = ∫
F

f (( −1
1 ) (1 x

1) k) dx , k ∈ K .

Break up the integral over x ∈ P−m and x ∉ P−m . Note that

∫
P−m

f (( −1
1 ) (1 x

1) k) dx = ∑
a∈P−m/Pm

∫
y∈Pm

f (( −1
1 ) (1 a + y

1 ) k) d y.

We write

(1 a + y
1 ) k = (1 a

1) (1 y
1) k = (1 a

1) k ⋅ k−1 (1 y
1) k

and use that K(m) is a normal subgroup of K and f̃ ○ is right K(m)-invariant to get

∫
P−m

f (( −1
1 ) (1 x

1) k) dx = vol(Pm) ∑
a∈P−m/Pm

f (( −1
1 ) (1 a

1) k) ,

(5.4.1)

which is a finite-sum. For the integral over x ∉ P−m use:

( −1
1 ) (1 x

1) = (x−1

x) (1 −x
1 ) ( 1

x−1 1) ;

break up ∫x∉P−m as ∑∞r=m ∫ϖ−rO× to get

∫
x∉P−m

f (( −1
1 ) (1 x

1) k) dx

=
∞

∑
r=m

∫
ϖ−rO×

f ((x−1

x) (1 −x
1 ) ( 1

x−1 1) k) dx .
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Since x−1 ∈ Pm , using the equivariance of f, the right hand side simplifies to:

∞

∑
r=m

∫
ϖ−rO×

ι χ1(x−1)ι χ2(x) f (k) dx .

Make the substitution x = ϖ−ru with u ∈ O×; then dx = qrdu = qrd×u, and one
gets:

f (k)
∞

∑
r=m

ι χ1(ϖr)ι χ2(ϖ−r)qr ∫
O×

ι χ1(u−1)ι χ2(u) d×u.

The inner integral is nonzero if and only if ι χ1(u) = ι χ2(u) for all u ∈ O×; assuming
this to be the case we get:

∫
x∉P−m

f (( −1
1 ) (1 x

1) k) dx

= vol(O×) ⋅ ι χ1(ϖm)ι χ2(ϖ−m)qm ⋅ (1 − ι χ1(ϖ)ι χ2(ϖ−1)q)−1 ⋅ f (k).(5.4.2)

For G = GL(2), the point of evaluation k = −1, and (1 − ι χ1(ϖ)ι χ2(ϖ−1)q)−1 is
nothing but L(s, ι χ1 ⊗ ι χ2 , r̃) = L(s, ι χ1 ⊗ ι χ−1

2 ) evaluated at this point of evaluation.
Putting (5.4.1) and (5.4.2) together, one sees that T( f )(k) is a finite-sum:

vol(Pm) ∑
a∈P−m/Pm

f (( −1
1 ) (1 a

1) k)

+ δ(χ○1 , χ○2) ⋅ vol(O×) ⋅ ι χ1(ϖm)ι χ2(ϖ−m)qm ⋅ L(−1, ι χ1 ⊗ ι χ−1
2 ) ⋅ f (k).(5.4.3)

For brevity, let I = aIndG
B (ι χ1 ⊗ ι χ2)K(m) and Ĩ = aIndG

B (ι χ2(1) ⊗ ι χ1(−1))K(m);
these induced representations admit a natural E-structures; define

I0 ∶= aIndG
B (χ1 ⊗ χ2)K(m), Ĩ0 ∶= aIndG

B (χ2(1) ⊗ χ1(−1))K(m).

If χ ∶ F× → E× is a locally constant homomorphism then for any integer n, we denote
χ(n) = χ ⊗ ∣ ∣n the E-valued character: u ↦ χ(u) for all u ∈ O× and ϖ ↦ q−n χ(ϖ).
It is clear then that I = I0 ⊗E , ι C and Ĩ = Ĩ0 ⊗E , ι C. Note that I0
consists of all E-valued functions in I; similarly, Ĩ0 . The local L-
value that appears in (5.4.3) is E-rational, i.e., L(−1, ι χ1 ⊗ ι χ−1

2 ) =
(1 − ι χ1(ϖ)ι χ2(ϖ−1)q)−1 ∈ ι(E), and furthermore, if L0(−1, χ1 ⊗ χ−1

2 ) =
(1 − χ1(ϖ)χ2(ϖ−1)q)−1 ∈ E then ι(L0(−1, χ1 ⊗ χ−1

2 )) = L(−1, ι χ1 ⊗ ι χ−1
2 ).

It is clear now from (5.4.3) that T(I0) ⊂ Ĩ0; also that if T0 = T ∣I0 then
T = T0 ⊗E , ι C.
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