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Significant outcomes 

Suicidality, subcortical brain volume and Intracranial volume of individuals of European 

ancestry shared the same genetic common factor. Additionally, there is a positive genetic 

correlation between Suicide from FinnGen and Intracranial brain volume. Gene Ontology 

analyses, pathways and biological processes encompassing these phenotypes highlight shared 

mechanisms related to an inflammatory signature detectable in both blood and brain tissues. 

Limitations 

This study solely focuses on individuals of European ancestry. Future studies should focus on 

including diverse ancestries for a better generalization. Additionally, this study had a limited 

sample size, which might have resulted in the inability to detect signals, improve genetic 

correlation, and detect shared biological mechanisms.  
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Abstract 

Objective: Suicidality is a significant public health concern, with neuroimaging studies 

revealing abnormalities in the brains of suicidal individuals and post-mortem samples. 

However, the genetic architecture between suicidality and subcortical brain volumes remains 

poorly characterized. Using Genome-Wide Association Studies (GWAS), we investigated the 

genetic overlap between suicidality and subcortical brain volume.  

Methods: GWAS summary statistics for suicidal behaviours, including Suicide Attempts, 

Ever Self-Harmed, and Thoughts of Life Not Worth Living, from the UK Biobank, Suicide 

from the FinnGen Biobank, and data on seven subcortical brain volumes and Intracranial 

Volume from the ENIGMA2 study, were used to investigate the genetic correlation between 

phenotypes as well as potential genetic factors.    

Results: A common genetic factor was identified, comprising two categories: Suicide 

Attempt, Ever Self-Harmed, and Thoughts of Life Not Worth Living from the UK Biobank, 

and Suicide from FinnGen, Intracranial Volume, and subcortical brain volumes. Cross-

phenotype GWAS meta-analysis of each category at variant, gene and subnetwork levels 

unveils a list of significant variants (P-value < 5 × 10
-8

), and potential hub genes (P-value < 

0.05) of consideration. Network, pathway, and Gene Ontology analyses of these joint 

categories highlighted enriched pathways and biological processes related to blood-brain 

barrier permeability suggesting that the presence and severity of suicidality are associated 

with an inflammatory signature detectable in both blood and brain tissues. 

Conclusion: This study underscores the role of brain and peripheral blood inflammation in 

suicide risk and holds promise for developing targeted interventions and personalized 

treatment strategies to reduce suicidality in at-risk populations. 

Keywords: Suicidality, brain, GenomicSEM, GWAS meta-analysis, Genes, Pathway. 
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INTRODUCTION 

Suicidality has become an increasingly critical issue within public health, claiming 

approximately 700,000 lives globally each year and maintaining a suicide rate of 9.0 per 

100,000 individuals worldwide (WHO, 2021). In the United States, it was the 12
th

 leading 

cause of death from 2010 to 2018 (Hedegaard et al., 2020). The economic impact of suicidal 

behaviour is profound, with an estimated cost of $70 billion annually in the U.S. alone (CDC, 

2020). Research has highlighted the genetic basis of suicidality, complementing the roles of 

environmental and individual factors (Strawbridge et al., 2019; Li et al., 2023). For instance, 

monozygotic twins demonstrate a significantly higher likelihood of suicide attempts and 

completions compared to dizygotic twins (Li et al., 2023). Genome-Wide Association Studies 

(GWAS) have identified a Single Nucleotide Polymorphism (SNP) heritability of 3.5% in the 

UK Biobank and 6.8% in the International Suicide Genetics Consortium meta-analysis 

(Mullins et al., 2014; 2022).  

Neuroimaging studies have indicated associations between changes in subcortical structures 

and suicidality risk (Yin et al., 2022; Campos et al., 2021; Kim et al., 2021). These findings 

align with the brain-centric diathesis-stress model of suicidal behavior (Mann et al., 2020), 

suggesting brain changes contribute to suicide risk. However, conflicting reports exist, with 

some studies finding no significant association between suicidality and subcortical brain 

volume (Rentería et al., 2017). For instance, the ENIGMA-MDD consortium found no 

significant differences in subcortical regions among individuals with or without suicidal 

ideation or behaviour. Another study involving adolescents with major depressive disorder 

did not find a link between suicide attempts and subcortical alterations (Gifuni et al., 2021). 

Such discrepancies may stem from sample heterogeneity and the acute nature of suicidal 

behaviour. 

Similarly, brain volume has been shown to possess a heritable component (Blokland et al., 

2012). Twin studies have revealed genetic influences on both overall brain and subcortical 

volumes (Tramo et al., 1998; Pfefferbaum et al., 2000). Notably, GWAS have identified five 

genetic variants associated with the sizes of the putamen and caudate nucleus among seven 

subcortical brain regions (Hibar et al., 2015). More recent GWAS have discovered numerous 

genetic variants linked to brain morphometry (Satizabal et al., 2019). Despite these insights, 

the extent of shared genetic loci between suicidality and subcortical brain volume remains 

underexplored, and the common underlying features are not fully understood. Moreover, the 
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genetic overlaps at the polygenic level are still inadequately comprehended.  Genetic 

investigations may provide a clearer understanding of the overlapping psychopathology 

between suicidality and brain volume than imaging studies alone. In this study, we 

hypothesised that there may be a shared genetic aetiology underlying suicidality and altered 

subcortical brain volumes from a genome-wide perspective. 

Recent research has proposed the existence of a genetic 'p factor', indicating shared genetic 

variance across various disorders, particularly psychiatric symptoms (Caspi et al., 2014); 

Sprooten et al., 2022). This conceptualization suggests shared components in the underlying 

pathophysiology of mental disorders, potentially explaining their comorbidity. Utilizing 

large-scale GWAS datasets on suicidality and subcortical brain volume, this study aims to 

elucidate the shared genetic architecture between these phenotypes. We introduce a common 

factor model extending the genomic 'p factor' to include suicidality and subcortical brain 

volume through Genomic Structural Equation Modelling (Genomic SEM). We conducted 

variant-based and gene/pathway-specific GWAS meta-analyses to identify loci significantly 

associated with this common factor. Furthermore, we sought to uncover cross-disorder risk 

loci between subcortical brain volume and suicidality using our common factor-informed 

approach, aiming to elucidate shared molecular mechanisms. 

MATERIALS AND METHODS 

GWAS Summary Data 

We acquired Genome-Wide Association Study (GWAS) summary statistics pertaining to 

Suicide or other intentional self-harm (SUIC) from the FinnGen Biobank 

(https://www.finngen.fi/en/access_results), as well as data on Thought Life Not Worth Living 

(TLNWL) and Ever Self-Harmed (ESH) from the United Kingdom Biobank/Neale lab, 

Attempted suicide (SA) from the study led by Erlangsen et al. (2020) which can be retrieved 

within the iPSYCH Biobank (Erlangsen et al., 2020). Additionally, summary-level data on 

seven subcortical brain volumes including Amygdala (AMY), Accumbens (ACC), Caudate 

(CAU), Hippocampus (HIP), Pallidum (PAL), Putamen (PUT), and Thalamus (THA) with the 

Intracranial Volume (ICV) were sourced from the ENIGMA2 study, accessible via the public 

database (http://enigma.ini.usc.edu/research/download-enigma-gwas-results/). All samples 

were of European ancestry, and comprehensive details regarding sample collection, 

genotyping, processing, quality control, and imputation procedures for each GWAS have 
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been previously documented and briefly outlined (Hibar et al., 2015; Kurki et al., 2023). 

Details regarding the number of samples are outlined in Table 1. 

Table 1. Summary information of the phenotypes of our study  

Phenotype #Case #Controls Sample size Source 

SUIC 1,361 341,138 342,499 FinnGen 

TLNWL NA NA 117,291 United Kingdom 

Biobank/Neale lab 

ESH 5,099 112,634 117,733 United Kingdom 

Biobank/Neale lab 

SA 6,024 44,240 50,264 iPSYCH 

Accumbens NA NA 13,112 ENIGMA2 

Amygdala NA NA 13,160 ENIGMA2 

Caudate NA NA 13,171 ENIGMA2 

Hippocampus NA NA 13,163 ENIGMA2 

Pallidum NA NA 13,142 ENIGMA2 

Putamen NA NA 13,145 ENIGMA2 

Thalamus NA NA 13,193 ENIGMA2 

ICV NA NA 11,373 ENIGMA2 

 

Upon retrieving data from the FinnGen database, we initiated a meticulous process of data 

refinement. Initially, we conducted data cleaning to ensure its quality and reliability. 

Duplicate Single Nucleotide Polymorphisms (SNPs) were removed, and we extracted SNPs 

with a Minor Allele Frequency (MAF) exceeding 0.01. Additionally, SNPs with conflicting 
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alleles and those with missing information within the Genome-Wide Association Study 

(GWAS) summary statistics for each disorder were excluded from further analysis. 

 

SNP-Based Heritability and Genome-Wide Genetic Correlation 

To gauge the portion of phenotypic variance attributable to common genetic variants, known 

as SNP-based heritability (h² SNP), we employed univariate LD-score regression (LDSC) 

(Bulik-Sullivan et al., 2015). This method was implemented using the Genomic SEM R 

package (Grotzinger et al., 2019). We adhered to default LDSC settings for quality control 

processes, which involved filtering SNPs to HapMap3, excluding SNPs within the Major 

Histocompatibility Complex (MHC) region, and removing SNPs with a MAF less than 1%. 

The defaults in LDSC were followed in the quality control (QC) processes for creating the 

genetic covariance (S) and sampling covariance (V) matrices. The MHC region, characterized 

by a complex gene network, often contains SNPs with disproportionately large effect sizes, 

thus necessitating its exclusion to prevent skewing results from heritability and genetic 

correlation studies, as well as in the genomic SEM analyses (Grotzinger et al., 2019). LD 

scores used in the analysis were derived from the 1000 Genomes European sample, limited to 

HapMap3 SNPs for reliable heritability estimates. 

 

Genomic Structural Equation Modelling Analysis 

Genomic factor analysis was conducted using the Genomic SEM R package. Initially, a 

genomic exploratory factor analysis (EFA) was performed to determine the optimal number 

of factors describing shared genetic variation. This informed subsequent genomic 

confirmatory factor analysis (CFA) to estimate model parameters for fitting. We employed 

diagonally weighted least squares estimation due to its robustness when modelling traits with 

varying characteristics. Model fit was evaluated using established criteria for absolute fit, 

including the standardized root mean square residual (SRMR) with values ≤ 0.10 indicating 

moderate fit and SRMR ≤ 0.05 indicating good fit; comparative fit index (CFI) with values ≥ 

0.90 indicating moderate fit and CFI ≥ 0.95 indicating good fit; and lower chi-square statistic 

with p-value less than 0.05 suggesting a precise match and greater fit (Grotzinger et al., 

2019). We use this approach to derive a potential common factor model and thereafter 
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perform GWAS meta-analyses at SNP, gene and sub-network levels encompassing the 

phenotypes detected within the potential common factor.  

 

RESULTS 

SNP-Based Heritability and Genome-Wide Genetic Correlations 

The heritability estimates presented in Table 2 were derived from our analysis and are 

expressed on the observed scale. For traits with lower-than-usual heritability estimates and 

higher standard errors compared to other studies, the SNP-based heritability could not be 

identified due to insufficient statistical power. Using bivariate LDSC (Bulik-Sullivan et al., 

2015) implemented in the R package Genomic SEM, we estimated genetic correlations (rg) 

among the twelve traits. It is important to note that LDSC can sometimes provide estimates 

outside the range of -1 to +1, particularly under conditions of large standard errors or highly 

significant genetic correlations between studies. Additionally, we were unable to generate a 

genetic correlation estimate for the amygdala with the other phenotypes due to its negative 

heritability estimate. 

Table 2. Heritability Estimates from Our Analysis 

Trait h
2
 h

2
(SE) Z-score Lambda 

GC 

Mean 

Chi
2
 

h
2
_inter h

2
_inter

_se 

#SNPs 

for 

heritabil

ity 

analysis 

SUIC 0.0025 0.0013 2.02 1.0292 1.0232 1.0065 0.07 1150849 

TLNWL 0.0735 0.0054 13.7 1.1577 1.1788 1.0086 0.0072 1078769 

ESH 0.0217 0.0044 4.96 1.0535 1.0613 1.0107 0.0066 1078769 

SA 0.08 0.0122 6.6 1.0987 1.1107 1.0221 0.0091 922234 

Accumb

ens 

0.0905 0.0379 2.39 0.9967 1.0027 0.9796 0.0062 1171081 
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Amygdal

a 

-0.0197 0.0322 -0.613 0.9944 0.9964 1.0014 0.0059 1171167 

Caudate 0.2495 0.00397 6.28 1.0273 1.0326 0.9691 0.0062 1171185 

Hippoca

mpus 

0.1542 0.0386 4 1.0103 1.0244 0.9844 0.0067 1171208 

Pallidum 0.1551 0.0415 3.74 1.0065 1.0199 0.9799 0.0068 1171081 

Putamen 0.2972 0.0481 6.17 1.0141 1.0268 0.951 0.0075 1171189 

Thalamu

s 

0.1314 0.0379 3.46 1.0065 1.0151 0.9816 0.0065 1171264 

ICV 0.1845 0.00436 4.24 1.0383 1.0417 1.0008 0.0066 1171991 

 

Our study identified a marginal positive genetic correlation between SUIC and intracranial 

volume (ICV) (rg = 0.47; p-value = 0.024) and a negative genetic correlation (however not 

significant) between SUIC and accumbens (rg = -0.52; p-value = 0.93). (see Fig. 1A). There 

are notable positive genetic correlations between several subcortical brain volumes (e.g., 

accumbens, putamen, caudate, pallidum, thalamus). We found significant genetic correlations 

between the putamen (PUT) and accumbens (ACC) (rg = 0.51; p-value = 0.043), caudate 

(CAU) and accumbens (ACC) (rg = 0.56; p-value = 0.0168), thalamus (THA) and accumbens 

(ACC) (rg = 0.52; p-value = 0.022), and a strong positive genetic correlation between the 

pallidum (PAL) and thalamus (THA) (rg = 0.6; p-value = 0.02). Other Suicidality-Related 

Traits (ESH, SA, TLNWL) exhibit various correlations with each other and non-significant 

correlations with brain structures, with ESH and SA showing high significant correlations 

with each other (rg = 1.02; p-value = 2.45×10
-14

). The pattern of correlations highlights 

potential shared genetic underpinnings between certain brain volumes and suicidality, 

warranting further investigation into the underlying mechanisms. This analysis provides 

insight into the genetic architecture connecting brain structures and suicidality-related traits, 

suggesting both shared and unique genetic factors across these phenotypes.  
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Fig. 1. (A) The heatmap shows the genetic correlations (rg) between various brain structures 

and suicidality-related traits. The values represent the strength and direction of the genetic 

correlations, with significant (P-values less than 0.05) correlations indicated by asterisks (*). 

The colour scale ranges from blue (positive correlations) to red (negative correlations), with 

darker shades representing stronger correlations. (B) Path Diagram for the Single Common 

Factor Model. This figure illustrates the overall common variance among all included traits. 

Ellipses represent latent variables, rectangles represent observed variables/traits, numbers on 

arrows are standardized factor loadings, and numbers at the ends of arrows are residual 

variances. (C) Path Diagram of the Revised Common Factor (Labelled "REV_F1").  This 

diagram illustrates the overall common variance among all included traits, representing 

observed variables with "heart" shapes and the unobserved (latent) variable with a "star" 

shape. It suggests two groups of disorders sharing the same common factor: the first group in 

red and the second group in green. One-headed arrows represent regression connections 
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between variables, while two-headed arrows indicate the variance of a variable or the 

covariance between a variable and itself.  This analysis aimed to identify overlapping genetic 

factors and elucidate potential shared molecular mechanisms across the included traits. 

 

Genomic Structural Equation Modeling Analysis 

First, we assessed the extent of common genetic variance among all included traits by 

evaluating the performance of a common genetic factor model. Although the model with 

freely determined loadings converged, it did not fit well (chisq(44) = 215.0768, Pchisq = 

2.21×10
-24

, AIC = 259.0768, CFI = 0.696, SRMR = 0.194) (Fig. 1B).  

Our genomic SEM analysis reveals an intriguing revised common factor model that fits the 

data well, with the best-fit statistics (chisq(15) = 25.69, Pchisq = 0.04, AIC = 127.69, CFI = 

0.981, SRMR = 0.047) (Fig. 1C). This model identifies a common latent factor divided into 

two distinct groups of phenotypes.  The first group includes the suicidal traits from the UK 

Biobank (ESH, SA, and TLNWL) highlighted in red, while the second group includes SUIC, 

ICV, Accumbens, Caudate, Hippocampus, Pallidum, Thalamus, and Putamen highlighted in 

green. This suggests that SUIC has a closer genomic link with subcortical brain volume and 

ICV compared to the suicidal traits ESH, SA, and TLNWL. However, both groups of traits 

exhibit the same genomic common factor, indicating the presence of a shared molecular 

mechanism. 

 

GWAS Meta-Analysis at Variant and Gene Level 

We conducted a variant-based GWAS meta-analysis using RE2C (v1.06) (Lee et al., 2017) to 

account for sample overlap among GWAS summary data. Significant variants were identified 

based on the RE2C P-value statistic (RE2C*P < 5 × 10
-8

). Variants that became significant 

after meta-analysis but did not reach genome-wide significance in individual trait GWAS 

datasets were considered novel (Kanai et al., 2016).  In addition to the RE2C model, we 

performed cross-trait GWAS meta-analyses using both fixed effect (FE) and modified 

random effects (RE2) models (Han and Eskin, 2011), integrated into the METASOFT 

software (http://genetics.cs.ucla.edu/meta/). The FE model, which assumes the GWAS traits 

examined the same (fixed) effect, used the inverse variance weighted technique to estimate 

SNP meta-analysis statistics (effect size and p-value). In cases of heterogeneity, indicated by 
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I
2
 statistics, METASOFT employed the RE2 model to estimate SNP meta-analysis statistics.   

Gene and subnetwork-specific meta-analyses were conducted using ancMETA (Chimusa and 

Defo, 2022), which incorporates summary GWAS information and aggregates SNPs within 

nearby genes. ancMETA provides information on significant genes and hub genes based on 

known biological protein-protein networks, shedding light on potential biological pathways 

shared across disorders.  The meta-analysis GWAS focused on two sets of phenotypes: 

Group 1: ESH, SA, and TLNWL. 

Group 2: SUIC, ICV, Accumbens, Thalamus, Putamen, Caudate, Pallidum, and 

Hippocampus. 

GWAS Meta-Analysis at SNP Level Between ESH, SA, and TLNWL 

Our cross-trait meta-analysis using the RE2C model identified 37 significant variants 

(RE2C*P < 5×10
-8

) (Table 3, Supplementary Table 1), all of which exhibited small effect 

sizes. Of these, 31 were novel, meaning they were not previously associated with any of the 

disorders (Peach_study > 5 × 10
-8

). 

Our SNP-level results indicate that the most significant variants are located within the DCC 

gene. Additionally, associations were found with SNPs in the SH3GL3, STIM2, MEAF6, and 

RSPO1 genes (Table 3, Supplementary Table 1). The top four significant novel loci are all 

located within the DCC gene, while other new associations were found within the STIM2, 

MEAF6, and RSPO1 genes. These findings highlight new genetic loci that add value to 

previously identified genes in the literature. 

GWAS Meta-Analysis at SNP Level Between SUIC, ICV, Accumbens, Caudate, 

Hippocampus, Pallidum, Thalamus, and Putamen 

Our GWAS meta-analysis using the RE2C model identified 484 significant variants, all 

exhibiting low effect sizes (Table 3, Supplementary Table 2). Among these, 64 SNPs showed 

potential pleiotropic effects, influencing multiple subcortical brain structures simultaneously, 

including the accumbens, caudate, hippocampus, pallidum, thalamus, and putamen.   

According to the FUMA analysis, the genes located near these significant loci exhibit 

enrichment across various brain regions. The highest levels of enrichment were found in the 

hypothalamus, brain cortex, and frontal cortex (Fig. 2A). However, the genes near the 

pleiotropic loci showed enrichment in nearly all parts of the brain, with the exception of the 

putamen basal ganglia and the spinal cord (Fig. 2B). 
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Fig. 2. A- Bar plot showing enrichment tissues of all the nearby genes from significant cross-

associated SNPs; B- Bar plot showing enrichment tissues of nearby genes from the 

significant potential pleiotropic (accumbens, caudate, hippocampus, pallidum, thalamus, and 

putamen combined) SNPs. The red colour speaks for significance and the blue one speaks for 

non-significance. 

These findings suggest widespread genetic influences across various brain regions, 

emphasizing the importance of considering multiple brain structures when studying genetic 

associations with SUIC and subcortical brain volumes. 
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Table 3. Top significant variants from cross-trait meta-analysis between each set of 

phenotypes. 

ESH, SA and TLNWL 

variants chr bp ref alt Neares

t gene 

P-ESH P-SA P-

TLNWL 

RE2C*P Beta SE I
2
 

rs174083

93 

18 531836

11 

A G DCC 2.85×1

0
-05

 

0.49 9.41×10
-08

 1.53×10
-

09
 

0.0045 0.000

8 

8

8 

rs620992

30 

18 531953

42 

G A DCC 3.49×1

0
-05

 

0.49 1.09×10
-07

 2.14×10
-

09
 

0.0044 0.000

8 

8

8 

rs174872

77 

18 531925

74 

C G DCC 3.7×10
-

05
 

0.49 1.1×10
-07

 2.25×10
-

09
 

0.0044 0.000

8 

8

8 

rs621007

71 

18 532147

60 

A G DCC 7.99×1

0
-05

 

0.48 5.89×10
-08

 2.79×10
--

09
 

0.0043 0.000

8 

8

8 

rs150002

680 

15 835795

97 

A G SH3GL

3 

7.9×10
-

09
 

0.77 0.166 2.86×10
-

09
 

0.024 0.004 0 

SUIC, ICV, accumbens, caudate, hippocampus, pallidum, thalamus, and putamen 

variants chr bp ref alt Neare

st 

gene 

RE2C*P Beta SE I
2
 

rs6567261 18 62184009 T C PIGN 5.68×10
-

30
 

-0.0012 0.0004 92.77 

rs11754988 6 74253222 C T CD10

9 

5.17×10
-

27
 

-0.001 0.00038

5 

92.3 

rs56161836 1 245197588 G A KIF26

B 

6.69×10
-

27
 

-0.001 0.00037

8 

92.31 

rs13022308 2 166492125 G A SCN7

A 

7.94×10
-

27
 

-0.001 0.00037

6 

92.2 

rs2302862 3 10216809 T C IRAK

2 

8.9×10
-27

 -0.001 0.00037

9 

92.2 
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GWAS Meta-Analysis at Gene and Sub-Network Level Between ESH, SA, and TLNWL 

Gene-Level Analysis. At the gene level, ancMETA identified 893 significant genes (Table 3; 

Supplementary Table 3) associated with ESH, SA, and TLNWL (overall P < 0.05). The top 

significant genes include RANBP17 (p-value = 3.25×10
-05

), C6orf89 (p-value = 1.8×10
-04

), 

and GPHN (p-value = 2.1×10
-04

).  RANBP17 is Located on chromosome 5q35.1 and encodes 

RAN-binding protein 17, a nuclear transport receptor. It has been associated with the severity 

of suicide attempts in mood disorders at the polymorphism level (Zai et al., 2021).   C6orf89 

which encodes the bombesin receptor-activated protein (BRAP), is associated with allergic 

rhinitis and asthma and is potentially implicated in the stress response of lung epithelia (Liu 

et al., 2016; Xu et al., 2017). Studies in mice suggest that BRAP regulates dendritic spine 

development and synaptic plasticity in the hippocampus, providing a protective behavioral 

response to stress (Yao et al., 2023). Regarding Gephyrin (GPHN), previous studies have 

linked exonic microdeletions in this gene to neurodevelopmental issues such as idiopathic 

generalized epilepsy (Dejanovic et al., 2014), schizophrenia, autism spectrum disorder, and 

epileptic seizures.  These findings suggest that while the effects of variants within these genes 

differ between studies, the aggregation of variant effects within these genes significantly 

contributes to the cross-phenotype association of ESH, SA, and TLNWL. 

Sub-Network Level Analysis.  At the sub-network level, ancMETA identified 50 significant 

hub genes (Supplementary Table 4). Among these, the top significant genes were GPHN (p-

value = 0.00022), RGS2 (p-value = 0.004), and ATP1A1 (p-value = 0.0045). These hub genes 

indicate that the aggregation’s effect of variants within these genes significantly contributes 

to the cross-phenotype association at the pathway/gene set level, encompassing the 

phenotypes of ESH, SA, and TLNWL. Our FUMA analysis revealed that the significant 

genes and hub genes identified in our ancMETA results showed significant expression 

enrichment across all brain regions. The top enriched tissues include the brain anterior 

cingulate cortex, cultured fibroblast cells, brain hippocampus, brain putamen basal ganglia, 

and brain substantia nigra (Fig. 3B). 

Previous studies have highlighted the association of numerous variants within the RGS2 gene 

with a higher risk of successful suicide (Cui et al., 2008; Amstadter et al., 2009). ATP1A1, a 

member of the sodium/potassium pump (Na+/K+-ATPase) family expressed in the brain, 

regulates the gradient of potassium and sodium across cellular membranes (Richards et al., 

2007). Research has verified the involvement of brain Na+/K+-ATPase α subunit isoforms, 
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particularly the α2 and α3 subunits, in various behavioural features, linking them to mental 

and behavioural disorders in humans (Lingrel et al., 2007; Tochigi et al., 2008). Another 

study has demonstrated the connection between ATP1A1 expression levels and clinical 

anxiety scores in patients with major depressive disorder (Zhao et al., 2016). 

 

GWAS Meta-Analysis at Gene and Sub-Network Level Between SUIC, ICV, 

Accumbens, Caudate, Hippocampus, Pallidum, Thalamus, and Putamen. 

 

Gene-Level Analysis.  In a comprehensive GWAS meta-analysis, ancMETA identified 402 

significant genes cross-associated with SUIC, ICV, and various subcortical brain regions, 

including the accumbens, caudate, hippocampus, pallidum, thalamus, and putamen (overall P 

< 0.05; Table 4, Supplementary Table 5). The top significant genes were RPL11 (p-value = 

1.8×10
-4

), DDX4 (p-value = 4.03×10
-4

), and WDR55 (p-value = 1.06×10
-3

).  RPL11 has been 

previously implicated in the ribosomal pathway, playing a role in the pathogenesis of mild 

cognitive impairment and Alzheimer's disease (Qin et al., 2023). It is also associated with 

brain arteriovenous malformations (Zhang et al., 2021) and has been proposed as a biomarker 

for major depressive disorder Zhang et al., 2020) and low-risk neuroblastoma (Nguyen et al., 

2011). WDR55 encodes WD repeat-containing protein 55, which modulates ribosomal RNA 

biogenesis, cell cycle progression, and organ development. It has been identified as a 

significant CpG site and methylated region associated with depression risk in Chinese 

monozygotic twins (Whang et al., 2011). 

Table 4. Top 3 significant genes and subnetwork hub genes from cross-trait meta-analysis 

between each set of phenotypes. 

SUIC, ICV, accumbens, caudate, hippocampus, pallidum, thalamus, and putamen 

Gene 

#Stud

y 

Overal

l P Q P_Q 

P_SU

IC P_Cau 

P_IC

V P_Acc 

P_Th

a P_Pal P_Put P_Hip 

RPL11 8 

1.8E-

04 6.68 0.46 0.012 0.001 0.002 

0.0004

6 

0.000

6 

0.0002

8 0.001 0.00041 

DDX4 8 

4.0E-

04 5.34 0.62 0.01 

0.0003

2 0.014 

0.0008

7 

0.000

64 

0.0003

3 

0.00038

6 0.00052 

 

 

 

https://doi.org/10.1017/neu.2025.12 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2025.12


WDR55 8 

1.06E-

03 6.61 0.47 0.0036 

0.0004

6 0.012 

0.0006

2 

0.009

3 

0.0003

5 0.0012 0.001 

Sub-

networ

k Hub 

#Stud

y 

Overal

l P Q P_Q 

P_SU

IC P_Cau 

P_IC

V P_Acc 

P_Th

a P_Pal P_Put P_Hip 

NEB 8 0.012 7.28 0.4 0.44 0.08 0.164 0.198 0.06 0.052 0.0086 0.056 

EEF1D 8 0.0138 6.125 0.52 0.24 0.066 0.433 0.033 0.139 0.0372 0.42 0.115 

B2M 8 0.019 6.53 

0.479

1 0.35 0.0869 0.236 0.415 0.081 0.062 0.0769 0.0394 

 ESH, SA and TLNWL 

Gene 

#Stud

y Overall P Q P_Q I
2
 

 

P_ESH P_SA P_TLNWL 

RANBP17 3 3.25E-05 1.55 0.46 0 

 

0.0021 0.225 0.000236 

C6orf89 3 1.84E-04 1.55 0.46 0 

 

0.00029 0.031 0.000229 

GPHN 3 2.1E-04 1.08 0.58 0 

 

0.00022 0.0094 0.00262 

Sub-network 

Hub 

#Stud

y Overall P Q P_Q I
2
 

 

P_ESH P_SA P_TLNWL 

GPHN 3 2.1E-04 1.08 0.58 0 

 

0.022 0.396 0.22 

RGS2 3 0.00395 1.55 0.46 0 

 

0.037 0.391 0.378 

ATP1A1 3 0.00452 1.557 0.459 0 0.0488 0.203 0.04573 
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Sub-Network Level Analysis.  At the sub-network level, ancMETA identified 22 significant 

hub genes (Supplementary Table 6). The most significant hub genes included NEB (p-value = 

0.012), EEF1D (p-value = 0.013), and B2M (p-value = 0.019) (Table 4). These hub genes 

suggest that the aggregate effect of variants within these genes significantly contributes to the 

cross-phenotype association risk at the pathway/gene set level, encompassing SUIC and brain 

structures such as ICV, accumbens, caudate, hippocampus, pallidum, thalamus, and putamen.  

Our FUMA analysis showed that the significant genes and hub genes identified from 

ancMETA results exhibited significant expression enrichment in all brain regions, except for 

the cerebellum and cerebellar hemisphere, where down-regulated expressed genes were 

specific. The top enriched tissues included the heart and left ventricle, pancreas, putamen 

basal ganglia, substantia nigra, and hippocampus (Fig. 3A). 

NEB (on chromosome 2q23.3) encodes nebulin, a protein extensively expressed in skeletal 

muscle, known for regulating muscle contraction and stabilizing thin filaments (Chandra et 

al., 2009). Immunohistochemistry has shown nebulin expression predominantly in the 

cytoplasm of pyramidal neurons and subcortical endothelial cells in the adult brain (Laitila et 

al., 2012). Whole exome sequencing identified two likely pathogenic NEB variants in a 

patient with cognitive impairment and dysmorphic features (Nóbrega et al., 2024), suggesting 

a potential role for nebulin in the central nervous system and suicidality risk. 

EEF1D (located on chromosome 8q24.3) undergoes alternative splicing in the brain and 

testis, affecting its expression. Mutations in EEF1D have been linked to neurodevelopmental 

disorders, microcephaly, and severe intellectual disability (Kaitsuka and Matsushita, 2015; 

McLachlan et al., 2019). B2M (Beta-2-Microglobulin) has been identified as a biomarker for 

stress-related disorders, including suicide (Le-Niculescu et al., 2020). Additionally, B2M is 

associated with various neuropsychiatric phenotypes, such as alcoholism, autism, depression, 

eating disorders, pain, and aging, potentially mediating the effects of stress in these 

conditions (Le-Niculescu et al., 2020). 

Utilizing Network and Pathway Analysis Across Two Sets of Disorders 

In this study, we performed a network and pathway analysis involving two distinct sets of 

disorders. Initially, we used ancMETA to generate subnetworks containing significant genes 

and hub genes for each set of disorders. These subnetworks were then merged using 

Cytoscape version 3.7.2 (see Fig. 3C). We conducted pathway enrichment analysis based on 

Gene Ontology (GO), Reactome pathways, and the Protein-Protein Interaction (PPI) network 
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and visualized the results with the StringApp plugin in Cytoscape version 3.7.2 (Shannon et 

al., 2003; Doncheva et al., 2019). The merged subnetwork of genes was assessed for 

enrichment in pathways and gene ontology using the Cytoscape plugin StringApp. 

 

Fig. 3 A: The bar plot shows tissue enrichment for all significant genes and hub genes 

identified through ancMETA analysis at the gene and subnetwork levels, using suicidality 

data from FinnGen and subcortical brain volume data from ENIGMA. 

B: The bar plot displays tissue enrichment for significant genes and hub genes identified 

through ancMETA analysis at the gene and subnetwork levels, using emotional stability 

(ESH), social anxiety (SA), and tolerance to noise and workload (TLNWL) data from the UK 

Biobank. Red indicates significance, while blue indicates non-significance. 

C: This potential subnetwork includes all significant genes and hub genes combined, 

generated by ancMETA from the two sets of phenotypes. 

In the resulting network, we identified a significant number of pathways (FDR < 0.05), 

specifically 132 Reactome pathways, 50 KEGG pathways, and 51 WikiPathways. The most 

notable KEGG pathways included the Rap1 signaling pathway (FDR = 1.3×10
-4

), osteoclast 

differentiation (FDR = 1.3×10
-4

), T cell receptor signaling pathway (FDR = 1.3×10
-4

), and 
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viral carcinogenesis (FDR = 3.9×10
-4

). Reactome analysis highlighted significant pathways 

such as Disease (FDR = 1.12×10
-10

), signaling by receptor tyrosine kinases (FDR = 3.9×10
-9

), 

signal transduction (FDR = 2.95×10
-7

), adaptive immune system (FDR = 1.5×10
-6

), infectious 

disease (FDR = 4.01×10
-6

), and the immune system (FDR = 1.1×10
-5

). WikiPathways 

analysis identified VEGFA-VEGFR2 signaling (FDR = 6.4×10
-8

), RANKL/RANK signaling 

pathway (FDR = 7.97×10
-7

), and the T-cell receptor signaling pathway (FDR = 5.07×10
-5

) as 

particularly significant. 

A detailed table listing each significant pathway per database, along with all significant GO 

biological processes, components, and functions, is provided in Supplementary Tables 7-13. 

Additionally, we compiled a list of pathogenic loci identified from our gene/subnetwork 

GWAS meta-analysis using ancMETA on the two sets of phenotypes, with pathogenic criteria 

based on a probability of being 'loss-of-function Intolerant' > 0.9 (Lek et al., 2016) 

(Supplementary Table 14). 

DISCUSSION 

The findings of this study offer crucial insights into the intricate genetic relationship between 

suicidality and alterations in brain structure, particularly in subcortical brain regions. This 

highlights possible shared molecular mechanisms and genetic underpinnings. The discovery 

of a common genetic factor between suicidality and subcortical brain regions underscores the 

existence of shared pathways and biological processes. Although we identified a nominal 

positive genetic correlation between SUIC and ICV, this emphasizes the complexity of the 

relationship and the need for further exploration using diverse methodologies and larger 

sample sizes (Smeland et al., 2018; Franke et al., 2016). Furthermore, our study demonstrated 

a common factor emerging from two cohorts: the suicide cohort from the UK Biobank 

(emotional stability, social anxiety, and tolerance to noise and workload) and the phenotypes, 

including SUIC from FinnGen and subcortical brain volume data. This suggests a direct 

overlap between SUIC and subcortical brain regions in the FinnGen cohort, compared to the 

UK Biobank cohort. 

At the SNP level, our comprehensive analysis revealed significant variants within key genes, 

including DCC, SH3GL3 (rs150002680), STIM2 (rs28592695), MEAF6 (rs6682470), and 

RSPO1 (rs115632986) from the UK Biobank. This adds to the loci previously reported by 

Strawbridge and colleagues (2019). The SNP-based GWAS meta-analysis between SUIC and 

subcortical brain volume identified 484 significant variants with low effects, with 64 SNPs 
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showing potential pleiotropic effects on the accumbens, caudate nucleus, hippocampus, 

pallidum, thalamus, and putamen. These findings highlight the interconnectedness of genetic 

factors and support previous research linking suicidality to frontal-subcortical circuits (Tekin 

and Cummings, 2002; Dobbertin et al., 2023). 

Beyond individual variants, our gene and subnetwork GWAS meta-analysis unveiled 

numerous significant genes and hub genes implicated in both SUIC and altered brain volume. 

Particularly noteworthy are the loss-of-function-related genes, which indicate a pathogenic 

potential and heightened risk for suicidality (refer to Supplementary Table 14). 

The integration of these genetic findings into a comprehensive network analysis revealed 

enriched functionalities across various biological processes and pathways. Notably, genes 

related to neuroinflammation were significantly enriched, with pathways involving immune 

signalling, apoptosis, nervous system, neurodevelopmental disorders (such as Alzheimer's 

and Huntington's Disease), infectious diseases, and neurotrophic factors. These findings 

suggest potential targets for therapeutic intervention. Several pathways and GO enrichment 

strategies identified in our study align with previous findings that link the blood-brain barrier 

and suicidal risk (Mann et al., 2020; Bengoechea-Fortes et al., 2023; Wisłowska-Stanek et al., 

2021; Pandey and Dwivedi, 2012). 

Our findings indicate that the presence and severity of suicidality are associated with an 

inflammatory signature detectable in both blood and brain tissues. This suggests a biological 

continuity underlying suicidality, potentially indicating a common heritability.  These results 

support the role of brain and peripheral blood inflammation in suicide risk.  Our findings 

suggest that these hub genes or enriched common pathways underlying shared molecular 

mechanisms between suicidality and altered subcortical brain volume could mean that 

treatments targeting these biological enriched pathways would have broad-spectrum 

therapeutic effects, improving precision medicine and personalized therapeutic development 

in suicidal individuals. 

The identification of genes involved in the dysregulation of the blood-brain barrier and 

immune function underscores the bidirectional communication between the brain and 

peripheral immune system in the context of suicidal risk. These results are corroborated by 

previous studies, further strengthening the validity of our findings and highlighting potential 

translational implications (Sun et al., 2024). Our findings expand on previous research that 

identified genes substantially expressed in brain tissue and enriched in pathways related to 
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immunologic markers, cellular stress response, gene regulation, and DNA repair (Docherty et 

al., 2023; Diblasi et al., 2021; Sokolowski et al., 2020).  

The involvement of glial cells and microglia in inflammatory responses within the central 

nervous system (Yang and Zhou, 2019) provides mechanistic insights into the 

pathophysiology of suicidality and altered brain volume. Glial cells, the most prevalent cells 

in the central nervous system, interact with immune system cells, neurons, and brain 

microvascular endothelial cells. Microglia, in particular, are resident innate immune cells. 

Studies have shown higher densities of activated microglia (Schnieder et al., 2014) in the 

white matter of suicide postmortem cases, as well as higher microglial priming and 

macrophage recruitment (Torres-Platas et al., 2014). The transmission of inflammatory 

signals from the periphery to the brain via humoral transmigration or sensory afferent 

projections through the blood-brain barrier can stimulate microglial activation (Dantzer, 

2009; Serna-Rodríguez et al., 2022), and suicidality has been linked to anomalies in 

endothelial cells and the blood-brain barrier (Greene et al., 2020; Pantazatos et al., 2017). The 

identified hub genes and potential significnt pathways related to anti-neuroinflammation and 

immune regulation offers a promising approach to treating suicidal behavior with altered 

subcorticalbrain volume, which is frequently impacted by complicated neuroimmune 

interactions. However, converting these techniques into clinically effective medicines 

necessitates overcoming obstacles in gene delivery, safety, and selectivity. Ongoing research 

in neuroinflammation, immunological signaling, and gene therapy technologies could show 

promise for more customized and effective therapies for people at risk of suicidality. 

Despite these significant findings, several limitations warrant consideration. Generalizing our 

findings to other populations and ethnicities requires replication in diverse cohorts. This 

study only included individuals of European ancestry, limiting the generalizability of the 

findings. Expanding future analyses to include diverse populations is essential for broader 

applicability. Additionally, the reliance on GWAS summary statistics and the inherent 

statistical power of the original studies necessitates cautious interpretation of null results. 

Therefore, null conclusions in our research do not always imply a lack of association. The 

negative heritability of the amygdala did not provide a clear picture of genetic correlation and 

was not included in our SNPs, gene, and subnetwork GWAS meta-analysis. A well-powered 

GWAS of altered brain volume and suicidality could improve the detection of significant 

variants, genes, and pathways shared between these traits. Most of our suicide phenotypes 

have very low heritability, confirmed by the low effect sizes of relevant loci. Hence, the 
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identified loci, networks, and functional pathways need validation in future studies with 

additional experiments, either in vivo or in vitro. Our findings are limited to autosomal 

chromosomal common variants. Copy number variants and other rare variants independently 

demonstrate strong penetrance for suicidal risk (Gross et al., 2015). Incorporating these in 

future studies could provide a more comprehensive view of genetic contributions. Known 

sex-specific effects in individuals with suicidal behavior (Kia-Keating et al., 2007; Powers et 

al., 2020) and brain development (Mallard et al., 2021) further necessitate future studies on 

rare variants and sex-specific shared mechanisms. 

In conclusion, this study represents a pioneering effort in elucidating the shared genetic 

architecture of suicidality and subcortical brain volumes. By uncovering overlapping genetic 

factors and biological pathways, we provide novel insights into the complex interplay 

between brain structure and suicidal behaviour. These findings hold promise for developing 

targeted interventions and personalized treatment strategies aimed at mitigating suicidality in 

vulnerable individuals. Further research exploring rare variants, sex-specific effects, and 

functional validations will be crucial for advancing our understanding of these complex 

phenomena and informing clinical practice. 
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