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Abstract

The aims of the present study were to propose a multivariate model for predicting simultaneously body, trunk and appendicular fat and

lean masses from easily measured variables and to compare its predictive capacity with that of the available univariate models that predict

body fat percentage (BF%). The dual-energy X-ray absorptiometry (DXA) dataset (52 % men and 48 % women) with White, Black and

Hispanic ethnicities (1999–2004, National Health and Nutrition Examination Survey) was randomly divided into three sub-datasets: a train-

ing dataset (TRD), a test dataset (TED); a validation dataset (VAD), comprising 3835, 1917 and 1917 subjects. For each sex, several

multivariate prediction models were fitted from the TRD using age, weight, height and possibly waist circumference. The most accurate

model was selected from the TED and then applied to the VAD and a French DXA dataset (French DB) (526 men and 529 women) to

assess the prediction accuracy in comparison with that of five published univariate models, for which adjusted formulas were re-estimated

using the TRD. Waist circumference was found to improve the prediction accuracy, especially in men. For BF%, the standard error of

prediction (SEP) values were 3·26 (3·75) % for men and 3·47 (3·95) % for women in the VAD (French DB), as good as those of the adjusted

univariate models. Moreover, the SEP values for the prediction of body and appendicular lean masses ranged from 1·39 to 2·75 kg for

both the sexes. The prediction accuracy was best for age ,65 years, BMI ,30 kg/m2 and the Hispanic ethnicity. The application of

our multivariate model to large populations could be useful to address various public health issues.
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The assessment of human body composition is important for

evaluating health and nutritional status. Among health

issues, overweight and obesity are worldwide problems.

Increased fat mass, especially in the trunk location(1–4), has

been associated with an increased risk of metabolic diseases,

such as type 2 diabetes and CVD. The amount of lean body

mass, especially of appendicular muscle mass, is also directly

correlated with health and particularly with the mortality

rate(3,4). Accurate measurements of body composition can be

obtained from different methods, such as underwater weigh-

ing, dilution techniques and dual-energy X-ray absorptiometry

(DXA). However, their applications are not always convenient

for large populations, because they require fixed equipment

and they are also time consuming and expensive.

The potential uses of statistical methods for body compo-

sition assessment have been highlighted(5), and several

attempts to predict body composition, particularly body fat

percentage (BF%), using linear models with simple predictor

variables have been made. A summary of the body compo-

sition prediction models published between 1985 and 2003

has been given by Sun & Chumlea(6). They pointed out that

(1) a general model for two sexes, different ethnicities and

wide age ranges may lose its accuracy due to increased het-

erogeneity; (2) cross-validation of prediction models was

needed to assess their generalisability; (3) for validation

studies, accuracy should be standardised for the mean of the

predicted variable; (4) few prediction models were derived

from datasets using DXA.

The advantages of using sex, age, ethnicity and easily acces-

sible anthropometric measurements, such as body weight and

height, are simplicity and cost efficiency. Their use would

allow access to large datasets to describe body composition

characteristics. Previous published linear models have made

univariate predictions(7–11). Alternatively, a non-parametric

model based on Bayesian networks that uses the same predic-

tor variables has been proposed(12,13). This Bayesian networks
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approach consists in selecting a subset of individuals so that

their predictor variable characteristics are similar to those of

the individuals to be predicted. This model allows simul-

taneous prediction of segmental compartments, but requires

the availability of a reference dataset. To our knowledge,

until now, no multivariate linear prediction model has been

proposed for body composition assessment. The aim of the

present study was, therefore, to develop sex-specific multivari-

ate models for estimating some segmental compartments of

metabolic importance (i.e. lean body mass, appendicular

muscle mass and trunk fat (TF)) from age and easily accessible

anthropometric variables. The usefulness of waist circumfer-

ence was also investigated and combined with age, height

and weight as predictor variables. These multivariate

models, based on the reference dataset National Health and

Nutrition Examination Survey (NHANES), were validated

with two different populations in agreement with the prin-

ciples proposed by Sun & Chumlea(6).

Subjects and methods

Databases

All body composition values related to predictions were

extracted from the NHANES website (http://www. cdc.gov/

nchs/about/major/nhanes/) from the 1999–2004 period.

Subjects were characterised by predictor variables, such as

sex, ethnicity, age, height, weight and waist circumference.

For the present study, we selected subjects aged 20–85

years, with BMI values ranging from 18 to 40 kg/m2 and

who belonged to one of the three considered ethnicity cat-

egories: White, Black and Hispanic. This selection resulted

in a sample size of 3977 men (1984 White, 720 Black and

1273 Hispanic) and 3692 women (1830 White, 697 Black

and 1165 Hispanic).

The study was conducted separately on men and women;

therefore, the complete NHANES dataset was split by sex.

For each sex, we randomly split the corresponding NHANES

dataset into three sub-datasets: a training dataset (TRD);

a test dataset (TED); a validation dataset (VAD).

As the number of individuals was high, the splitting was done

at random as suggested by Hastie et al.(14) and Nivre(15) in data-

rich situations. The TRD was used as a reference dataset to fit the

parameters of a series of possible models. The test dataset was

used to estimate the prediction error of each fitted model to

make model selection, and the VAD was used to perform a

one-round validation calculation and to assess the prediction

accuracy of the final chosen models.

An independent external dataset (French DB, French DXA

dataset) was used to assess the performance of the prediction

models in a different population context. The French DB was

obtained from a routine examination at the Radiology Depart-

ment of the Clermont-Ferrand University Hospital Centre

between 1998 and 2008. It contains data on 1095 French sub-

jects, 526 men and 569 women, aged between 20 and 85 years

and with BMI values ranging between 18 and 40 kg/m2.

However, ethnicity was not mentioned and waist circumfer-

ence was not measured during the examination.

The study carried out using the NHANES dataset complies

with the Declaration of Helsinki, the National Center for

Health Statistics Ethics Review Board approved the protocols,

and written informed consent was obtained from each

participant. Moreover, the study using the French dataset

was conducted according to the guidelines laid down in the

Declaration of Helsinki, and all procedures involving human

subjects were approved by the Clermont-Ferrand University

Hospital Centre, France, and by the local ethics committee.

Written informed consent was obtained from all subjects at

recruitment after being informed of the nature, purpose and

possible risks of the protocols.

Measurement of body composition

Whole-body and segmental body compositions were assessed

using DXA (Hologic QDR 4500A fanbeam densitometer for

the NHANES dataset and Hologic QDR-4500 densitometer

for the French DB; http://www.gmecorp-usa.com/IM/XR/BD/

HOLLOGIC/4500/SV/Qdr4500dos.pdf). For the NHANES

dataset, detailed descriptions have been published earlier(16).

Briefly, whole-body DXA scans were taken at the NHANES

mobile examination centre for eligible participants during

the 6-year period from 1999 to 2004; the participants with

certain physical conditions were excluded from the DXA

examination(17). The DXA scans allow the quantification of

multiple whole-body and regional components, including bone

mineral content, fat and lean soft tissue. Body fat (BF) and body

lean (BL) masses and TF and trunk lean masses were thus

determined(18). Appendicular composition was the sum of arm

and leg fat (APF, appendicular fat) and lean (APL, appendicular

lean) masses(19). Body fat-free mass (BFF) was calculated as the

sum of the BL mass and bone mineral content.

Statistical methods

Non-parametric approaches. First, several non-parametric

approaches were evaluated to make absolute body compo-

sition predictions. The term ‘non-parametric’ implies that the

number and nature of the parameters are flexible and not

fixed in advance(20). These non-parametric approaches

followed the statistical methodology described by Mioche

et al.(12). The local prediction models included weighted

linear regression, support vector machine regression(21,22)

and Bayesian regression(23). For a given individual to be pre-

dicted, these methods follow three steps: (1) dissimilarities are

calculated between the individual to be predicted and each

individual of the TRD based on the values of the predictor

variables; (2) the dissimilarities are transformed into weights

to give more importance to similar individuals; (3) a prediction

model is developed from this weighted dataset. When weights

are constrained to be 0 or 1, the method corresponds to the

selection of a sub-dataset as performed by Mioche et al.(12).

Multivariate linear regression. In the present study, a mul-

tivariate multiple linear regression, supposed to satisfy linear

model assumptions, was also used as a possible alternative

to these sophisticated prediction models. Multiple univariate

linear regression is easily extended to deal with situations

Multivariate prediction for body composition 2261

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114513001803  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114513001803


where the response consists of P.1 different variables; this is

termed ‘multivariate linear regression’(24). Estimates of the

regression parameters are determined by the least squares

method. The fitting model in a multivariate model for each

variable will be the same as that which would result from a

univariate model. However, the constraint in the multivariate

model consists in using identical predictor variables for all

the predicted variables. The advantage of using the multivari-

ate approach is that it takes the correlation structure between

the responses into account, which is useful for a number of

inference tasks, e.g. to give simultaneous confidence regions

for all the responses together.

Validation analysis. The selection of models from pre-

viously described multivariate approaches was based on the

prediction accuracy and complexity of the models. The accu-

racy was measured by the standard error of prediction (SEP)

and the relative standard deviation (RSD, two criteria defined

below), and the complexity of the models was assessed by the

number of parameters and computing time.

Waist circumference usefulness analysis. The usefulness

of waist circumference for prediction was investigated. To

do so, prediction accuracy was checked for some categories

of BMI (18–25, 25–30 and 30–40 kg/m2), age (20–35,

35–50, 50–65 and 65–80 years) and ethnicity (White, Black

and Hispanic). This categorical analysis was performed only

on the VAD. The prediction accuracy in this categorical

study was expressed by a 100-scale score. A score of 100

denotes a baseline, i.e. the average level of prediction quality

for all the categories; a score less than 100 denotes a better

quality than the average level; and in contrast a score greater

than 100 indicates a worse quality.

Comparison with published univariate models. In the

literature, univariate linear regressions have been developed

to primarily predict BF% from BMI, age and, occasionally,

waist circumference or ethnicity as predictor variables(7–11).

Of the univariate models published between 2000 and 2012,

five were retained with different combinations of predictor

variables (Table 1). Gallagher’s(7) and Larsson’s(9) models

were derived from a DXA dataset, Jackson’s(8) model from a

densitometry dataset from four clinical centres, Levitt’s(10)

model from a densitometry and water dilution dataset, and

Gómez-Ambrosi’s(11) model from an air-displacement plethys-

mography dataset. Original and adjusted formulas were

applied to the VAD and French DB. The adjusted formulas

were derived by re-estimating the parameters of the published

models using the TRD. Their prediction accuracies were con-

sidered as baseline values to evaluate those of our proposed

combination of predictor variables in the multivariate

models. The prediction of BF% from our multivariate model

was calculated by dividing the predicted value of BF by

body weight, multiplied by 100.

Assessment of the prediction accuracy. The accuracy of a

prediction for a given variablewas globally assessedusing theSEP:

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðmeasuredi 2 predictediÞ

2

n
;

s

where n is the number of subjects in the VAD or French DB.

The unit of SEP is the same as the unit of the predicted vari-

able (kg or %). The SEP is then detailed into bias and standard

deviation: SEP2 ¼ bias2 þ SD
2 to investigate the trade-off

between model bias and variance in prediction. The RSD pro-

vides another assessment of the prediction accuracy. It was

calculated by dividing 100 £ SEP by the mean of the predicted

variable, and it is expressed in percentage of the global mean.

Finally, the coefficient of determination R 2 was used to assess

the goodness of fit in the validation procedure.

Statistical test analyses. Population characteristics are

expressed as means and standard deviations. Differences

between each of the three subsets of the NHANES dataset

and French DB were analysed using Student’s t tests. These

t tests aimed to assess the differences between the American

and French samples. Only the SEP difference was analysed

by a permutation test(25). Furthermore, paired t tests and

Bland–Altman plots(26) were used to determine the difference

and the limits of agreement between the published univariate

models and the multivariate model. A CI for the mean of the

difference was also calculated under a normality assumption.

Statistical calculations and analyses were performed using

Table 1. Formulas of the five published prediction models for body fat percentage (BF%) for men and women*

Models

References Men Women

Gallagher et al.(7)† Original 55·49 2 43·8/BMI þ 0·087 age 76 2 1097·8/BMI þ 0·053 age
Adjusted 45·65 2 708·3/BMI þ 0·104 age 58·72 2 675·2/BMI þ 0·069 age

Jackson et al.(8) Original 3·76 BMI 2 0·04 BMI2 2 47·8 4·35 BMI 2 0·05 BMI2 2 46·24
Adjusted 2·29 BMI 2 0·023 BMI2 2 20·8 3·27 BMI 2 0·042 BMI2 2 20·55

Larsson et al.(9)‡ Original – –
Adjusted 46·8 (1 2 exp(20·047 (BMI 2 11·18))) 47·2 (1 2 exp(20·099 (BMI 2 10·95)))

Levitt et al.(10) Original 48·1 2 952·38/BMI þ 0·176 age 63·2 2 948/BMI þ 0·135 age
Adjusted 45·65 2 708·3/BMI þ 0·104 age 58·72 2 675·2/BMI þ 0·069 age

Gómez-Ambrosi et al.(11) Original 244·988 þ 0·503 age þ 3·172 BMI 2 0·026 BMI2

2 0·02 BMI age þ 0·00 021 BMI2 age
234·299 þ 0·503 age þ 3·1353 BMI 2 0·031 BMI2

2 0·02 BMI age þ 0·00 021 BMI2 age
Adjusted 226·627 þ 0·259 age þ 2·211 BMI 2 0·019 BMI2

2 0·008 BMI age þ 0·0001 BMI2 age
216·206 2 0·011 age þ 2·53 BMI 2 0·025 BMI2

2 0·009 BMI age 2 0·0002 BMI2 age

* Adjusted formulas were estimated from the training dataset.
† For Gallagher’s model, only the non-Asian model is reported.
‡ For Larsson’s model, the parameter values are not provided; only the statistical formula is provided, which is as follows: y ¼ a £ ð1 2 e 2bðBMI2BMIo ÞÞ:

S. Tian et al.2262
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version 2.12.2 of the R software (http://cran.r-project.org/doc/

contrib/Lam-IntroductionToR_LHL.pdf)(27), a language and an

environment for statistical computing.

Results

Sample characteristics

The means and standard deviations of age, anthropometric

variables and DXA body composition for the different datasets

are presented in Table 2 for men and women. Within the three

subsets of the NHANES dataset, the men and women were of

the same age, but some difference was observed for the

French subjects. For men, except for height, all the variables

were significantly different between the French DB and

the three NHANES dataset subsets. For women, most of the

variables were significantly different between the French DB

and the three NHANES dataset subsets, except for trunk

lean, BL and BFF.

Prediction models

The study of the selection of models from the test dataset

showed that the non-parametric approaches did not provide

a significantly better SEP than the multivariate linear

regression. Moreover, the non-parametric approaches need

more parameters and computing times. Therefore, multivari-

ate linear regression is the only model mentioned in the

paper to predict segmental compartments. The parameters

of this multivariate model are given in Table 3 for models

with and without waist circumference (MWC and MWoC,

respectively) as a predictor variable.

Inclusion of waist circumference

Tables 4 and 5 summarise the prediction accuracy for three

categories of BMI and ethnicity and four age ranges when

MWC and MWoC are applied to the VAD. Predictions were

more accurate when waist circumference was included,

especially for men with a BMI value that ranged from 18 to

30 kg/m2 and whose age ranged from 25 to 65 years.

Table 2. Age, anthropometric variables and dual-energy X-ray absorptiometry body composition characteristics for men and
women in the National Health and Nutrition Examination Survey (NHANES) training dataset (TRD), test dataset (TED) and
validation dataset (VAD) and in the French dataset (French DB)

(Mean values and standard deviations)

NHANES TRD NHANES TED NHANES VAD French DB

Mean SD Mean SD Mean SD Mean SD

Men (n) 1989 994 994 526
Ethnicity (n)

White 983 492 509 –§
Black 367 171 182 –§
Hispanic 639 331 303 –§

Age (years) 50·60 18·91 51·16 19·33 50·6 18·63 46·61*†‡ 17·02
Height (cm) 174·02 7·81 174·12 7·68 174·06 8·00 174·62 6·79
Weight (kg) 83·90 15·2 84·07 16·21 83·93 15·98 78·83*†‡ 13·08
Waist circumference (cm) 98·62 12·62 98·78 12·96 98·58 12·48 – –
Trunk fat (kg) 11·21 4·98 11·26 5·10 11·17 4·87 8·76*†‡ 4·48
Appendicular fat (kg) 8·95 3·34 8·94 3·48 8·81 3·46 7·52*†‡ 2·89
Body fat (kg) 21·21 8·03 21·24 8·30 21·02 8·07 17·34*†‡ 7·04
Trunk lean (kg) 29·74 4·46 29·86 4·78 29·79 4·61 29·27*†‡ 4·40
Appendicular lean (kg) 26·75 4·74 26·77 4·97 26·89 5·04 25·87*†‡ 3·95
Body lean (kg) 60·06 9·03 60·20 9·65 60·26 9·56 58·82*†‡ 7·64
Body fat-free mass (kg) 62·70 9·35 62·83 9·97 62·90 9·89 61·49*†‡ 7·90

Women (n) 1846 923 923 569
Ethnicity (n)

White 911 475 444 –§
Black 368 163 166 –§
Hispanic 567 285 313 –§

Age (years) 51·64 18·92 52·09 18·79 51·11 18·08 49·28*†‡ 14·84
Height (cm) 160·71 6·86 160·77 6·77 160·57 6·86 161·93*†‡ 6·64
Weight (kg) 71·56 14·24 72·86 14·50 72·62 14·31 67·66*†‡ 13·46
Waist circumference (cm) 92·42 12·69 93·50 12·99 93·46 12·88 – –
Trunk fat (kg) 12·83 4·92 13·27 5·21 13·32 5·11 10·36*†‡ 4·88
Appendicular fat (kg) 13·36 4·34 13·78 4·46 13·48 4·34 12·03*†‡ 3·89
Body fat (kg) 27·08 8·74 27·93 9·15 27·69 8·95 23·3*†‡ 8·23
Trunk lean (kg) 21·56 3·20 21·86 3·15 21·84 3·18 21·68 3·97
Appendicular lean (kg) 17·90 3·48 18·02 3·49 18·04 3·44 17·51*†‡ 3·35
Body lean (kg) 42·47 6·59 42·89 6·56 42·89 6·52 42·29 6·65
Body fat-free mass (kg) 44·49 6·84 44·93 6·81 44·93 6·75 44·36 6·87

* Mean values were significantly different from those of the TRD (P,0·05; t test).
† Mean values were significantly different from those of the TED (P,0·05; t test).
‡ Mean values were significantly different from those of the VAD (P,0·05; t test).
§ Ethnicity was not mentioned in the French DB.

Multivariate prediction for body composition 2263

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114513001803  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114513001803


Regarding ethnicity categories, a remarkable improvement in

accuracy was found for Black men when waist circumference

was used as a predictor variable. Compared with that of

MWoC, the prediction accuracy of MWC was improved by a

45 % unit (in a 100-scale score) for TF and APL masses and

by a 30 % unit (in a 100-scale score) for BF, BL and BFF

masses. By contrast, for women in all the BMI, age and

ethnicity categories, the quality of the predictions was similar

between MWC and MWoC.

For subjects of both sexes, the prediction by MWC was less

reliable with BMI values in the range 30–40 kg/m2 than for the

other BMI categories. Indeed, the prediction accuracy of MWC

was reduced by 35 and 25 % units for a BMI .30 kg/m2 than

for the BMI categories of 18–25 and 25–30 kg/m2.

Regarding the three ethnicity categories, MWC provided the

best quality of fit for Hispanic individuals, followed by White

and Black individuals. More precisely, for the BF, BL and

appendicular compartments in Hispanic individuals, the

prediction accuracy of MWC was improved by 20 % unit in

Hispanic men than in White and Black men. Similarly, it was

improved by 10 and 30 % units in Hispanic women than in

White and Black women, respectively.

Table 3. Multivariate prediction model estimates of parameters for the seven segmental compartments (kg) including or not including waist
circumference as a predictor variable*

With waist circumference Without waist circumference

Intercept (kg) bA (kg/year) bH (kg/cm) bW bC (kg/cm) Intercept (kg) bA (kg/year) bH (kg/cm) bW

Men
TF 21354·89 0·67 26·28 8·19 28·87 1597·00 6·55 219·8 31·44
APF 2538·53 20·52 23·06 11·90 10·07 491·26 1·53 27·77 20·01
BF 21796·17 0·17 29·53 20·84 38·72 2162·87 8·06 227·67 52·02
TL 2191·23 0·84 7·48 29·36 26·51 2856·43 20·48 10·52 24·12
APL 1635·96 21·30 1·12 44·26 228·43 21270·45 27·09 14·43 21·37
BL 1776·70 20·41 8·15 76·07 236·00 21903·77 27·74 25·01 47·08
BFF 1795·49 20·17 9·54 79·16 238·72 22163·66 28·05 27·67 47·98

Women
TF 96·99 1·30 211·11 21·19 15·01 1460·01 3·67 217·22 33·55
APF 1343·80 2·80 210·62 38·42 212·94 168·76 0·76 25·35 27·76
BF 1503·60 4·06 221·78 60·01 2·17 1701·07 4·40 222·67 61·80
TL 21104·06 20·96 11·87 14·23 4·15 2726·93 20·30 10·18 17·65
APL 2513·85 22·43 8·07 22·88 25·47 21010·63 23·29 10·30 18·37
BL 21420·31 23·54 20·03 38·26 21·14 21524·23 23·73 20·49 37·32
BFF 21504·58 24·06 21·78 40·00 22·17 21701·97 24·40 22·67 38·21

TF, trunk fat; APF, appendicular fat; BF, body fat; TL, trunk lean; APL, appendicular lean; BL, body lean; BFF, body fat-free mass, calculated as the sum of the BL mass and
bone mineral content.

* The parameters are, respectively, associated with the intercept, age (bA), height (bH), weight (bW) and waist circumference (bC). For the sake of presentation, all values have
been multiplied by 100.

Table 4. Accuracy of the proposed prediction models with waist circumference (MWC) and without waist circumference (MWoC) as a predictor variable
for the seven segmental compartments in different BMI, age and ethnicity categories for men in the National Health and Nutrition Examination Survey
validation dataset*

BMI categories (kg/m2) Age categories (years) Ethnicity categories

Compartments 18–25 25–30 30–40 20–35 35–50 50–65 65–80 White Black Hispanic

TF MWC 90 95 116 86 97 105 113 104 102 90
MWoC 105 120 136 126 114 125 119 120 145 103

APF MWC 77 94 127 108 98 101 99 105 109 84
MWoC 81 98 129 115 100 106 98 108 117 86

BF MWC 87 94 120 99 96 102 110 104 105 88
MWoC 100 113 133 129 108 120 112 117 137 98

TL MWC 88 93 119 97 99 107 105 100 108 95
MWoC 89 95 119 100 98 108 105 102 107 95

APL MWC 84 98 118 98 99 95 111 101 125 80
MWoC 105 121 142 138 124 121 114 116 172 95

BL MWC 86 94 121 98 96 102 111 105 104 88
MWoC 98 112 134 127 108 119 112 116 134 98

BFF MWC 87 94 120 99 96 102 110 104 105 88
MWoC 100 113 134 129 109 120 112 117 137 98

TF, trunk fat; APF, appendicular fat; BF, body fat; TL, trunk lean; APL, appendicular lean; BL, body lean; BFF, body fat-free mass, calculated as the sum of the BL mass and
bone mineral content.

* The accuracy is assessed by a 100-scale score: the smaller the score, the better the prediction. A value of 100 corresponds to the global standard error of prediction for all
the categories with waist circumference as a predictor variable.
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Multivariate prediction models

The validation scores for the multivariate model were calcu-

lated using the VAD, and they are given in Table 6. For the

prediction of BF and BL masses, a SEP value less than 2·8 kg

was found for both men and women (men: 2·75 and

2·66 kg; women: 2·52 and 2·47 kg, respectively). By contrast,

because of the differences in the compartment masses, the

RSD values were much lower for the BL prediction than for

the BF prediction (men: 4·41 and 13·08 %; women: 5·76 and

9·01 %, respectively). The corresponding R 2 values averaged

0·9 for both the sexes (men: 0·88 and 0·92; women: 0·92 and

0·86, respectively).

Regarding other segmental compartments such as trunk and

APF and APL masses and BFF, the SEP values ranged from 1·65

to 2·75 kg for men and from 1·39 to 2·52 kg for women. Simi-

larly, in both the sexes, because of the differences in the com-

partment sizes, the RSD values were lower for trunk and APL

masses than for the corresponding fat masses. They varied

from 5·54 to 8·76 % for trunk and APL masses and from

12·54 to 19·18 % for trunk and APF masses. The corresponding

R 2 values ranged from 0·8 to 0·9 for both the sexes.

The bias ranged approximately from 0·50 to 0·90 kg for both

men and women, which were low in comparison with the

model variance (Table 6). Comparisons of the predictions by

models and the observations are shown in Fig. 1 for men

and women. For men, segmental body compositions were

globally well predicted, even if for extreme parts, some bias

appeared: an underestimation for a high fat mass and an over-

estimation for low lean mass. For women, an underestimation

for high APF and APL masses was observed.

When the multivariate prediction model without waist cir-

cumference was applied to the French DB, the predictions

were still good (table not shown). For men, the SEP values

were 2·95 kg (R 2 0·84) for BF mass and 2·84 kg (R 2 0·87) for

BL mass, with the RSD values being equal to 17·01 and

4·83 %, respectively. For women, the corresponding SEP

values were 2·86 kg (R 2 0·89) and 2·80 kg (R 2 0·84) with the

respective RSD values of 12·27 and 6·62 %.

Table 5. Accuracy of the proposed prediction models with waist circumference (MWC) and without waist circumference (MWoC) as a predictor variable
for the seven segmental compartments in different BMI, age and ethnicity categories for women in the National Health and Nutrition Examination
Survey validation dataset*

BMI categories (kg/m2) Age categories (years) Ethnicity categories

Compartments 18–25 25–30 30–40 20–35 35–50 50–65 65–80 White Black Hispanic

TF MWC 87 97 113 97 95 102 105 101 115 89
MWoC 95 108 131 111 110 111 120 110 138 100

APF MWC 83 91 121 92 100 103 108 96 111 100
MWoC 81 98 131 94 107 110 118 102 116 107

BF MWC 89 96 112 94 100 100 108 97 122 90
MWoC 90 96 112 95 100 100 108 97 123 90

TL MWC 88 88 119 94 104 101 108 99 113 95
MWoC 88 90 124 96 106 104 110 100 116 98

APL MWC 89 97 111 101 95 101 101 93 137 85
MWoC 92 98 115 105 99 103 103 94 143 88

BL MWC 89 96 113 93 100 101 109 98 121 91
MWoC 89 96 113 93 100 101 109 98 121 91

BFF MWC 89 96 112 94 100 100 108 97 122 90
MWoC 90 96 112 94 101 100 108 97 123 90

TF, trunk fat; APF, appendicular fat; BF, body fat; TL, trunk lean; APL, appendicular lean; BL, body lean; BFF, body fat-free mass, calculated as the sum of the BL mass and
bone mineral content.

* The accuracy is assessed by a 100-scale score: the smaller the score, the better the prediction. A value of 100 corresponds to the global standard error of prediction for all
the categories with waist circumference as a predictor variable.

Table 6. Accuracy of the multivariate prediction model calculated using the National Health and Nutrition Examination Survey validation dataset using
waist circumference for the seven segmental compartments*

Men Women

Compartments SEP (kg) Bias (kg) SD (kg) RSD (%) R 2 SEP (kg) Bias (kg) SD (kg) RSD (%) R 2

TF 1·73 0·50 1·65 15·49 0·87 1·67 0·71 1·51 12·54 0·90
APF 1·69 0·90 1·43 19·18 0·76 1·99 0·85 1·80 14·76 0·79
BF 2·75 0·92 2·59 13·08 0·88 2·52 0·83 2·38 9·10 0·92
TL 1·65 0·52 1·56 5·54 0·87 1·39 0·61 1·25 6·36 0·81
APL 1·76 0·62 1·65 6·55 0·88 1·58 0·70 1·41 8·76 0·79
BL 2·66 0·70 2·56 4·41 0·92 2·47 0·90 2·30 5·76 0·86
BFF 2·75 0·73 2·65 4·37 0·92 2·52 0·90 2·36 5·61 0·86

SEP, standard error of prediction; RSD, relative standard deviation; TF, trunk fat; APF, appendicular fat; BF, body fat; TL, trunk lean; APL, appendicular lean; BL, body lean;
BFF, body fat-free mass, calculated as the sum of the BL mass and bone mineral content.

* The absolute value of the total weight of the segmental compartments is predicted. The accuracy is assessed by the SEP in kg and the RSD in %. RSD ¼ 100 £ (SEP/y ) for
a predicted variable Y and its mean y , and it is expressed as a percentage. For example, for BF of men, RSD ¼ 100 £ 2·75/21·02 ¼ 13·08 %.
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Comparison with published prediction models

When the published formulas with their predictor variables

were re-adjusted in the TRD and then applied to the VAD

and French DB, the quality of fit was improved in comparison

with that of their original formulas. For the BF% of men, the

prediction accuracy of the adjusted formula was increased in

the VAD by 0·5 % unit for Gallagher’s and Jackson’s prediction

models and by 1 % unit for Levitt’s and Gómez-Ambrosi’s

prediction models. For the BF% of women, the prediction

accuracy was improved, on average, by 1 % unit for all the

models (Table 7). For the same compartment in French men

and women, only a slight improvement in accuracy was

found for the univariate models, except for Gómez-Ambrosi’s

prediction model, for which the prediction accuracy was

improved by 1·5 % unit.

The accuracy of our multivariate prediction model, based

on age, height, weight and waist circumference, was com-

pared with that of the five adjusted published prediction

models. In the VAD, the multivariate prediction of BF%

yielded one of the best accuracies, with SEP values of 3·26

and 3·74 %, respectively, for men and women. For men, our

SEP values were 0·5 % unit better than those of Gallagher’s,

Levitt’s and Gómez-Ambrosi’s prediction models and 1 %

unit better than those of Jackson’s and Larsson’s prediction

models. By contrast, for women, the differences between

SEP values of the various models were small (Table 7). The

Bland–Altman plots are shown in Fig. 2 for men and

women in the VAD. It appeared that the agreement between

our model and the adjusted published models was better for

women than for men. In addition, for all the paired t tests,

P values ranged from 0·51 to 0·95 and 0·18 to 0·89 for men

and women, respectively. Therefore, the difference in predic-

tions was not statistically significant. With respect to the CI of

the mean of the difference, it ranged from 20·17 to 0·19

for men and 20·03 to 0·13 for women. These results show

that there is no systematic difference between our multivariate
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Fig. 1. Scatter plot of the multivariate model for the prediction of different segmental body compositions against their observations in the validation dataset. Men

are represented by and women by . The first bisectors are drawn ( ). Men: (a) trunk fat (TF); (b) appendicular fat (APF); (c) body fat (BF); (d) trunk lean

(TL); (e) appendicular lean (APL); (f) body lean (BL). Women: (g) TF; (h) APF; (i) BF; (j) TL; (k) APL; (l) BL.
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prediction model and each of the adjusted published predic-

tion models.

In the French DB, the prediction of BF% was based on

age, height and weight. The SEP values of our multivariate

prediction model were 3·74 and 3·95 %. They were slightly

higher than those of Gómez-Ambrosi’s prediction model

(3·63 %) in men and than those of Gallagher’s and Levitt’s

prediction models (3·93 %) in women.

Discussion

BF, TF and other segmental compartments, such as

appendicular muscle mass, are useful factors for assessing pre-

disposition to metabolic risks; therefore, examinations of these

segmental compartments provide interesting information.

The proposed multivariate model aimed at simultaneously

predicting them from age and easily measured anthropometric

predictor variables, with a particular focus on the importance

of waist circumference. It was built using a US dataset and

validated independently using two different datasets. The

present results showed that, with the proposed combination

of four predictor variables, including waist circumference,

the multivariate model enabled accurate predictions for

segmental body compositions.

Waist circumference is a well-known predictor of abdominal

accumulation of subcutaneous and visceral adipose tissues. In

2001, the National Cholesterol Education Program – Adult

Treatment Panel III included waist circumference as a risk

factor for the metabolic syndrome(1). Waist circumference

was then widely used to improve the prediction of BF% in

combination with a weight-for-height index, such as

BMI(28,29). In the study by Lean et al.(30), BF%, which was

assessed by densitometry, was more closely related to waist

circumference than to BMI, particularly for men. In another

study related to BFF, Bosty-Westphal et al.(31) found that

waist circumference was a risk factor for decreased BFF

and that it was a good anthropometric index for health risk

assessment. Similarly in the present study, the accuracy of

our multivariate model was improved when waist circumfer-

ence was entered as a predictor variable. This was particularly

meaningful for men for the segmental compartments, such as

TF, APL, total BF and total BL masses. For men, a significant

improvement in accuracy was observed in all the BMI

categories and in the age categories of 20–35, 35–50 and

50–65 years. In addition, waist circumference was especially

required to improve the prediction accuracy for Black men

in comparison with the other two ethnicity categories. We

thus concluded that waist circumference should be included

in the multivariate prediction model for normal, overweight

and obese subjects, although it is known in clinical practice

that there is a physical difficulty in measuring waist circumfer-

ence of the latter subjects.

One important aspect of our proposed model is that it

is capable of predicting simultaneously several segmental

compartments; to our knowledge, this is the first proposal

made for a multivariate model. The joint use of several

Table 7. Accuracy of the five published models, original and adjusted, and our proposed model for body fat percentage prediction calcu-
lated using the National Health and Nutrition Examination Survey (NHANES) validation dataset (VAD) and the French dataset (French DB)*

Original Adjusted

Datasets Sex Models SEP (%) RSD (%) R 2 SEP (%) RSD (%) R 2

NHANES VAD Men Gallagher et al.(7) 4·05 16·61 0·59 3·77 15·45 0·61
Jackson et al.(8) 4·89 20·05 0·51 4·23 17·33 0·51
Larsson et al.(9) –‡ –‡ –‡ 4·23 17·33 0·51
Levitt et al.(10) 5·11 20·94 0·60 3·77 15·45 0·61
Gómez-Ambrosi et al.(11) 5·52 22·62 0·61 3·75 15·37 0·61
Multivariate prediction – – – 3·26 13·26 0·71

Women Gallagher et al.(7) 4·46 11·95 0·67 3·47 9·29 0·68
Jackson et al.(8) 5·09 13·62 0·62 3·77 10·10 0·63
Larsson et al.(9) –‡ –‡ –‡ 3·75 10·04 0·63
Levitt et al.(10) 4·48 11·99 0·68 3·47 9·29 0·68
Gómez-Ambrosi et al.(11) 4·90 13·13 0·67 3·75 10·40 0·63
Multivariate prediction – – – 3·47 9·29 0·68

French DB Men Gallagher et al.(7) 3·95 18·45 0·62 3·76 17·56 0·61
Jackson et al.(8) 4·23 19·74 0·58 3·97† 18·54 0·58
Larsson et al.(9) –‡ –‡ –‡ 3·97† 18·54 0·58
Levitt et al.(10) 5·23 24·42 0·60 3·76 17·56 0·61
Gómez-Ambrosi et al.(11) 5·39 25·17 0·64 3·63 16·95 0·63
Multivariate prediction – – – 3·74 17·47 0·62

Women Gallagher et al.(7) 4·43 13·18 0·66 3·93 11·68 0·67
Jackson et al.(8) 5·02 14·91 0·63 4·12 12·25 0·64
Larsson et al.(9) –‡ –‡ –‡ 4·10 12·19 0·64
Levitt et al.(10) 4·28 12·73 0·67 3·93 11·68 0·67
Gómez-Ambrosi et al.(11) 5·37 15·97 0·66 3·93 11·68 0·67
Multivariate prediction – – – 3·95 11·74 0·67

SEP, standard error of prediction; RSD, relative standard deviation.
* The accuracy is assessed by the SEP and RSD, and both are expressed in percentage. The R 2 is also calculated.
† There is a significant difference in SEP values between the adjusted univariate prediction models and the multivariate prediction model with the permutation

test (P , 0·05).
‡ The original parameter coefficients are not available.
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segmental body compositions has been justified in some meta-

bolic disease risk studies. Indeed, an excess amount of TF is

associated with a higher cardiometabolic risk, but in addition,

after TF mass is controlled, a higher APF mass can be shown

to be associated with a more favourable metabolic profile, par-

ticularly in women(32,33). In a study on subjects aged 60–80

years, Saunders et al.(34) found that the absolute amount of

TF and APF masses influenced the metabolic risk in elder

men and women. Moreover, based on a study using DXA,

BF was shown to be a complementary significant contributor

to BMR in addition to BFF(35). Some longitudinal studies in

cohorts of older subjects(36,37) have highlighted that the loss

of APL mass, measured using DXA, was associated with a

greater risk of all-cause mortality compared with individuals

with stable APL mass. Furthermore, Kilgour et al.(38) found

that in advanced cancer patients, an APL mass-for-height

index, measured by DXA, had a significant impact on

cancer-related fatigue in men. Therefore, in order to better

assess the health status or the metabolic risks of individuals,

it is beneficial to predict simultaneously several segmental

compartments from the statistical models. In the present

study, the results for different populations underline that our

proposed model enables the accurate assessment of several

segmental compartments for the three ethnicities studied.

The reliable prediction for body, trunk and appendicular

components may be used for further studies related to patho-

physiological and metabolic issues.

Of the already published models, five were retained for

evaluating the usefulness of the proposed combination of

four predictor variables in the multivariate model. These

published models mainly integrated BMI and age as predictor

variables; some were derived from either densitometry-based

or air-displacement plethysmography-based datasets. Original

and adjusted formulas, derived from the TRD, were applied to

the VAD and their prediction accuracies were used as baseline

values for comparison. The results show that the prediction of

BF% of predictor variables used in our multivariate model

yields a competing accuracy in comparison with the five

adjusted published models. This finding justifies the relevance

of using age, height, weight and waist circumference for pre-

dicting body composition.

Measurements of body composition can be obtained using a

variety of methods, each of which provides a different amount

of information about body compartments. Each method has

specific limitations and measurement errors(39,40). DXA and

the four-compartment models are usually designated as refer-

ence methods for assessing body composition(41–43). For BF%,

the precision is approximately 3 % for DXA and even lower

than 3 % for the four-compartment models(42). If we take

into account these measurement errors combined with the

prediction accuracy of our model, we can calculate the
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model precision using the following formula:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DXA precision ð%Þ2 þ model prediction accuracy ð%Þ2:

q
In our model, the SEP values for BF% were 3·2 % for men in

the VAD and less than 4 % for women in the VAD and French

DB. Our model thus yields an interesting precision of 4·4 and

4·8 % for men and women in the VAD and 5·0 % in the French

DB. Interestingly, Lohman(44) developed standards for evaluat-

ing prediction errors (SEP) for BF%. He proposed that an ideal

prediction would be denoted by a SEP value less than 2 %, a

good prediction by a SEP value ranging from 3·5 to 4 % and

a poor prediction by a SEP value greater than 5 %. According

to these standards, our multivariate model with the four pre-

dictor variables yielded a good prediction error. Indeed, the

SEP values for BF% were equal to 3·26 and 3·74 % in men

and women, respectively. Even if our prediction model was

shown to be good, it cannot replace a direct measurement

such as DXA. Nevertheless, due to its easy application and

cost efficiency, it appears to be a convenient tool to evaluate

the need of DXA prescription. Besides this, the multivariate

model enables to suggest a pathophysiological situation or

detect a dangerous evolution in case of follow-up. Moreover,

such applications could be of interest to educate patients with

chronic metabolic diseases. Finally, from a research perspec-

tive, such a model could be highly relevant in predicting

specific risks in large populations.

The present study was limited in some aspects. First, while

working with the NHANES dataset, ethnic groups were limited

to White, Black and Hispanic subjects for whom accurate pre-

dictions were provided. Furthermore, only subjects aged from

20 to 85 years with BMI values ranging from 18 to 40 kg/m2

were examined. Subjects with a BMI .40 kg/m2 were

excluded because they are morbidly obese. Already for a

BMI .30 kg/m2, the accuracy of our model was lower than

that for the other two BMI categories. Moreover, waist circum-

ference has little incremental predictive power of disease risk

for subjects with a BMI .35 kg/m2 (45). Thus, a particular study

should be conducted to predict body composition of morbidly

obese individuals. Finally, since data on waist circumference

were not available in the French DB, the prediction of body

composition for this database only used the three other

predictor variables, with the result being a lower accuracy

compared with that of the VAD. This result strengthens

the conclusions regarding the importance of including waist

circumference as a predictor variable.

In summary, waist circumference is an important predictor

variable for the prediction of segmental body composition,

especially in men. When using age, height, weight and waist

circumference, our multivariate model yields a competing

accuracy compared with other published univariate models

for the prediction of BF%. Compared with these published

formulas, the originality and advantage of the proposed

model consist in predicting simultaneously several segmental

compartments (such as TF mass or APL mass) with a good

accuracy; the multivariate outcomes might then be used in

studies necessitating the assessment of metabolic risk factors

in large populations.
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