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Impact statement 1 

Restoration of coastal wetlands in the Anthropocene must balance considerations of ecology, 2 

economy, and Indigenous rights. These complex and interactive needs require adaptive 3 

management in the context of a changing climate, as the effects of sea level rise and shifting 4 

precipitation patterns compound with the consequences of land use/land cover change and 5 

anthropogenic freshwater demands. Globally, many coastal wetlands are experiencing 6 

hypersalinity stress linked to freshwater diversion or drought conditions. These hypersaline 7 

wetlands, including those in arid and semi-arid regions, are especially vulnerable to loss and 8 

degradation, as increasing coastal urbanization and climate change are rapidly exacerbating 9 

freshwater supply stressors. These wetlands present unique management challenges, 10 

necessitating the development of novel restoration approaches and success metrics. This article 11 

describes restoration successes, challenges, and lessons learned in these habitats, and lays a 12 

foundation for developing new, forward-looking restoration strategies that connect the values 13 

and needs of human and ecological communities.   14 
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Abstract 15 

Wetlands in hypersaline environments are especially vulnerable to loss and degradation, as 16 

increasing coastal urbanization and climate change rapidly exacerbate freshwater supply 17 

stressors. Hypersaline wetlands pose unique management challenges that require innovative 18 

restoration perspectives and approaches that consider complex local and regional socioecological 19 

dynamics. In part, this challenge stems from multiple co-occurring stressors and anthropogenic 20 

alterations, including estuary mouth closure and freshwater diversions at the catchment scale. In 21 

this article, we discuss challenges and opportunities in the restoration of hypersaline coastal 22 

wetland systems, including management of freshwater inflow, shoreline modification, the 23 

occurrence of concurrent or sequential stressors, and the knowledge and values of stakeholders 24 

and Indigenous peoples. Areas needing additional research and integration into practice are 25 

described, and paths forward in adaptive management are discussed. There is a broad need for 26 

actionable research on adaptively managing hypersaline wetlands, where outputs will enhance 27 

the sustainability and effectiveness of future restoration efforts. Applying a collaborative 28 

approach that integrates best practices across a diversity of socio-ecological settings will have 29 

global benefits for the effective management of hypersaline coastal wetlands. 30 

 31 
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I. Introduction 35 

Restoration of coastal wetlands in the Anthropocene must account for climate change, where sea-36 

level rise, shifting precipitation patterns and modification of climatic and weather phenomena 37 

(e.g., El Niño-Southern Oscillation, cyclones) compound with the consequences of land use/land 38 

cover change and anthropogenic freshwater demands. Globally, many coastal wetlands face 39 

limited freshwater supply due to drought, flow impoundments by overgrowth of invasive plant 40 

species, low precipitation, freshwater diversion and/or groundwater extraction leading to 41 

hypersaline (exceeding seawater salinity, typically above 40 ppt) conditions (Adame et al. 2021; 42 

Bornman et al. 2002; Duke et al. 2022; Le Maitre et al. 2016; Lovelock et al. 2017; Tran et al. 43 

2022). Contemporary definitions of anthropogenic droughts in human-water systems 44 

acknowledge the complex interplay of meteorological, geomorphological, hydrological, and 45 

anthropogenic drivers (AghaKouchak et al. 2021), where the over-extraction of water can 46 

increase the likelihood of drought, irrespective of climatic drivers (Mosley 2015).  47 

 48 

Wetlands in hypersaline settings are typically within coastal estuaries and lagoons that can be 49 

intermittently open or closed and may range in vegetation composition and structure from those 50 

void of vascular plants (e.g., salt flats or mud flats), to herbaceous or succulent groundcovers, to 51 

hypersaline mangrove scrub or short forest. Wetlands in hypersaline environments are especially 52 

vulnerable to loss and degradation, as increasing coastal urbanization and climate change rapidly 53 

exacerbate freshwater supply stressors (Geedicke et al. 2018; Short et al. 2016), often with 54 

critical consequences for foundation species like mangroves or oysters, for ecosystem engineers 55 

such as bioturbating organisms (Lam-Gordillo et al. 2022; Miller et al. 2017), or for the 56 

conservation of estuarine-dependent fauna (Brookes et al. 2022; Komoroske et al. 2016; 57 
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Tweedley et al. 2019). Wetlands experiencing acute drought, reduced freshwater inputs, or 58 

persistent aridity resulting in hypersalinity pose unique management challenges relative to 59 

mesohaline or polyhaline wetlands (with salinity at or below 30 ppt). For example, restoration in 60 

hypersaline wetlands may require the use of slower growing, salt tolerant species with lower 61 

transplant success rates, potentially delaying ecosystem recovery (Zedler et al. 2003). Thus, 62 

hypersaline wetlands require unique restoration perspectives and potentially complex, 63 

multifactorial approaches. Given the substantial economic value of the ecological functions of 64 

these systems (Davidson et al. 2019), and the cost- and labor-intensive efforts to maintain and 65 

restore those functions (Wang et al. 2022), effective outcomes will require consideration of the 66 

complex local and regional dynamics that are unique to hypersaline ecosystems. This article 67 

considers the challenges facing the restoration and management of these systems, outlines areas 68 

needing additional research and integration into practice, and identifies potential paths forward 69 

for the future restoration of coastal wetlands subject to hypersalinity. 70 

 71 

II. Estuarine Dynamics 72 

Coastal wetlands occupy a range of geomorphological and climatic settings that influence their 73 

form and may periodically create hypersaline conditions. Along high wave energy and/or low 74 

precipitation coastlines, intermittent estuaries (also called temporarily closed estuaries) can form 75 

in association with sand bars or berms that restrict tidal influence, cutoff low water areas, or 76 

perched impoundments (Stein et al. 2021). In some settings, these systems experience low or 77 

zero inflow outside of seasonal rainstorms; these low flow and low volume conditions can hover 78 

near salinity tolerance thresholds of resident biota. Restoration of these often small, seasonally 79 

variable systems is closely linked to watershed inputs, making them highly sensitive to changes 80 
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in inflow, sediment, nutrients, and other contaminants. Reestablishing dynamic estuary 81 

entrances, such as seasonal mouth openings and closures, can improve salinity regimes, enhance 82 

intertidal vegetation recovery, and subsequently improve shoreline stability by mitigating 83 

erosion, attenuating waves, and supporting biodiversity (Bilkovic et al. 2016). 84 

Robust baseline data obtained from comprehensive monitoring programs is essential for effective 85 

management, especially in low flow and low volume systems (Adams and Van Niekerk 2020; 86 

Stein et al. 2021). A universal challenge is determining appropriate management targets that 87 

inform decisions, including management of mouth openings. As in many types of coastal 88 

ecosystems, this challenge is difficult because ecological states often shift seasonally (Stein et al. 89 

2021), driven by fluctuations in hydrological, climatic, and marine processes. This seasonality 90 

affects water flow, sediment deposition, salinity gradients and species distributions, making it 91 

difficult to establish clear reference targets for all expected seasonal states (Little et al. 2017; 92 

Mosley et al. 2018).  93 

 94 

III. Freshwater Inflow 95 

Freshwater inflow to coastal wetlands and estuaries is key to maintaining system health and 96 

productivity, particularly in arid and semi-arid regions. Rising demand in freshwater abstraction 97 

to support growing human populations directly contributes to the salinization and desiccation of 98 

coastal wetlands. Scarcity of freshwater can lead to hypersalinization (due to high evaporation; 99 

Tweedley et al. 2019) or marinization (extended intrusion of seawater into an estuary; Pasquaud 100 

et al. 2012). Additionally, urbanization can lead to reduced seasonal freshwater input while also 101 

generating perennial “urban drool,” where contaminated freshwater runoff trickles into 102 
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ephemeral streams during the dry season (Pilone et al. 2021; White and Greer 2006). Altered 103 

freshwater inflow influences estuary mouth states, changes water residence times, and triggers 104 

extreme shifts in salinity regimes with consequential biological degradation of mudflats, salt 105 

marshes, and mangroves (Dittmann et al. 2015; Zampatti et al. 2010).  106 

Anthropogenic freshwater demands often co-occur with climate change-induced increases in 107 

drought frequency and intensity, especially in the wet-dry tropics where coastal estuaries may 108 

experience low inflow during the dry season, leading to periodic hypersalinity in the upper 109 

intertidal zone. When the wet season is reduced or fails, as can occur with oceanic and climatic 110 

perturbations (e.g., El Niño-Southern Oscillation events), the impacts on coastal wetland 111 

function can be profound and may cause dieback (including plant mortality in severe instances), 112 

especially in mangrove-dominated systems (Duke et al. 2017; Lucas et al. 2017; Otero et al. 113 

2017). In these circumstances, restoration of wetland condition may only be successful when 114 

prevailing salinity conditions have returned to a normal state after the perturbation event 115 

subsides (Asbridge et al. 2019). 116 

 117 

Wetlands in arid systems are already near their tolerance limits in terms of freshwater inputs 118 

(Adame et al. 2021; Bertness et al. 1992; Howard and Mendelssohn 1999; Watson and Byrne 119 

2009). Therefore, restoring connectivity between freshwater sources and downstream estuaries is 120 

key for mitigating the potentially antagonistic effects of anthropogenic freshwater demands and 121 

climate drivers, thus enhancing ecological and societal benefits (Adams et al. 2023; Arthington 122 

et al. 2018b). However, effective outcomes will require consideration of local and regional 123 

dynamics of changing water, sediment, and nutrient inputs from the watershed (Mosley et al. 124 
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2023). Adaptive management of hydrological infrastructure may include removing in-stream 125 

barriers (e.g., weirs, flood gates) and flood controls on coastal floodplains (e.g., bund walls, 126 

levees) to recreate natural flow and connectivity conditions (Chilton et al. 2021; Webster 2010). 127 

Future restoration efforts will also need to address past overallocation and illegal catchment and 128 

abstraction activities. Such management actions must consider future climate projections to 129 

ensure restoration is sustainable in a changing socioecological framework. In some countries, 130 

legal mandates require Environmental Flow (E-Flow) allocation to estuaries and associated 131 

wetlands. E-flows describe the volume, timing and duration of flows (the hydrological regime) 132 

required to sustain the components, processes and services of estuarine and freshwater 133 

ecosystems (Arthington et al. 2018b). These E-Flows safeguard estuarine health and their 134 

multiple ecosystem services to society (Adams and Van Niekerk 2020; Arthington et al. 2018a). 135 

Planning and implementation of E-Flow restoration resides with catchment (or watershed) 136 

management authorities and should use an adaptive management approach that includes scenario 137 

planning, ecological monitoring, and consultation with advisory panels comprised of scientists, 138 

stakeholders, and regional Indigenous groups (Rumbelow 2018). In hypersaline wetlands, 139 

however, monitoring, implementation, and enforcement are often underfunded and salinity-140 

specific management is overlooked, especially for invertebrates and other estuarine fauna 141 

(Hemeon et al. 2020).  142 

 143 

IV. Landscape Modification 144 

Urbanization worldwide has resulted in substantial structural and physical modifications of 145 

shorelines and watersheds in general and for intermittently closed estuaries in particular (Bugnot 146 

et al. 2021; Lawrence et al. 2021). Resulting changes to erosion, freshwater inputs, and 147 
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deposition patterns disrupt coastal wetland hydrodynamics (Dugan et al. 2018), potentially 148 

altering salinity regimes in systems near biotic salinity tolerance limits (Whitfield et al. 2012). 149 

Construction of structures intended to manage erosion (e.g., seawalls, breakwaters), can fragment 150 

wetlands and restrict water flow (Bulleri and Chapman 2010). Further, upland development may 151 

lead to the loss of relict coastal wetlands due to coastal squeeze, further compromising ecological 152 

functionality (Munsch et al. 2017) and reducing biodiversity (Bulleri and Chapman 2010; Dugan 153 

et al. 2018). Coastal wetland restoration in heavily regulated, urbanized systems with competing 154 

water demands (Verdonschot et al. 2013), such as those in arid and semi-arid regions, present 155 

unique challenges. While full recovery to ‘pristine’ pre-disturbed states is often unachievable, 156 

adaptive eco-engineering approaches (both hydrological and ecological remediation) may help 157 

retain the remaining ecosystem values of coastal wetlands (Elliott et al. 2016; Zedler 2017). 158 

V. Multiple Co-occurring Stressors 159 

Hypersaline coastal wetlands and estuaries face multiple, cumulative long-term stressors that can 160 

complicate restoration and management planning. For example, the impacts of drought and high 161 

salinity conditions often coincide with other climate-driven stressors including fire (Taillie et al. 162 

2019) and freeze events (Madrid et al. 2014; Osland et al. 2017). Likewise, erosion or 163 

sedimentation following severe storms and floods might be amplified during post-drought 164 

periods when vegetation cover is reduced, often slowing ecosystem recovery (Alexandra and 165 

Finlayson 2020; Cahoon 2006). Drought or hypersalinity may intensify the consequences of 166 

anthropogenic stressors associated with land-use type and intensity, such as surface or 167 

groundwater extraction, nutrient input, and agricultural grazing (e.g., Tran et al. 2019). Broadly, 168 

interactions between hypersalinity and other stressors often constrain ecosystem productivity and 169 
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restoration potential (Box 1). In many cases, specific outcomes of interactive stressors are 170 

specific to sites, species, and stressor conditions, and predicting these patterns will require 171 

ongoing and new research efforts (Morzaria-Luna et al. 2014).  172 

Any restoration activities in these systems will need to consider the complex range of acute and 173 

chronic stressors that may be concurrently or sequentially affecting an ecosystem (Kondolf and 174 

Podolak 2014; Spencer and Lane 2016; Turner II et al. 1990). Furthermore, what works well for 175 

a foundational species in one region may not transfer to other portions of its range (Box 1). 176 

Managing multiple and compounding stressors is especially challenging given projections of 177 

increasing frequency and intensity of multiple co-occurring climatic stressors (He and Silliman 178 

2019), and a lack of understanding and difficulty predicting the synergistic interactions of co-179 

occurring stressors (Stockbridge et al. 2024).   180 

 181 

VI. Values of Local and Indigenous Peoples 182 

The recognition and appreciation of Traditional and Local Knowledges are on the rise, and along 183 

with stakeholder values, they are now considered critical for enhancing coastal ecosystem 184 

restoration and management success (e.g., Hemmerling et al. 2019; Loch and Riechers 2021; 185 

Uprety et al. 2015), including wetlands (de Oliveira et al. 2024). Despite the recognized value of 186 

Indigenous and Local Knowledges and efforts to rectify skewed western epistemologies (Parsons 187 

and Fisher 2020) and inequities through international commitments (e.g., UN Declaration on the 188 

Rights of Indigenous People, Kunming-Montreal Global Biodiversity Framework, and others), the 189 

active participation of Indigenous communities in wetland ecosystem restoration remains under-190 

utilized (Gaspers et al. 2022; Reed et al. 2022). Real collaborations between wetland custodians 191 
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and conventional knowledge scientists, policy makers and practitioners (Muller 2012; Parsons and 192 

Fisher 2020) are still limited. Without input from people that reside in and sustainably use the 193 

resources within coastal systems, restoration and management actions risk degrading ecosystems 194 

and further loss of critical ecosystem services (Nsikani et al. 2023; Peer et al. 2022). This threat is 195 

particularly potent in arid, hypersaline wetland systems nearing the biotic tolerance limits for 196 

salinity, where “standard” restoration approaches, such as managed realignment, re-establishment 197 

of water flow, sediment and nutrient control, and revegetation (Almendinger 1998; Henry et al. 198 

2024) are less likely to be effective. Thus, emphasizing the integration of Indigenous, traditional, 199 

and locally-led community knowledge in wetlands research, management, and governance is 200 

crucial in these hypersaline habitats, offering tangible environmental benefits by informing 201 

ecologically sustainable (nature-based) approaches (Reed et al. 2022; Seddon et al. 2021) that are 202 

collectively relevant (Pyke et al. 2018). For example, Indigenous-led workshops can be part of a 203 

decentralized framework that supports community (including youth and elderly) leadership and 204 

rights of custodians to promote meaningful review of needs, co-design and co-implementation of 205 

restoration/management (Dickson‐Hoyle et al. 2021; Gann et al. 2019; Robinson et al. 2021), 206 

governance (de Oliveira et al. 2024) and ecosystem stewardship (Holmes and Jampijinpa 2013) of 207 

arid wetlands. 208 

 209 

VII. Future Restoration in Practice 210 

Coastal ecosystem restoration demands an integrated, adaptive, and often long-term approach 211 

that recognizes changing climatic conditions and increasing anthropogenic pressures. To develop 212 

holistic restoration strategies within the Anthropocene context, the following considerations are 213 

suggested as critical for the management of hypersaline wetlands: 214 
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Socio-ecological framework. Adopting a socio-ecological systems framework is crucial, 215 

incorporating all stakeholders and balancing societal and ecological benefits (Adams et al. 2020; 216 

Nsikani et al. 2023). This framework should embrace transdisciplinary approaches that explicitly 217 

integrate Indigenous and Local Knowledges, promote Indigenous-led restoration, and engage 218 

local communities in restoration practice. Collaborative partnerships among community 219 

stakeholders and regulatory agencies are essential for co-producing design and management 220 

strategies in hypersaline wetlands. These partnerships will foster sustainable relationships and 221 

ensure long-term provision of essential ecosystem functions and the unique suite of biota that are 222 

adapted to these hypersaline systems. 223 

Ecological engineering. Opportunities for “Engineering with Nature” designs (Bridges et al. 224 

2018), hold promise for restoring hypersaline wetland systems, especially along heavily 225 

modified shorelines (Elliott et al. 2016). Diverse approaches (e.g., managing upstream and 226 

downstream infrastructure, constructing novel habitat, and reintroducing foundation species such 227 

as salt-tolerant mangroves) can lead to some measure of restoration success. Decisions to pursue 228 

engineered solutions should be carefully balanced against the benefits and risks of passive 229 

approaches that allow for ecosystem restoration to follow an unmanaged trajectory. In some 230 

instances, active restoration work can be ecologically successful and a publicity boon (e.g., 231 

Banerjee et al. 2023), but can also sometimes yield incremental ecological outcomes (e.g., Lee et 232 

al. 2019). Engineered solutions may not be responsive or adaptable to rapidly changing climate 233 

conditions, including increased frequency and intensity of extreme events (Cohen et al. 2021; 234 

Ting et al. 2019), or to chronic and irreversible stressors such as sea level rise (Saintilan et al. 235 

2022). Given the uncertainty and variability facing hypersaline wetland systems, and the lack of 236 
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baseline data to inform management targets (see Section III), it may be challenging to develop 237 

sustainable, long-lived engineered designs that can adaptively respond to future climatic 238 

conditions. 239 

Regulatory framework. In complex hypersaline systems that extend across socio-political 240 

borders, policy provisions to guide the prioritization and management of water allocations for 241 

environmental purposes (E-flows) are being incorporated into some legal agreements for 242 

hypersaline systems such as Australia's Murray Darling Basin Plan (MDBA 2012) and the 243 

Colorado River Minute 323 (IBWC 2017). In some cases, legally mandated E-flow requirements 244 

have bolstered water security by increasing flows, thus generating drought protection to end-of-245 

catchment coastal wetlands (Brookes et al. 2023). In many other instances, however, there 246 

remains substantial room for cross-agency collaboration and monitoring to improve data-247 

informed guidance for inflow and freshwater allocation decisions at the catchment scale (Davis 248 

et al. 2015).  249 

Adaptive management. Future restoration of hypersaline systems must integrate climate change 250 

projections and anticipated impacts on wetlands and associated communities. For example, 251 

managers should consider the delivery of freshwater flows and restoration efforts in the context 252 

of drier futures with expanding human populations and subsequent demands on upstream water 253 

resources. Addressing these challenges will involve difficult decisions about human-254 

environmental trade-offs that consider the salinity setting (Largier 2023) and the local socio-255 

ecological framework as described above. In doing so, restoration practitioners may need to 256 

prepare people for alternate environmental, social and economic futures while striving to restore 257 

to the ‘best possible’ states under a changing climate.  258 
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Climate change poses adaptive management implementation challenges in hypersaline systems, 259 

as this has shifted climatic and rainfall baselines and increased unpredictability in rainfall and 260 

extreme events, impacting freshwater use and delivery to estuaries (Stein et al. 2021). Such 261 

impacts are likely to also affect sediment supply to coastal wetlands, which is already low in 262 

most arid/semi-arid areas. Any further reduction in sediment supply due to reduced 263 

freshwater/land-based inputs to the coast will subsequently reduce accretion rates in wetlands. 264 

This will decrease the ability of these systems to maintain their optimal position in the tidal 265 

frame and lead to increased erosion and/or shoreline submergence with sea-level rise. These 266 

climate-induced changes may affect the state of estuaries post-restoration, necessitating revised 267 

management practices, notably a “learning-by-doing” approach.  268 

Next steps. Restoration is vital to maintain and improve the health of hypersaline wetlands, 269 

ensuring the provision of multiple ecosystem services to society. There are unique challenges 270 

associated with adaptive restoration of wetlands subject to salinity extremes, and these 271 

challenges are compounded by co-occurring stressors and anthropogenic alterations, including 272 

estuary mouth closure and freshwater inflow diversions. Restoration in practice should be 273 

adaptively informed by locally-led, community-informed best practices at the catchment scale, 274 

and future research should seek to fill gaps in this type of knowledge. There is a broad need for 275 

actionable research on adaptively managing high-salinity wetlands that will enhance the 276 

sustainability and effectiveness of future restoration efforts. Using practices, information, and 277 

lessons shared across a diversity of socio-ecological settings will improve the effective 278 

management of hypersaline coastal wetlands on a global scale. 279 

 280 
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